超音波動画像からの特徴点追跡に基づく拍動フレーム検出

村井 佑輔 † 藤吉 弘亘 † 益田 博之 ‡ 深谷 直樹 ‡‡ 小山 俊彦 ‡‡
 † 中部大学 ‡株式会社ユネクス ‡‡株式会社デンソー
 E-mail: ym@vision.cs.chubu.ac.jp

Abstract

動脈硬化の早期発見が可能な FMD(Flow Mediated Dilation) 検査 [1, 2] は, 血管拡張を超音波画像から診 断する手法である. 安静時と駆血解放後の血管径を超音 波画像から計測し、両者の血管径の比率から血管機能が 正常であるかを判定する. このとき, 心臓の拍動と同期 して変化する血管径を計測する必要があるが,超音波画 像にはノイズが多く, 画像上の拍動の変化はサブピクセ ルオーダーであるため、その検出は非常に難しい問題で ある. そこで本研究では, 超音波動画像からの特徴点追 跡に基づく拍動フレーム検出法を提案する。提案手法 では、特徴点追跡により血管領域の変化量を求め、変 化量の時系列変化からピッチ周期を自己相関により求 める. 求めたピッチ周期を利用して, 時系列に算出し た変化量から拍動フレームを検出する.評価実験より, 拍動フレーム検出精度が 92.2% と高精度な検出を実現 した.

1 はじめに

血管が狭くなり血液の流れが滞る状態を動脈硬化という.これによって引き起こされる様々な病態を動脈硬 化症といい、脳梗塞や心筋梗塞等が例として挙げられる.動脈硬化は早期の発見で予防のできる病気であり、 早期発見の方法として FMD(Flow Mediated Dilation) 検査 [1,2]が注目を浴びている.FMD とは血流依存性 血管拡張反応といい、血管の拡張度合いを評価する指 標である.血管の拡張度合いが小さい場合、動脈硬化の 恐れがある.FMD 検査では、安静時と駆血解放後の血 管径を超音波画像から計測し、両者の血管径の比率か ら血管機能が正常であるかを判定する.このとき、心 臓の拍動と同期して変化する血管径を計測する必要が ある.しかし、超音波画像にはノイズが多く、画像上 の拍動の変化はサブピクセルオーダーであるため、そ の検出は難しい問題であり、自動化が期待されている.

本研究では,超音波画像から特徴点追跡に基づく拍動フレーム自動検出システムの実現を目的とする.提 案手法では,まず超音波画像の血管領域から検出した 特徴点の*x*, *y* 軸方向の移動量をLK法 [3] により求め, 移動量から血管領域の変化量を算出する.次に,拍動は 周期的に発生するため,血管領域の変化量からピッチ 周期を自己相関により求める.求めたピッチ周期間の 変化量の相関から拍動フレーム候補を検出する.この とき,拍動フレームがずれて検出される場合を考慮し て,拍動フレーム候補の周辺フレームから変化量が最 大となるフレームにずれを補正することで拍動フレー ムを検出する.

2 特徵点追跡

提案手法では,特徴点を検出した後,追跡を行い血管 領域における移動量から変化量を算出する.特徴点追 跡を実現するには,まず特徴点を検出する必要がある. 特徴点の検出には,一般的な手法である Harris のコー ナー検出 [4], DoG 処理 [5], FAST[6]を用いる.特徴 点追跡には,LK法 [3]を用いる.本章では,Harrisの コーナー検出,DoG 処理,FAST,追跡手法としてLK 法について述べる.

2.1 Harris のコーナー検出

Harris のコーナー検出は, 画像中のコーナーを検出 する手法である.まず, 注目画素をI(x, y)とするとき, 式 (1) に示す行列Mを考える.

$$\boldsymbol{M} = \begin{bmatrix} \left(\frac{\partial I}{\partial x}\right)^2 & \frac{\partial I}{\partial x}\frac{\partial I}{\partial y}\\ \frac{\partial I}{\partial x}\frac{\partial I}{\partial y} & \left(\frac{\partial I}{\partial y}\right)^2 \end{bmatrix}$$
(1)

