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Abstract. The mean-shift algorithm is an efficient technique for track-
ing 2D blobs through an image. Although it is important to adapt the
mean-shift kernel to handle changes in illumination for robot vision at
outdoor site, there is presently no clean mechanism for doing this. This
paper presents a novel approach for color tracking that is robust to il-
lumination changes for robot vision. We use two interleaved mean-shift
procedures to track the spatial location and illumination intensity of a
blob in an image. We demonstrate that our method enables efficient real-
time tracking of the multiple color blobs against changes in illumination,
where the illuminace ranges from 58 to 1,300 lx.

1 Introduction

Tracking is a method of estimating the spatial location of a target in a camera
image. It often requires real-time processing, so high-speed processing is essential.
For tracking 2D blobs through an image sequence, the mean-shift algorithm is an
efficient technique [1–3]. It seeks the nearest mode of a point sample distribution.
Collins [4] proposed a method of scale change mean-shift and She [5] proposed
a method of considering shape features. The mean-shift algorithm has a low
calculation cost and offers high-speed execution.

Tracking is difficult when lighting changes because the RGB values from the
image changes with the lighting. Thus, it is not possible to distinguish a moving
object or lighting change. In addition, problems of lighting changes are usually
treated as those of color transformation between different lighting conditions.
Some researchers have proposed linear color transformation [6] and independent
transformation [7] of each RGB component, which are derived from a physics-
based color model. On the other hand, statistics-based approaches have also been
proposed. Miller [8] proposed a method of non-linear color transformation using
color eigenflows learned from multiple pairs of images of the same scene under
different lighting conditions. It is, however, difficult for a robot vision system to
get multiple reference colors in unknown lighting conditions.

This paper presents a novel approach for color tracking that is robust to
lighting changes for robot vision. We use two interleaved mean-shift procedures
to track the spatial location and illumination intensity of a blob in an image.
We show that our method enables real-time tracking of a color blob for varying
lighting conditions.
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2 Color and illuminance

The illuminance at any surface of known color can be measured by observing the
RGB values obtained by a CCD camera. Changes in the light source or meteoro-
logical effects can change the illuminance, resulting in changes in the measured
RGB values. Figure 1(a) shows various color patches (Blue, Black, Green, Pink,
Purple, White, Yellow) under illuminance ranging from 10 to 1400 lx. The setup
used in our experiments is illustrated in Figure 1(b). The illuminance on the
object’s surface was obtained by an illuminance meter placed on the object, and
RGB values were captured by a color CCD camera mounted at a height of 280
cm.

Fig. 1. Experimental setup.

Using the color segmentation technique based on thresholding [9], it is diffi-
cult to distinguish color classes in RGB color space, because we cannot create a
threshold criterion that specifies how the color space should be divided up into
a handful of color classes. Color clustering using the HSI color system is robust
to lighting changes, but it is difficult to distinguish a moving object and light
change, because it does not represent illuminance on the target. To solve this
problem, we augment the RGB color space to make an RGB-illuminance space,
and then we use a tracking method that searches for a mode within neighboring
pixels.

2.1 RGB-illuminance space

Our approach uses RGB-illuminance space coupled with the estimation of illu-
minance intensity in each frame to distinguish color classes. An example of color
distributions in RB-illuminance space is shown in Figure 2. We can see that it
is possible to classify color classes at each illuminance plane, as shown in Fig-
ures 2(b) and (c). However, a fixed value for thresholding does not work due to

Fig. 2. RGB-illuminance space: (a) color distribution in RB-illuminance space, (b) RB
value of each color class at 100 lx, and (c) RB value at 200 lx.
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shrinking in the color space with respect to illuminance. In the RGB-illuminance
space, reference-based searching such as the k-NN method for color clustering
can work, but it takes a lot of time due to the number of reference patterns
for each illuminance. Therefore, we use a color-illuminance model for each color
class.

2.2 Color-illuminance model
The relationship between RGB values and illuminance is not linear. Thus, we
use curve fitting on each RGB distribution over the illuminance intensity. Given
the illuminance intensity Ev, we can estimate the RGB color values Îr, Îg, Îb

using the following equations:
Î(Ev) = aEv2 + bEv + c (1)

where a, b, and c are unknowns computed by the least-squares method. Note
that we assume that the object’s surface has diffuse reflection.

2.3 Iris adjustment
The RGB values is influenced by some camera parameters such as iris and white
balance. To cope with special lighting situations, the iris (F-number) can be
adjusted manually to let in more or less light. The F-number is given by F =
f/D, where f is the focal length and D is the iris diameter. It affects the amount
of light energy admitted to the sensor and plays a significant role in the resulting
image. The relationship between intensity I and F-number is expressed by

I ∝
(

D

f

)2

=
(

1
F

)2

. (2)

The smaller the F-number, the more light admitted to the sensor, and hence
the better the image quality achieved in low-light situations. Figure 3(a) shows
RGB curves from a color-illuminance model for F = 4 and observed RGB values
for F = 5.6. Using Equation (2), we can convert the RGB values observed at
any F-value to the corresponding value at a desired F-value. F = 5.6 means
I ∝ 31.36 and F = 4 means I ∝ 16, so the RGB values at 1400 lx with F = 5.6
will be same as the RGB values at 700 lx with F = 4. Figure 3(b) shows an
example of converted RGB values.

