決定木を用いた距離画像からの高速なエッジ検出

金子将也† 長谷川昂宏† 山内悠嗣† 山下隆義† 藤吉弘亘†

†中部大学

E-mail: msy@vision.cs.chubu.ac.jp, hf@cs.chubu.ac.jp

Abstract

従来,距離画像から3種類のエッジと平面をラベリ ングする手法としてリングオペレータが提案されてい る.リングオペレータは,画素毎にフーリエ変換を行 い,算出したフーリエスペクトルをしきい値処理する ことで,ジャンプエッジ,凸ルーフエッジ,凹ルーフ エッジに判定する.しかし,画素毎にフーリエ変換す るため,処理時間が遅いという問題がある.本稿では, 大量の距離画像を用いて決定木を構築し,構築した決 定木をトラバーサルしてエッジを検出する手法を提案 する.決定木の分岐関数には,注目画素とリング状に配 置された画素が持つ距離値の差分を用いる.構築した 決定木の深さは,リング状に配置した画素の数より少 ないため,計算コストを削減することができる.評価 実験より,提案手法はリングオペレータより約15%高 精度で,約25倍高速であることを確認した.

1 はじめに

三次元物体認識は、ロボットによるビンピッキング システム [1][2] や産業ラインにおける外観検査等に利用 されている、距離画像から三次元物体を認識するには、 前処理として距離画像からエッジ等の特徴を抽出する 必要がある.距離画像におけるエッジは3種類あり、物 体と背景の境界に存在するジャンプエッジ、物体の面と 面の境界に存在する凸ルーフエッジと凹ルーフエッジ がある.エッジ検出法として用いられる Sobel フィル タを距離画像に適用した場合,近傍の距離値との差が ある画素をエッジとして検出することはできるが,3種 類のエッジを分類することができない. 距離画像にお ける3種類のエッジを検出する手法として、リングオ ペレータ [3] が提案されている. リングオペレータは, 注目画素の周囲をリング状に距離値を抽出し、周期 2π の周期関数としてフーリエ変換を施す. フーリエ変換 により得られるフーリエスペクトルをしきい値処理す ることで,ジャンプエッジ,凸ルーフエッジ,凹ルーフ エッジ,平面に分類する.しかし,リングオペレータは 各画素において一次元フーリエ変換を施すため、エッジ

検出に処理時間を要する問題がある.距離画像からの エッジ検出は三次元物体認識の前処理に相当するタス クであるため,可能な限り高速であることが望ましい.

画像からのコーナー検出では,決定木を構築して高 速化した FAST (Feature Accelerated Segment Test)[4] が利用されている.そこで本研究は,FASTと同様に 機械学習による決定木を導入し,距離画像から高速に エッジを検出する手法を提案する.提案手法は,注目 画素の距離値とリング状の画素の距離値の差を特徴量 として,3種類のエッジを分類するための決定木を構築 する.構築した決定木をトラバーサルして,ジャンプ エッジ,凸ルーフエッジ,凹ルーフエッジを判定するこ とで,距離画像のエッジを高速に検出することが可能 となる.

2 距離画像におけるエッジとリングオペレー タ

本章では,距離画像における3種類のエッジの定義 と,従来の手法のリングオペレータについて述べる.

2.1 距離画像におけるエッジ

距離画像におけるエッジは、ジャンプエッジ、凸ルー フエッジ、凹ルーフエッジの3種類存在する.ジャンプ エッジは物体と背景の境界に存在する.ルーフエッジ は物体の面と面の境界に存在するエッジであり、手前 側に出ている凸ルーフエッジと奥側にへこんでいる凹 ルーフエッジに分けられる.図1に距離画像における 各エッジを示す.ラベリング画像の色はそれぞれ、白 が平面、赤がジャンプエッジ、青が凸ルーフエッジ、緑 が凹ルーフエッジを示している.二次元画像処理で用 いられる Sobel フィルタ等のエッジ検出法では、距離 画像における3種類のエッジを分類して検出すること ができない.特に、ルーフエッジは距離値の変化が緩 やかであるため、差分値が小さくなりエッジの検出が 困難となる.