ここで、行列*M*の $\frac{\partial I}{\partial x}$, $\frac{\partial I}{\partial y}$ は,*x*,*y*軸方向の微分とな る. 画像中のある注目画素において、行列*M*の2個の 固有値 (λ_1, λ_2)の大きさによりフラット、エッジ、コー ナーの判定を行う.図1に示すように、 λ_1, λ_2 がともに 小さい場合はフラット、 $\lambda_1 >> \lambda_2$ または $\lambda_1 << \lambda_2$ の 場合はエッジ、 λ_1, λ_2 がともに大きい場合はコーナーと 判定することができる.固有値を求めるには固有値分 解の計算をすればよいが、計算量が多くなるため、式 (2)に示す*k*をパラメータとするコーナー関数を用い る.コーナー関数*R*を用いることで、行列*M*の固有値 問題を解く必要がなく、行列式 det(*M*)と対角成分の

図1 固有値による判定

和
$$tr(M)$$
 から, コーナーの判定を行う.

$$R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$$

= det(**M**) - k(tr(**M**))² (2)

kの値は定数であり、文献 [4] より 0.04~0.15 の範囲が 適性であると報告されている. コーナー関数 R の値が 大きいほどコーナーとして判定する. 上記の手法によ り検出したコーナーを図 4(a) に示す.

2.2 FAST(Features from Accelerated Segment Test)

FAST は決定木を用いて高速にコーナーを検出する 手法である.FAST は,Harris やSUSAN[7],SURF[8] 等と比較しても高速な特徴点検出が可能である.FAST では,高速にコーナーを検出するため,ID3[9] アルゴリ ズムに基づいた決定木を用いる.コーナー検出のため の決定木の構築は,まず,学習用画像の全ての画素につ いて式(3) に示すように,注目画素 pの周囲の円周上に おける 16 個の画素を明るい (brighter),類似 (similar), 暗い (darker) の 3 値に分類する.

$$S_{p \to x} = \begin{cases} \text{brighter} & I_p + t \leq I_{p \to x} \\ \text{similar} & I_p - t < I_{p \to x} < I_p + t \\ \text{darker} & I_{p \to x} \leq I_p - t \end{cases}$$
(3)

ここで、 I_p は注目画素の輝度値、 $x \in \{1...16\}$ は円上 の画素の位置、 $I_{p\to x}$ は円周上の画素の輝度値、tはし きい値を表している.このように、3値に分類した16 個の画素を特徴ベクトルとする。各注目画素 pのクラ スは、円周上の画素値が連続してn 個以上が brighter、 もしくは darker の時にコーナーcとし、この条件を満 たさない場合は非コーナー \bar{c} として、決定木を構築す る。各ノードでは、円周上の画素の値 $S_{p\to x}$ を観測し、 brighter、similar、darker の3通りに分岐する。各ノー ドにおける分岐関数は、円周上の画素 $S_{p\to x}$ 全てを観 測し、式(4)に示す情報利得が最も高いxを使用する。

$$H(P) - H(P_b) - H(P_s) - H(P_d)$$
 (4)

図 2 スケールを考慮した FAST による特徴点 検出

ここで、*P*は対象のノードに存在する全ての画素 ($p \in P$)、*P*_b は *S*_{p→x} が brighter と観測された画素、また、 *P*_s、*P*_d も同様に similar、darker と観測された画素であ る. 情報利得の最大値が 0 になるまでこの処理を行う. 決定木によるコーナー検出は図 2 に示すように、注目 画素 *p* を入力として学習した決定木に従い分岐を行う. そして、到達したリーフノードに記録されたクラスによ りコーナー *c* か非コーナー \bar{c} を判定する. このように、 決定木を利用することにより到達した分岐関数 *S*_{p→x} の 画素のみを観測し、図 4(b) のように高速にコーナーを 検出することができる.

また、検出したコーナーのスケールは、図2に示す ように入力画像を多重解像度にしたピラミッド画像を 決定木に入力し、上記の処理と同様に注目画素の周囲 の画素を観測することによりコーナーを検出する.こ のとき、検出した画像の解像度がコーナーのスケール となる.図4(c)にスケールを考慮した FAST により検 出したコーナーを示す.