Fig. 3. Adjusting RGB color value by F-number.

If we prepare a color-illuminance model for a given F-value in advance, we
can estimate the color-illuminance model at the F-number corresponding to our
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camera’s iris setting. In this paper, we assume that our light source has a constant
color temperature, so we do not consider the changes in white balance of the
color camera.

3 Mean-shift tracking through illuminace space

We propose a method for mean-shift-based color tracking through illuminance
space, which represents the spatial location and illumination intensity of a blob
in an image.

3.1 Mean-shift in image space

The mean-shift algorithm is a simple nonparametric method for seeking the
nearest mode of a sample distribution. It has recently been adopted as an efficient
tracking technique. When the mean-shift method is used for object tracking, the
gradient density is formed by weight w(x) at each image pixel x. The core of
the mean-shift tracking algorithm is the computation of a target’s motion vector
from a location x to a new location x′. We get the new location x′ = x + Δx

from the mean-shift vector

Δx =
∑N

i=1 K(xi − x0, σ)w(xi)(xi − x0)∑N
i=1 |K(xi − x0, σ)w(xi)|

, (3)

where the set {xi}i=1,...,N represents the locations of pixels around the current
location x and K is a kernel function such as the Gaussian kernel. Generally,
a weight map is determined using a color-based appearance model. In [3], the
weights were obtained by comparing a histogram qu, where u is a histogram bin
index, with a histogram of colors pu(x0) observed within a mean-shift window
at the current location x0. In fact, the weight at pixel location x is given by

w(x) =
m∑

u=1

δ [b(x) − u]
√

qu

pu(x0)
, (4)

where m is the total number of features, δ is the Kronecker delta function and
b(x) is feature value of the pixel at x.

3.2 Mean-shift in illuminance space for single-color tracking

It is difficult to track a color blob under varying light conditions due to the
limitations of color space described in Section 2. We augment the mean-shift
tracker to search in illuminance space by introducing two interleaved mean-
shift procedures to track the mode in image space and in illuminance space,
which represent the spatial location and illumination intensity of the target
blob, respectively. These two procedures are described below.

Initial input A color-illuminance model of the target color is deformed by
scaling with the current setting of the iris (F-number). The initial input is a
deformed color-illuminance model of a specific color and an estimate of the
blob’s current illuminance intensity Ev and spatial location x0 = (x, y) in the
image.
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Step 1: Mean-shift in image space Given the illuminance intensity Ev in
the current frame, the estimated RGB values (Îr, Îg, Îb) are computed using
Equation (1) using the color-illuminance model for the specific color. Then, we
compute a location weight map wloc(x) between the target color and the RGB
values I(x) for each pixel.

wloc(xi) =
Îr(Ev)Ir(xi) + Îg(Ev)Ig(xi) + Îb(Ev)Ib(xi)√

(Î2
r (Ev) + Î2

g (Ev) + Î2
b (Ev))(I2

r (xi) + I2
g (xi) + I2

b (xi))
(5)

Then the spatial mean-shift vector is obtained as

Δx =
∑N

i=0 Kloc(xi − x0, σxy)w(xi)(xi − x0)∑N
i=0 | Kloc(xi − x0, σxy)w(xi) |

(6)

where Kloc is a spatial kernel function given by

Kloc(x, σxy) =
1

2πσ2
xy

exp(
−(x2 + y2)

2σ2
xy

) (7)

and the summations are performed over a local window of N pixels around the
current location x. Finally, we can get the new location x′ = x + Δx from the
mean-shift vector.

Step 2: Mean-shift in illuminance space Our approach uses a mean-shift
procedure to estimate the illuminance intensity by a local window of pixels
around the new location x′ = (x′, y′) obtained in step 1. First, we compute
the color similarity at every illuminance (k = 0, ...,max) for each pixel x by the
following equation.

S(k,x) =
Îr(k)Ir(x) + Îg(k)Ig(x) + Îb(k)Ib(x)√

(Î2
r (k) + Î2

g (k) + Î2
b (k))(I2

r (x) + I2
g (x) + I2

b (x))
(k = 0, ...,max) (8)

Then, we compute an illuminance weight map wEv(), which is 1D array, by the
following equation:

wEv(k) =
N∑

i=0

Kloc((xi − x′), σxy)S(k,xi) (9)

where Kloc is a spatial kernel function. This works as a voting mechanism from
neighbor pixels using illuminance, as illustrated in Figure 4.