2.2 リングオペレータを用いたエッジ検出

距離画像における3種類のエッジと平面を分類する手 法として、リングオペレータ[3]が提案されている.注

図1 距離画像における3種類のエッジ

目画素を中心とするリング状に配置された画素の距離 値を用いてエッジを検出する手法である.図2に,周囲 32 画素をリングオペレータとしたときのジャンプエッ ジ, 凸ルーフエッジ, 凹ルーフエッジにおける距離値の 変化を示す.ジャンプエッジは物体と背景の境界に存在 するエッジのため,リングオペレータの距離値が急激 に変化する.ルーフエッジは物体の面と他の面の境界 に存在するため,距離値の変化は緩やかとなる.これ らの違いを検出するために,リングオペレータの32 画 素の距離値を周期2πの周期関数としてフーリエ変換を 行う.フーリエ変換により得られたフーリエスペクト ルの第一成分F₁,第二成分F₂,第三成分F₃を,3つ のしきい値t₁,t₂,t₃を用いて図3に示すフローチャー トに従い3種類のエッジと平面に分類する.

2.3 リングオペレータの問題点

リングオペレータは、各画素においてフーリエ変換を 施し、フーリエスペクトルをしきい値処理により、ジャ ンプエッジ、凸ルーフエッジ、凹ルーフエッジ、平面に 分類する.各画素のおいてフーリエ変換を計算する必 要があるため、処理時間が遅いという問題がある.実際 に、VGA サイズの距離画像からリングオペレータを適 用すると、約0.7秒の処理時間が必要となる.また、高 速フーリエ変換を用いるには、リングオペレータの画 素数を2のべき乗としておく必要がある.

3 提案手法

リングオペレータは、フーリエ変換を施す際に、多く の処理時間を必要とする問題があるため、本研究では、 機械学習により構築した決定木を導入する.決定木は ID3のアルゴリズム [5]により構築する.構築した決定 木をトラバーサルすることで、効率的にリング状の画 素を参照するため 32 画素全てを参照しなくてもエッジ

図 2 リングオペレータ

を検出することが可能となる.提案手法では,決定木 に二分木と三分木を用いる.以下に,二分木と三分木 におけるの学習とエッジの判定方法について述べる.

3.1 学習サンプル

本研究では、CGを使用して大量に生成した距離画像 を、学習サンプルに用いる.学習サンプルを生成する ために、一辺が 1m の立方体を世界座標 (0,0,0) に配置 する.カメラの視点位置を図 4 に示すように角度と立 方体との距離を変化させて学習用の距離画像を生成す る.角度の回転パラメータの範囲はそれぞれ、 $\phi \in [0]$

図 4 学習サンプル生成方法

, 45], $\theta \in [0, 90]$ とし, ϕ は 11.25 度ずつ変化させ, θ は 18 度ずつ変化させる.また,カメラと物体の距離を 1.5m, 2.0m, 2.5m の 3 段階とする.生成された距離 画像にリングオペレータを施したものを教師ラベルと する.このとき,リングオペレータで誤検出した画素 は手動で正しいラベルに修正する.また,本研究で用 いる TOF カメラで撮影した距離画像にはノイズが発生 するため,学習用画像にノイズを付加したサンプルも 学習に用いる.

図5に生成した距離画像とリングオペレータによる ラベリング画像を示す. ラベリング画像の色はそれぞ れ,白が平面,赤がジャンプエッジ,青が凸ルーフエッ ジ,緑が凹ルーフエッジを示し,4クラスの分類問題と して決定木を構築する.

3.2 二分木を用いたエッジ検出

本節では,決定木として二分木を用いた際のエッジ 検出法について述べる.二分木は,分岐ノードにおい て特徴量をしきい値処理し,2方向に分岐する木構造で ある.構築する二分木の構造を図6に示す.

3.2.1 二分木の構築

3.1 で生成した距離画像と教師ラベルを用いて、二分 木を構築する.図7に示すように、学習用の距離画像 の注目画素 p とリングオペレータ $p \rightarrow x$ の 32 画素の

図5 生成した距離画像と教師ラベル

距離値を用いて,分岐ノードを決定する.各ノードに おける分岐関数は,以下の条件式よりFarかNearに分 類する.

$$S_{p \to x} = \begin{cases} Far \quad D_{p \to x} - D_p > t \\ Near \quad D_{p \to x} - D_p \le t \end{cases}$$
(1)

ここで, D_p は注目画素 p の距離値, $x \in 1$ ··· 32 は円 周上の画素の位置, $D_{p \to x}$ はリング状の画素の距離値, t はしきい値を表している.式(1)で Far と判定された

図7 注目画素 $p \ge U > D$ 状の画素 $p \to x$

サンプルは左の子ノードに分岐, Near と判定されたサ ンプルは右の子ノードに分岐される (図 8). 各ノードで

図 6 二分木の識別によるエッジの検出

図 8 サンプルの分岐

参照する画素としきい値は,式 (2) の情報利得 *G* が最 大となるものを選択する.

