SAM のプロンプトチューニングと繰り返し推論による 細胞画像セグメンテーションの高精度化

○舩井祥吾 †, 平川翼 †, 山下隆義 †, 藤吉 弘亘 †

 \bigcirc Shogo FUNAI † Tsubasa HIRAKAWA †, Takayoshi YAMASHITA †, and Hironobu FUJIYOSHI †

†:中部大学, {funai@mprg.cs, hirakawa@mprg.cs, takayoshi@isc, fujiyoshi@isc}.chubu.ac.jp

<要約>セグメンテーションの基盤モデルである Segment Anything Model (SAM) のプロンプトチューニングと, 繰り返し推論によりセグメンテーションする手法を提案する.提案手法は,SAM の Prompt encoder 部に新たな トークンを追加してプロンプトチューニングを行うことと,繰り返し回数 t と t – 1 のマスクを比べて,しきい値 よりも大きい変化がある場合に繰り返し推論を行うことにより,位置ずれが生じたプロンプトによる精度低下を 防ぐことが可能になる.電子顕微鏡細胞画像を対象とした ISBI データセットと Electron Microscopy Dataset を 用いた評価実験により,提案手法の有効性を確認した.

<キーワード>電子顕微鏡細胞画像, セグメンテーション, プロンプトチューニング

1 はじめに

セグメンテーションとは、ピクセルレベルでのクラ ス識別を行うことで、オブジェクトの形状やクラスを 識別することができる. 医療画像や細胞画像のセグメ ンテーションは、生物学的に関連する形態学的情報を ピクセルレベルで識別することができるため、正確な 診断や治療計画のサポートに用いられる. しかし、細 胞形状には様々な形状があり、学習が困難である.

Segment Anything Model (SAM) [1] は, セグメン テーションタスクの基盤モデルである. プロンプトに 基づいて前景と背景にセグメンテーションを行う. 例 えば, プロンプトにバウンディングボックス (bbox) を 使用する場合, bbox で囲んだ領域をセグメンテーショ ンすることができる. このように, クラスに縛られる ことなく様々な形状に対応が可能である. 一方で, プ ロンプトは人の手によって与えられる. SAM はプロン プトに基づいてセグメンテーションを行うため, プロ ンプトに位置ずれが生じた場合, 精度の低下する.

そこで本研究では、SAM に位置ずれを許容する新た なプロンプトチューニングと、繰り返し推論による最 適化を導入し、SAM によるセグメンテーション精度の 向上を図る.評価実験により、bbox の位置ずれによる 精度の低下を抑制できることを確認した.

2 関連研究

Mazurowski らは、SAMのプロンプトとセグメンテー ション能力に関する詳細を明らかにした [5]. 主な結果 は以下の通りである. 1つ目は、セグメンテーションの 精度にはデータセットごとに差がある. 2つ目は、プロ ンプトが正確である場合は適切なセグメンテーション が得られる. 3つ目は、bbox をプロンプトとした場合 point をプロンプトにした場合よりも高精度なセグメ ンテーション結果が得られる. 4つ目は、複数の point をプロンプトに利用した場合、セグメンテーションの 精度がわずかに向上する傾向がある. これらの結果か ら、SAM は与えるプロンプトが重要である. また、ロ ボティクス分野においても point と比べて bbox を用い た場合に性能が高いことが示されており [11]、より適 切なプロンプトの入力が必要である.

SAM は,様々な画像に対して高い汎用性を持ってい る一方で,SAM の学習用データに含まれていない顕微 鏡画像や細胞画像といった医療用画像に対するセグメ ンテーション性能は不十分である.このため,電子顕 微鏡細胞画像や医療用画像を用いて SAM をファイン チューニングする様々な手法が提案されている [4,6,

7, 9, 10, 12]. MedSAM [12] は, CT, MRI, 病理画 像などの 1,090,486 枚の画像とマスクのペアから構成 されている大規模な医療用画像データセットを用いて SAM のファインチューニングが行われた. MedSAM では Image encoder と Mask decoder をファインチュー ニングし, プロンプトとして bbox が使用された. bbox は通常の SAM と同じ 0~20pixel の位置ずれで学習を 行っている. そのため, 20pixel 程度の位置ずれであれ ば, SAM とに対する頑健性を獲得している. しかし, 学習時以上の位置ずれが発生した場合, 精度が低下す る可能性がある.

3 提案手法

本研究では、位置ずれを起こした bbox に対して、適 切なセグメンテーションを出力するために、新たな学 習パラメータであるプロンプトの導入と、繰り返し推 論を提案する.

3.1 プロンプトチューニング

SAM には既にプロンプトチューニング用の学習パ ラメータが存在しており, SAM 独自の学習パラメータ (Learned embedding) は Positional encoding を行った 埋め込みに加算している.一般的なプロンプトチューニ ングでは埋め込みに加算するのではなく, トークンと して与えられる.そこで,提案手法では位置ずれを考慮 するための学習パラメータを新たに追加する.学習パ ラメータは, トークンとして SAM の Prompt encoder に追加し, プロンプトチューニングを行う.追加した トークンを用いたプロンプトチューニングを図1に示 す.また,このトークンを全結合層により128次元か ら256次元に変換することで,トークンはより複雑な 表現を可能にする.