This mean-shift in illuminance space is performed on the 1D array of results
to locate the mode. The illuminance mean-shift vector is then obtained by the
equation:

ΔEv =
∑max

k=0 KEv(k − Ev)wEv(k)(k − Ev)∑max
k=0 wEv(k)

, (10)

where Ev is the current illuminance, and KEv is a kernel function for illuminance
space given by

KEv(k, σEv) =
1√

2πσ2
Ev

exp
( −k2

2σ2
Ev

)
. (11)

Finally, we can get the new illumination intensity Ev′ = Ev + ΔEv from the
mean-shift vector.
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Fig. 4. Calculation of weight map for illuminance space

Since the range of illuminance space is set as 0 < k < max (lx), the kernel
function for illuminance space KEv limits the search to around the illuminance
estimated in the last frame. However, we cannot get the illumination intensity
in a rapid light change if σEv is small and the illuminance estimation accuracy
is reduced if σEv is large. Therefore, we obtain σEv from the maximum point
kmax of the illuminance weight wEv(k) and the difference in the front frame’s
illuminance Ev. It is calculated by

σEv = (σmax − σmin) × | Ev − kmax |
Evmax − Evmin

, (12)

where σmax is the maximum value of σEv, σmin is the minimum value of σEv,
Evmax is the maximum value of Ev, and Evmin is the minimum value of Ev.

Step 3: Iteration Iterate by interleaving steps 1 and 2 until both |Δx| < εxy

and |ΔEv| < εEv.

3.3 Mean-shift for multiple-color tracking

We augment the single-color tracking method described in Section 3.2 to multiple
colors. Multiple color-illuminance models and weight maps for each target color
are prepared in advance. For the mean-shift in image space, we compute a spatial
location weight map wc

loc for each color class c by Equation (5) using each color-
illuminance model. Then, the weights for spatial location are integrated into
one weight by selecting the maximum value at the same pixel. The integrated
weight map for spatial location w′

loc is obtained from each color weight map
wc

loc(c = color variety) by

w′
loc(xi) = wloc(xi)c1 wloc(xi)c1

wloc(xi)c2
, (13)

where wloc(xi)c1 is the 1st maximum value in multiple colors c at xi and wloc(xi)c2

is 2nd one. Here, the color of c1 class, which has the maximum value, is stored
for the next step of computing the mean-shift vector in illuminance space.
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For the mean-shift in illuminance space, we compute the color similarity for
each illuminance for each pixel x using the color-illuminance model of the target’s
color. Then, the weight for illuminance space (1D array) is computed according
to Equation (9). This mean-shift procedure is iterated until convergence, as
described in 3.2.

4 Experimental results
The performance of the proposed method was evaluated by experiments in terms
of robustness and accuracy in varying light conditions.
4.1 Experiments
A color camera was mounted at a height of 2800 [cm], as shown in Figure 1.
In these experiments, the color temperature of the light source (light color) was
fixed, and the white balance and iris value were not changed during the tracking
task. Initial illuminance Ev and spatial location (x, y) of the colored object to
be tracked were given as initial values for mean-shift tracking. To determine the
accuracy of the location estimation, we compared the values estimated by the
proposed method to ground truth, which was measured manually by a human.
We also measured the illuminance intensity on the surface of the tracked object.

4.2 Experimental results for single-color tracking
Figure 5(a) shows tracking examples of the proposed method and the mean-shift
weight map. Figure 6 shows the location errors for the proposed method and the
general mean-shift method and the estimated illuminance on the object, which
ranged from 50 to 1200 lx as a result of changes in the intensity of the light source.
We can see that our method achieved more accurate location estimation than
the general mean-shift method. Since it simultaneously computes location and
illuminance, i.e., the location of the colored object while estimating the surface
illuminance, our method can track the object under varying lighting conditions.
When the light changes rapidly, e.g., due to flickering, our method can track a
colored object by calculating σEv of the illuminance kernel function KEv at each
frame (see Figure 6(a)).

Fig. 5. Tracking example of the proposed method.

Figure 5(b) shows examples of multiple-color tracking by our method using
the integrated weight map. It is clear that our method can be easily applied to
track multiple colors.
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Fig. 6. Experimental results.
5 Conclusion
In this paper, we proposed a tracking method using two interleaved mean-shift
procedures to track the mode in illuminance space, which represents the spatial
location and illumination intensity of a blob in an image. We demonstrated that
our method enables real-time color tracking that is robust to changes in illu-
mination, where the illuminance ranges from 50 to 1200 lx. Since this method
estimates the illuminance from the pixels of the tracked object and not by us-
ing the entire image, reliable color tracking is achieved even when the lighting
changes. Color tracking when the color temperature of the light source (light
color) varies is left as future work.
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