$$G = H(P) - H(P_F) - H(P_N)$$
⁽²⁾

Pは親ノードに存在する全てのサンプル数, P_F は Far と判定され左の子ノードに分岐したサンプル数, P_N は Near と判定され右の子ノードに分岐したサンプル数を 表している. H は情報エントロピーであり,式(3) よ り求められる.

$$H(P) = (f + j + cv + cc) \log_2(f + j + cv + cc) -f \log_2 f - j \log_2 j - cv \log_2 cv - cc \log_2 cc$$
(3)

ここで, f, j, cv, cc はそれぞれ, 面 (f), ジャンプ エッジ(j), 凸ルーフエッジ(cv), 凹ルーフエッジ(cc)の各ラベルに属するサンプル数を表している. ノード における情報利得が0となった場合, もしくは木の深さ が指定の深さに到達した場合そのノードをリーフノー ドとする.このとき,リーフノードには平面,ジャン プエッジ,凸ルーフエッジ,凹ルーフエッジのうち最も 多く到達したクラスを記録しておく.

3.2.2 しきい値の決定方法

本研究では,式(1)に示す分岐関数で使用するしきい 値 *t* には変動しきい値と固定しきい値の2つを採用す る.

変動しきい値

注目画素とリングオペレータの距離値の最大値と最 小値を範囲として全探索し,式(2)の情報利得*G*が最 大となる値をしきい値に採用する.

固定しきい値

全ノードにおいて同じ値のしきい値を用いる.しき い値の値は予備実験により予め最適なものを求めてお く.

変動しきい値を利用した決定木は,様々な変化を捉える ことができ表現能力が高いというメリットがある.一 方,固定しきい値は,しきい値を各分岐ノードで変え る必要がないため,高速に決定木をトラバーサルする ことができる.

3.2.3 二分木によるエッジの判定

二分木によりエッジを検出する際には、図6に示すように、学習した決定木に注目画素 p を入力しトラバー

IS1 - 28 - 4

サルする.各分岐ノードでは,注目画素の距離値とリ ング状の画素の距離値の差分を求め分岐する.辿り着 いたリーフノードが持つクラスを注目画素の判定結果 とする.注目画素をラスタスキャンすることで,距離 画像からエッジを検出することが可能となる.

3.3 三分木を用いたエッジ検出

3.2 で述べた二分木は分岐が2つであるため,決定木 がより深くなるという傾向がある.処理の高速化には, 浅い深さの決定木を構築することが重要である.本節 では分岐数を増やして浅い決定木を構築するために,三 分木を検討する.構築する三分木の構造を図9に示す.

三分木における各ノードの分岐関数は注目画素 D_p と リングオペレータの画素 $D_{p \to x}$ より、以下の条件式に 基づいて Far, Near, Similar に分類する.

$$S_{p \to x} = \begin{cases} Far & D_p + t \le D_{p \to x} \\ Similar & D_p - t < D_{p \to x} < D_p + t \\ Near & D_{p \to x} \le D_p - t \end{cases}$$
(4)

式 (4) で Far と判定されたサンプルは左の子ノードに 分岐, Near と判定されたサンプルは右の子ノードに分 岐, Similar と判定されたサンプルは中央の子ノードに 分岐される.各ノードで使用する特徴次元としきい値 は式 (5) の情報利得 *G* が最大 t となるものを選択する.

$$G = H(P) - H(P_F) - H(P_S) - H(P_N)$$
(5)

 $P はルートノードに存在する全てのサンプル, <math>P_F$ は左 の子ノードに分岐したサンプル数, P_S は中央の子ノー ドに分岐したサンプル数, P_N は右の子ノードに分岐し たサンプル数を表している. H は情報エントロピーで あり,二分木と同様に式(3)より求められる. ノードに おける情報利得が0となった場合,木の深さが指定し た深さに到達した場合にそのノードをリーフノードと する. リーフノードには,平面,ジャンプエッジ,凸 ルーフエッジ,凹ルーフエッジのうち最も多く到達し たクラスを記録しておく.

識別時は、二分木と同様に、各ノードで決定された 参照画素の特徴量としきい値を比較しトラバーサルし、 リーフノードに記録されているクラスを識別結果とする.

4 評価実験

提案手法の有効性を示すために評価実験を行う.

4.1 実験概要

評価実験では、提案手法と従来法のリングオペレー タと比較する.リングオペレータのしきい値は、それ ぞれ $t_1 = 50.0$, $t_2 = 7.0$, $t_3 = 1.0$ とする.検出精度 の評価では、CG で生成した 90 枚の距離画像にノイズ を付加したものを未知入力サンプルとする.評価には,式(6)で算出される検出率を用いて各手法を比較する.