3.2 繰り返し推論

推論時に位置ずれした不正確な bbox によるプロンプ トを用いた場合,良いマスクを出力することは難しい. そこで推論時に,繰り返し推論を行う.繰り返し推論 の流れを図2に示す.繰り返し推論は以下のステップ で行われる.

- step1 入力画像とプロンプトを用いて推論を行う. プ ロンプトにはランダムな位置ずれを含む bbox を 用いる.
- **step2** 推論した Predict Mask から外接矩形を bbox として設定する.
- step3 入力画像と設定した bbox を用いて再度推論を 行う.
- **step4** 推論した M_t と 1 回目に推論した M_{t-1} を比較 する.繰り返し推論の条件式を式 (1) に示す.こ こで、 M_{t-1} は一つ前の Predict mask、 M_t は現在 の Predict mask、t は現在の繰り返し回数、HWは画像サイズ、 τ はしきい値である.

$$\sum^{HW} |M_t - M_{t-1}| > \tau$$
 (1)

step5 比較した結果

手法	prompt tuning	繰り返し推論	bbox の位置ずれ				
			0%	10%	20%	30%	40%
SAM (FT)			0.822	0.810	0.774	0.699	0.604
SAM	\checkmark		0.825	0.810	0.777	0.702	0.606
提案手法	\checkmark		0.830	0.820	0.785	0.714	0.622
提案手法	\checkmark	\checkmark	0.830	0.817	0.784	0.727	0.650

表 1 ISBI データセットの実験結果

表 2	Electron	Microscopy	Dataset	の実験結果
		1.		

	prompt tuning	繰り返し推論	bbox の位置ずれ				
			0%	10%	20%	30%	40%
SAM (FT)			0.885	0.875	0.844	0.772	0.673
SAM	\checkmark		0.885	0.874	0.844	0.772	0.673
提案手法	\checkmark		0.884	0.874	0.845	0.779	0.683
提案手法	\checkmark	\checkmark	0.882	0.867	0.855	0.824	0.762

しきい値を超える場合 step2 に戻る

しきい値を超えない場合 predict mask をマスク として出力する.

図 2 繰り返し推論

4 評価実験

本実験では提案手法の有効性を示すために、トークン のプロンプトチューニングと繰り返し推論による評価実 験を行う.ベースラインは、SAMのファインチューニ ングとする.SAMのファインチューニングでは、Image encoder を固定し、Mask decoder のみを学習する.0% から40%の位置をずらした bbox をプロンプトとして入 力した場合のセグメンテーションを行う.プロンプトチ ューニングでは Image encoder と Learned embedding のパラメータは固定し、追加したプロンプトと Mask decoder を様々な bbox で学習する.また、通常プロン プトチューニングを行う場合は、既存のモデルのパラ メータを凍結させるが、SAM は Mask decoder の学習を 行うことで精度が向上することが分かっており、Image encoder よりも Mask decoder は軽量でパラメータ数が 少ないため同時に学習を行う. SAM のプロンプトチュー ニングでは, Prompt encoder の Learned embedding と Mask decoder を学習させる. 通常の SAM のファイン チューニングでは, Mask decoder のみを学習する.

4.1 データセット

本実験では、電子顕微鏡細胞画像を用いた細胞のセグ メンテーションのデータセットである ISBI [2] と、Electron Microscopy Dataset [3] を用いる. ISBI は RGB 画像とセグメンテーション画像がペアの 30 枚の画像で あり、画像枚数が少ない. そこで1枚の画像を4つに 分割し、120枚にして使用する. Electron Microscopy Dataset は3次元画像である.3次元画像は2次元画像 の積み重ねであるため、2次元画像を1枚ずつ取り出す ことで変換を行い, 173 枚の RGB 画像とセグメンテー ション画像のペアを使用する. これらのデータセット は、bbox が用意されていないため、Ground truthの セグメンテーションの外接矩形を bbox の真値のプロ ンプトとして使用する. ISBI ではデータセット全体の 60%を学習用,20%を検証用,20%をテスト用に使用す る. Electron Microscopy Dataset は学習用とテスト用 があるため、テスト用の半分を検証用に使用する.

4.2 実験概要

プロンプトチューニングでは、60%の確率で0%、20% の確率で±10%、±20%のサイズをずらした bbox をプ ロンプトとして入力し学習を行う.位置ずれに対する評 価では、0%から 40%のサイズをずらした bbox をプロ ンプトとして入力した場合の Predict mask と Ground truth 間の mIoU を比較する.繰り返し推論ではしきい 値を 2pixel とする.

