
A Method for Estimating Rigid Object Motion Using Regularized
Scene Flow

Hiroki Mizuno
Department of Computer Science

Chubu University
1200 Matsumotocho, Kasugai,

Aichi 487-5501 Japan.
hiroki@vision.cs.chubu.ac.jp

Hironobu Fujiyoshi
Department of Computer Science

Chubu University
1200 Matsumotocho, Kasugai,

Aichi 487-5501 Japan.
hf@cs.chubu.ac.jp

Abstract

In this paper, we propose a method for estimating ob-
ject motion by three-dimensional scene flow using multiple
cameras. The scene flow is regularized by applying sub-
space constraints and then object motion is estimated us-
ing RANSAC estimation. Regularizing the scene flow us-
ing subspace constraints results in highly accurate scene
flow because it eliminates the effect of noise caused by com-
puting of optical flow. Simulation and experimental results
demonstrated that this method can be used to accurately es-
timate scene flow and object motion parameters for trans-
lation and rotation.

1 Introduction

Scene flow is the three-dimensional motion field of
points in the world, just as optical flow is the two-
dimensional motion field of points in an image. Vedula et al.
have proposed a framework for computing dense, non-rigid
scene flow from optical flow[5]. Possible applications of
scene flow include dynamic rendering, from the generation
of slow-motion replays to the measurement and modeling
of human actions.

The approach proposed by Vedula can be used to esti-
mate three-dimensional scene flow without any knowledge
of the scene structure. Their approach uses multiple cam-
eras, calibration information for each camera, and the op-
tical flow in the image planes. However, estimating three-
dimensional scene flow with high accuracy is difficult be-
cause optical flows have noise due to the so-called “aper-
ture problem”. For example, if the optical flows at the cor-
responding points between cameras contain noise, the ori-
entation and magnitude of the estimated scene flow are in-
accurate.

In this paper, we present a method for estimating three-
dimensional scene flow with high accuracy using optical
flows obtained from several cameras without reconstruct-
ing object shapes in three-dimensional space. It is based on
the assumption that object motion is rigid in a short time in-
tervals, so the set of scene flows in a sequence of frames re-
sides in a low-dimensional linear subspace. The scene flow
sequence can be represented as a3M×N measurement ma-
trix, which is made up of the world coordinates ofN points
tracked throughM frames. If the scene flow can be recon-
structed without noise, the measurement matrix will have a
rank of at most 4. However, if noise corrupts the scene flow,
the measurement matrix will have a higher rank.

Linear subspace constraints have been used successfully.

Tomasi and Kanade proposed a framework for recovering
3D information based on linear subspace constraints[3].
Their approach uses known 2D correspondence under or-
thography. Irani has proposed a method for estimating
optical flow in a sequence of frames[6]. Her approach,
which improves the accuracy of optical flow, is based on
the assumption that scene structure dose not change in short
time intervals. Our approach is to regularize the three-
dimensional scene flow directly using singular value de-
composition. It does not require point tracking over many
frames. Next, we describe our proposed method for esti-
mating object motion from a reconstructed scene flow. Our
approach can estimate rigid-motion parameters with high
accuracy because it combines regularization using subspace
constraints with RANSAC estimation.

2 Three-dimensional scene flow

In the same way that optical flow describes an instanta-
neous motion field in an image, scene flow can be described
as a three-dimensional flow field,dx

dt , representing the mo-
tion at every point in the scene. In this section, we describe
a method for reconstructing scene flow without having any
knowledge of the scene structure using only the optical flow
of several cameras, as proposed by Vedula et al. [5]. There
are two steps. First, the location of the scene flow is com-
puted. Second, the orientation and magnitude of the scene
flow are computed. The details of each step are described
as follows.