検出率 =
$$\frac{$$
正解したサンプル数
各ラベルの総数
(6)

4.2 検出精度の評価

各手法におけるエッジの検出率を表1に示す.表1よ り,決定木を用いることで,凸ルーフエッジと凹ルー フエッジの検出精度が向上させることができた.評価 実験に使用した未知入力サンプルをエッジ検出した結 果を図10に示す.図10より,リングオペレータで誤 検出する凸ルーフエッジを提案手法は検出可能である ことが分かる.

図 10 提案手法と従来法によるエッジ検出例

4.3 処理時間による評価

VGA サイズの距離画像に対する処理時間を評価す る.本実験では、CPU:Intel(R) X7542 2.67GHz,メモ リ:256GBのPCを用いる.距離画像1枚あたりの処理 時間を表2に示す.表2より、リングオペレータと比 較して二分木は約20倍、三分木は約25倍の処理速度 で検出できることがわかる.提案手法は、決定木のト ラバーサルに必要な画素だけ参照するため計算コスト を削減することができた.

また,二分木と三分木を比較すると,しきい値変動 型,しきい値固定型ともに三分木が高速であることが

図 9 三分木の識別によるエッジの検出

	リングオペレータ	二分木		三分木				
		変動しきい値	固定しきい値	変動しきい値	固定しきい値			
平面	99.9	99.9	80.1	99.7	81.5			
ジャンプエッジ	98.3	98.5	89.5	95.1	92.6			
凸ルーフエッジ	68.5	97.5	90.8	95.4	93.1			
凹ルーフエッジ	61.9	97.4	89.9	95.3	92.9			
平均	82.1	98.3	87.5	97.8	89.9			

表1 エッジ検出率 [%]

わかる.構築した決定木を解析した結果,二分木の深 さの平均は14.1,三分木の深さの平均は11.7であった. 三分木は分岐する子ノードの数が多いため,より少な い参照画素数でエッジを判定することができる.

4.4 提案手法と従来法の検出結果

実際に TOF カメラを用いて撮影した距離画像から エッジを検出する. 各手法の検出結果を図 11 に示す. 二分木のしきい値変動型と三分木のしきい値変動型は, リングオペレータと比較して同等以上の精度でエッジ を検出できている. しかし, しきい値固定型の場合, 平 面の部分に誤検出が発生している. これは, 固定しき い値を用いているため, ノイズの影響を受けやすいか らである.

5 おわりに

本稿では,機械学習により決定木を構築し,その決 定木をトラバーサルすることで高速なエッジ検出を実 現した.決定木は注目画素の距離値とリング状の画素 の距離値の差分を特徴量とした二分木と,距離値を3 値化した特徴量を用いた三分木を構築した.二分木に よるエッジ検出法は従来法と同等の精度でありながら, 約 20 倍高速な処理が可能となった.また,三分木によ るエッジ検出法は,従来法と同等の精度で約 25 倍高速 な処理が可能となった.今後は,距離画像におけるノ イズへの対処と物体の構造理解への応用について検討 する予定である.

参考文献

- [1] 藤田武洋,佐藤宏介,井口征士,"局所曲面形状解析 に基づくビンピッキングのためのビジョンシステム", 電子情報通信学会論文誌,vol.73, no.1, pp.p46-53, 1990.
- [2] 堂前幸康,"産業用ロボット向け三次元計測技術(特集最新の映像技術:拡大する応用分野)",三菱電機技報,vol.86,no.3,pp.191–194,2012.

衣 Z 《远生时间								
	リングオペレータ	二分木		三分木				
		変動しきい値	固定しきい値	変動しきい値	固定しきい値			
処理時間 [ms]	683.2	35.0	47.2	31.7	27.4			
木の深さの平均	-	12.9	15.4	12.1	11.3			

表 2 処理時間

- [3] 松田文男,井口征士,櫻井良文,"リングオペレー タによるエッジ検出(線図形処理)",電子情報通信学 会論文誌, vol.6, no.31, pp.17-24, 1982.
- [4] E. Rosten, R. Porter, and T. Drummond, "Faster and better: A machine learning approach to corner detection", Pattern Analysis and Machine Intelligence, vol.32, no.1, pp.105–119, 2010.
- [5] J. R. Quinlan, "Induction of decision trees", Machine learning, vol.1, no.1, pp.81–106, 1986.

図 11 実際の距離画像における提案手法と従来法のエッジ検出結果