4.3 実験結果

ISBI データセットでの実験結果を表1に, Electron Microscopy Dataset での実験結果を表2に示す. 提案 手法は両方のデータセットにおいて30%から40%と位 置ずれが大きい場合にSAMを超える認識性能を達成し た. プロンプトチューニングのみを導入した場合,提案 手法が両方のデータセットにおいて,位置ずれが30% 以上でSAMを超える認識性能を達成していることか ら,プロンプトチューニング時に学習していない位置 ずれ度合いに対してある程度頑健になったと言える. ま た,プロンプトチューニングに加えて繰り返し推論を 導入することで,さらに認識性能が改善することから, 繰り返し推論が有効であると言える.

4.4 マスクの可視化

ISBI データセットのそれぞれの手法を可視化した Predict mask (青色領域), Ground truth を図3に示す. 真値の bbox を入力した推論では, SAM (FT) よりも トークンのプロンプトチューニングを行うことで,より True Positive の部分のセグメンテーションをすること ができた. 位置ずれを起こした bbox では, SAM(FT) と SAM のプロンプトチューニングでは大きな変化は 見受けられなかったが,トークンの導入により,マス クの False Positive が少なくなり,より精密な検出がで きるようになった.

4.5 繰り返し過程の可視化

ISBI データセットでの繰り返し推論における1回目 から3回目の Predict mask (青色領域), Ground truth を図4に示す.小さい bbox が入力された推論では,推 論を繰り返すことで Predict mask が Ground truth へ 近づいていくものが多く存在した.大きな bbox では, 多くの場合,2度目の推論で良い結果となった.トーク ンを追加したプロンプトチューニングでは1度目の推 論でより輪郭を捉えられていることから,bbox の位置 ずれが小さくなりやすく,精度が向上したと考えられ る.この結果より,繰り返し推論が有効であると言え る.bbox が繰り返し推論する際に,もともと小さい物 体の場合,bbox が元よりも小さくなってしまった場合 に bbox が小さくなり続けることによる精度低下が見 受けられた.その結果,bbox の位置ずれが 20%までは 学習したことにより,もともと高いセグメンテーショ ン結果が返されるが,小さい物体の繰り返し推論によ り,良くなる bbox よりも悪くなる bbox の方が多いと 考えられる.繰り返し推論の位置ずれを起こした大き い bbox では,正解とは異なるマスクをセグメンテー ションしてしまう場合で精度が低下した.

5 おわりに

本研究では SAM における位置ずれのある不正確なプ ロンプトによる性能低下を改善するプロンプトチュー ニングと繰り返し推論を提案した.トークンのプロン プトチューニングは位置ずれした bbox に対して精度 低下を低減した.繰り返し推論では位置ずれが 30%以 上で大きく精度低下を低減した.繰り返し推論は 10% から 20%で繰り返し推論はうまくいかなかった.今後 は、マスクから作成した bbox に対する損失設計による プロンプトの最適化を行う.

参考文献

- A. Kirillov, et al., "Segment anything", ICCV, 2023.
- [2] A. Cardona, et al., "An integrated micro-and macroararchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy", PLOS Biology, vol.8, no.10, pp.1-17, 2010.
- [3] A. Lucchi, et al., "Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features", IEEE Trans Med Imaging, vol.31, no.2, pp.474-486, 2012.
- [4] J. Wu, et al., "Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation", arXiv preprint arXiv:2304.12620, 2023.
- [5] M. Mazurowski, et al., "Segment Anything Model for Medical Image Analysis: an Experimental Study", arXiv preprint arXiv:2304.10517, 2023.

- [6] H. Dai, et al., "SAMAug: Point Prompt Augmentation for Segment Anything Model", arXiv preprint arXiv:2307.01187,2023.
- [7] Z. Qiu, et al., "Learnable Ophthalmology SAM", arXiv preprint arXiv:2304.13425,2023.
- [8] M. Jia, et al., "Visual Prompt Tuning", arXiv preprint arXiv:2203.12119, 2022.
- [9] T. Chen, et al., "SAM Fails to Segment Anything?", arXiv preprint arXiv:2304.09148, 2023.
- [10] R. Deng, et al., "Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot Segmentation on Whole Slide Imaging", arXiv preprint arXiv:2304.04155, 2023.
- [11] An Wang, et al., "SAM Meets Robotic Surgery: An Empirical Study in Robustness Perspective", arXiv preprint arXiv:2304.14674, 2023.
- [12] Jun Ma, et al., "Segment Anything in Medical Images", arXiv preprint arXiv:2304.12306.
- [13] Tao Yu, et al., "Inpaint Anything: Segment Anything Meets Image Inpainting", arXiv preprint arXiv:2304.06790, 2023
- [14] Siyuan Huang, et al., "Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions with Large Language Model", arXiv preprint arXiv:2305.11176, 2023.

SAM(FT) : 0.674

SAM(PT) : 0.726

提案手法:0.854

Ground truth

SAM(FT) : 0.761

SAM(PT) : 0.764

提案手法:0.801

Ground truth

図 4 ISBI データセットの繰り返し推論による Predict mask の変化