2.1 Computing location of scene flow

Since we know the projection matrix from the camera
calibration, we can express the relationship between scene
flow and optical flow:

duk

dt
=

∂uk

∂x

dx

dt
, (1)

wheredx
dt is the scene flow at pointx in the scene. The 2D

motion of thekth camera image (i.e., the optical flow) pro-
jection isduk

dt . The Jacobian∂uk

∂x describes the relationship
between a small change at the 3D point and its image taken
by camerak. Equation (1) can be written as:

dx

dt
=

(
∂uk

∂x

)∗
duk

dt
+ µrk(uk) (2)

where
(

∂uk

∂x
)∗

is the pseudo-inverse of∂uk

∂x , rk(uk) is the
direction of a ray through pixeluk, andµ is an unknown



Figure 1: Property ofmk(x)

constant. Therefore, we have the following constraint on
the scene flow:

mk(x) · dx

dt
≡

[(
∂uk

∂x

)∗
duk

dt
× rk(uk)

]
· dx

dt
= 0 (3)

wheremk(x) is a vector perpendicular to the scene flow. If
scene flowdx

dt exists atx, the vectorsmk(x) obtained for
each camera should all lie in a plane perpendicular to the
scene flowdx

dt , as shown in Figure 1. The measure of vector
coplanarity,mk(x), which is obtained from the camerak,
is computed using

M(x) =
∑

k

m̂km̂T
k , (4)

wherem̂k is a unit vector normalized frommk(x). If all
mk(x) is coplanarity, the smallest eigenvalue ofM(x) is
zero.

Computing the location of scene flow requires discretiz-
ing the scene into a three-dimensional array of voxels. The
visibility of each point in the 3D space must be determined.
We use the voxel coloring algorithm proposed by Seitz and
Dyer [7] to search for the locations where the scene flow
exists.

2.2 Computing orientation and magnitude of
scene flow

If location x of an existing scene flow is observed by
multiple cameras(n > 2), we can extend Equation (1):
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dx

dt
(5)

wheren is the number of cameras observing the scene flow.
This gives us2n equations in 3 unknowns, so forn ≥ 2 we
have an overconstrained system. Once the location of the
scene flow is determined, its orientation and magnitude can
be computed using the least-squares method and equation
(5).

3 Method for reconstructing scene flow

To solve the problem of noise in optical flows affecting
the accuracy of scene flow, we propose a method for recon-
structing scene flow with high accuracy by regularizing the
scene flow, and assuming that object motion is rigid in short
time intervals.

Figure 2: Motion model

3.1 Motion model and measurement matrix

Let vij denote the movement of an object at 3D pointxi

at timej. If the object motion is rigid,vij is given by

vij = tj + ωj × xi, (6)

wheretj = [txj
, tyj

, tzj
]T is a translation vector, andωj =

[ωxj , ωyj , ωzj ]
T is a rotation velocity vector, as shown in

Figure 2. Equation (6) is rewritten as

[
vxij

vyij

vzij

]
=

[
txj 0 0 0 −ωzj ωyj

0 tyj 0 ωzj 0 −ωxj

0 0 tzj −ωyj ωxj 0

]



1
1
1

Xxi

Xyi

Xzi




. (7)

We rewrite Equation (7) as

[
vxij

vyij

vzij

]
=




sxj

syj

szj




(3×6)

qi(6×1) (8)

where

sxj
= [txj

, 0, 0, 0,−ωzj
, ωyj

],
syj = [0, tyj , 0, ωzj , 0,−ωxj ],
szj

= [0, 0, tzj
,−ωyj

, ωxj
, 0],

qi = [1, 1, 1, Xxi
, Xyi

, Xzi
]T .

Equation (8) represents the motion at locationxk. We ex-
tend it forN points by writing




vxj

vyj

vzj




(3×N)

=




sxj

syj

szj


Q(6×N) (9)

where

Q(6×N) = [q1, . . . , qN ] =




1 . . . 1
1 . . . 1
1 . . . 1

Xx1 . . . XxN

Xy1 . . . XyN

Xz1 . . . XzN




.

Additionally, we extend each vector (sxj
, syj

, szj
) in Equa-

tion (9) to describe multiple frames,M :

[
V x

V y

V z

]

(3M×N)

=

[
Sx

Sy

Sz

]

(3M×6)

Q(6×N) (10)



where

Sx=




sx1

...
sxM


 , Sy=




sy1

...
syM


 , Sz=




sz1

...
szM


 .

We call the matrix[V x/V y/V z] the “measurement ma-
trix”. All three rows of matrixQ contain 1, so,rank(Q) ≤
4. Since instantaneous object motion can be represented as
a constant velocity, each matrix (Sx，Sy，Sz) will have
rank of at most 1. Therefore,rank([Sx/Sy/Sz]) ≤ 3. The
matrix [V x/V y/V z] of rank is thus limited to the smaller
of Q and[Sx/Sy/Sz] because matrix[V x/V y/V z] is the
product of these matrices. Here, we assume that instanta-
neous object motion can be represented as a constant veloc-
ity, so we constrain the measurement matrix to have a rank
of at most 3.

