機械知覚&ロボティクスグループ
中部大学

Deep Learning Object Detection 口頭発表

歩行者が交差点に存在するシーンにおける物体検出モデルの精度評価

Author
鈴木陽太郎,板谷秀典,平川翼,山下隆義, 藤吉弘亘
Publication
自動車技術会秋季大会, 2024

Download: PDF (Japanese)

Evaluation of object detection models for automated vehicles requires a large amount of evaluation data. However, collecting evaluation data in
a real environment is extremely costly. Therefore, it is expected that a variety of evaluation data can be created by using a computer graphics
environment. In this study, an evaluation scene is created using a DIVP simulator to evaluate the detection accuracy of object detection models.

前の研究 次の研究