3.2 Regularizing scene flow using subspace con-
straints

If the 2D optical flows contain noise and outliers, the
measurement matrix computed from the 3D scene flow will
not have a rank of exactly 3. We thus regularize the scene
flow applying subspace constraints to the measurement ma-
trix. In this section, we introduce the notion of rank approx-
imation, using the concept of singular value decomposition.

The matrix[V x/V y/V z] can be decomposed to

[
Vx

Vy

Vz

]

(3M×N)

= U1DUT
2 , (11)

whereU1 is a 3M × 3M matrix, U2 is a N × N ma-
trix, and both are orthogonal;D is a special diagonal ma-
trix, and its diagonal component is singular valued =
[d1, d2, . . . , d3M ]T . To limit the rank of the measurement
matrix to be at most 3, we change matrixD to the follow-
ing equation usingd′ = [d1, d2, d3, 0, . . . , 0]T :

D′ =




d1 0 . . . . . . . . . 0
0 d2 0 . . . . . . 0
0 0 d3 0 . . . 0
0 . . . . . . 0 . . . 0

0 . . . . . . . . .
... 0

0 . . . . . . . . . . . . 0




(3M×N)

.

Next, a new measurement matrix is computed usingD′, U1

andU2:




Vx
′

Vy
′

Vz
′



′

(3M×N)

= U1D
′UT

2 . (12)

New measurement matrix[V ′
x/V ′

y/V ′
z]
′ has a rank of at

most 3. The scene flow, which can be computed from
this matrix, is regularized using the motion model given by
Equation (6).

4 Motion estimation from scene flow

In this section, we describe how the motion parameters
are estimated from the reconstructed scene flow.

Figure 3: Outlier for location

4.1 Motion estimation

Since motion vectorvij at pointxi in the 3D scene is
known, the motion model (Equation (6)) can be expressed
for time j as

vij =

[ 0 Xzi
−Xyi

1 0 0
−Xzi 0 Xxi 0 1 0
Xyi

−Xxi
0 0 0 1

][
ωj

tj

]
(13)

=
[ −[xi]× I(3×3)

] [
ωj

tj

]
,

where[xi]× is the skew-symmetric matrix ofxi, andI(3×3)

is the unit matrix of3×3. This equation provides two linear
constraints on the motion parameters because it contains a
skew-symmetric matrix. Therefore, we can extend Equation
(13) usingN points:




v1j
...

vNj


 =



−[x1]× I1(3×3)

...
...

−[xN ]× IN(3×3)



[

ωj

tj

]
. (14)

This gives us 2N equations with six unknown constants:
ωx, ωy, ωz,andtx, ty, tz. SinceN ≥ 3, we can estimate the
motion parameters because the system is overconstrained.

4.2 RANSAC estimation

The regularized scene flow computed using the method
described in section 3 is a model of rigid motion. Sub-
space constraints can be used to regularize the orientation
and magnitude of the scene flow, but they cannot be used
to reject the outliers not in the proper location. We thus
use RANSAC estimation to reject the outliers by evaluat-
ing a median value of errors. (see Figure 3). We thus
use RANSAC estimation to reject the outliers. There are
seven steps in the process of estimating the parameters us-
ing RANSAC.

Step1 Select three points randomly from the of scene flow.

Step2 Estimate the motion parameters from these three
points using the least-squares method.

Step3 Compute the scene flow from the estimated parame-
ters.



Step4 Calculate errors of reconstructed scene flow and
computed scene flow.

Step5 Identify a median value of errors.

Step6 RepeatStep1to Step5

Step7 Select the parameters which is minimum value in
these median value of errors

5 Evaluation

We tested out method using simulation and experiment.
In the simulation, we reconstructed a scene flow using sub-
space constraints and estimated the object motion parame-
ters from the optical flows. In the experiment, we used three
frames for an actual image: the current frame and the ones
immediately before and after the current frames(M = 2).

5.1 Reconstructing scene flow using simulation
model

In the simulation, we used produced scene flow of known
shape objects such as cube, sphere, and arbitrary with rota-
tion and translation. We added noise to orientation, magni-
tude, and location of each scene flow. Figure 4 (a) shows
a example of scene flow with noise, and (b) shows a regu-
larized one using our method. The orientation of the scene

Figure 4: Example of simulation

flow in (a) is dispersed, while that in (b) is regular. This
means that it is possible to regularize the scene flow with
high accuracy by using subspace constraints.

The evaluation metric used to judge the accuracy of the
reconstructed scene flow is the degree of similarity ,cos θ,
between reconstructed scene flowv and true scene flowvt:

cos θ =
v · vt

||v|| ||vt|| . (15)

The other metric is the difference from true magnitude is
computed as:

| ||v|| − ||vt|| |
||vt|| . (16)

Figure 5: Histogram of similarity

Figure 5 shows a histogram of the degree of similarity for
all objects. Before regularization, the ratio of high similar-
ity, i.e., greater than 0.98, was 56.7%. After regularization,
it was 94.2%. Figure 6 shows a histogram of the differ-
ence from true magnitude. Before regularization , the raio

Figure 6: Histogram of difference from true magnitude

of high accuracy, i.e., greater than 0.1, was 46.3%. After
regularization, it was 58.3%. Using subspace constraints is
thus an efficient way to improve the accuracy of scene flow.

5.2 Motion estimation using simulation model

We estimated six parameters (ωx, ωy, ωz, andtx, ty, tz)
of object motion using the simulation model described
above. The input was scene flow before and after regular-
ization using subspace constraints. To determine the accu-
racy of the motion estimation, we estimated the motion us-
ing RANSAC and the least-squares method using all of the
reconstructed scene flow. Figure 7 shows estimation errors
for each motion (“rotation” and “translation+ rotation”).
Figure 7(a) and (b) shows that the scene flow regularized
using RANSAC had the highest accuracy. Since our method
uses RANSAC, it is possible to eliminate the effects of out-
liers. Our method can estimates the motion parameters with
high accuracy because the scene flow is regularized.

5.3 Experimental result using real images

In our experiment, we mounted five cameras as shown
in Figure 8. The shutters were synchronized to open si-
multaneously. The object was a person’s hand and forearm



Figure 9: Captured images and optical flows (translation movement only)

Figure 10: Example of reconstructed 3-D scene flows

Table 1: Estimated motion parameters for translation and rotation sequences
ωx ωy ωz tx ty tz

[deg/frame] [deg/frame] [deg/frame] [mm/frame] [mm/frame] [mm/frame]
Translation -0.494 0.380 -0.244 0.818 -4.523 -0.078
Rotation -5.490 -0.114 0.978 -0.246 5.901 2.197



Figure 7: Estimation errors of each motion

moving at about 150mm/s. The optical flows between the
present and previous frames are shown in Figure 9. Figure
10 shows scene flows reconstructed from these images. Ta-

Figure 8: Experimental setup

ble 1 shows examples of estimated motion parameters for
the translation and rotation sequences. For the translation
sequence, all of the rotation velocity vectors (ωx, ωy, ωz)
were less than 1.0. This means that sequence was not ro-
tated. The parameter with the highest value wasty. It shows
that the object moved 4.5 mm per frame, which corresponds
to 135 mm per second. This means that high accuracy was
achieved because the difference was only 10%. For the
rotation sequence when the object was rotated 180 degrees
around thex axis per second. The parameter with the high-
est value wasωx. It shows that the object rotated 5.5 degrees
around thex axis per frame, which corresponds to 165 de-
grees per second. This means that the motion parameters
can be obtained with high accuracy because the difference
was only about 8%. Although this sequence was not trans-
lated, the value ofty was high. This is why rotation around

the x axis closely resembles translation to they direction
because the object is seen from the upper cameras. This
problem can be solved by using more cameras mounted at
different height.

6 Conclusion

The method we have described for regularizing three-
dimensional scene flows uses subspace constraints when the
object is assumed to have rigid motion. Regularizing the
scene flow using subspace constraints results in highly ac-
curate scene flow because it eliminates the effect of noise
caused by computing of optical flow. With this approach,
the number of frames, needed for regularization, is less than
that of conventional methods. Moreover the parameters of
object motion can be estimated with high accuracy using a
regularized scene flow.

We plan to enhance the method to enable it to handle
multiple moving objects.
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