2.3 DoG(Difference-of-Gaussian) によるキーポ イント検出

DoG 処理は、複数のガウシアンフィルタのスケール で作成した平滑化画像を用いて作成したスケールスペー スにおいて、極値探索をすることで、特徴点の位置と スケールを算出する処理である。特徴点は、スケール σ の異なるガウス関数 $G(x, y, \sigma)$ と入力画像 I(u, v) を 畳み込んだ平滑化画像 $L(u, v, \sigma)$ の差分である DoG 画 像から求める。DoG 画像 $D(u, v, \sigma)$ は式 (5) により求 める。

$$D(u, v, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(u, v)$$
$$= L(u, v, k\sigma) - L(u, v, \sigma)$$
(5)

この DoG 処理を σ_0 から k 倍ずつ大きくした 異なるス ケール間で行い,図3に示すような複数の DoG 画像を 求める.DoG 画像によるスケールスペースから極値を 検出し,特徴点とスケールを決定する.極値の検出は,

図3 DoG 画像の作成

図3のように DoG 画像3枚一組で行う.DoG 画像の 注目画素と、その周りの26近傍を比較し、注目する画 素が極値の場合、そのσをスケール、座標を特徴点の 候補とする.このような極値検出は、σの値の小さい DoG 画像から行う.一度極値が検出された画素は、よ り大きなスケールで極値が検出されても特徴点の候補 としない.極値探索により検出された特徴点の候補 は、DoG 出力値が小さい点やエッジ上の点が含まれて おり、これらの点はノイズ等の影響を受け易いという 問題がある.そこで、特徴点の候補の中から、コント ラストが低い点やエッジ上の候補点を削除する.以上 の手法により得られた特徴点(位置とスケール)をを図 4(d) に示す.

2.4 Lucas-Kanade 法を用いた特徴点追跡

2.1~2.3 で述べた各手法により検出した特徴点のt-1からtフレームへの移動量を求めるために,LK(Lucas-Kanade)法を用いる.LK法は、"同一物体の濃淡パター ン上の局所領域において、得られるオプティカルフロー の拘束方程式は同一の解を持つ"と仮定することで、あ る物体の局所領域内におけるx, y軸方向への移動量 ($\Delta x, \Delta y$)を決定する.局所領域のサイズを 3×3 、画 素(x, y)におけるx軸方向の移動量を $\Delta x, y$ 軸方向の 移動量を Δy とし、画像上の画素値の勾配を E_x , E_y , 画素値の時間微分を E_t とすると、移動量の拘束方程式 は式(6)ように表すことができる.

$$E_{x1}\Delta x + E_{y1}\Delta y = -E_{t1}$$

$$E_{x2}\Delta x + E_{y2}\Delta y = -E_{t2}$$

$$\vdots$$

$$E_{x9}\Delta x + E_{y9}\Delta y = -E_{t9}$$
(6)

式 (7) に示すように ($\Delta x, \Delta y$) にそれぞれかかる係数を

図4 各手法による特徴点及びスケールの検出例

まとめ E とする.

$$E = \begin{bmatrix} E_{x1} & E_{y1} \\ E_{x2} & E_{y2} \\ \vdots \\ E_{x9} & E_{y9} \end{bmatrix}$$
(7)

 $E は 9 \times 2 の行列式となる. 同様に, t = (E_{t1}, E_{t2}, \dots, E_{t9})^T, P = (\Delta x, \Delta y)$ とするとこれらの式は EP = tとまとめることができる. この両辺に E の 転置行列を掛けると式 (8) が得られる.

$$E^T E P = E^T t \tag{8}$$

これにより $E^{T}E$ は 2 × 2 の行列, $E^{T}t$ は式 (9) に示す ように 2 × 1 のベクトルとなり, ($\Delta x, \Delta y$)を求めるこ とができる.

$$\begin{bmatrix} \sum E_x E_x & \sum E_x E_y \\ \sum E_x E_y & \sum E_y E_y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \sum E_x E_t \\ \sum E_y E_t \end{bmatrix}$$
(9)

総和の範囲の上限は局所領域のサイズとなる.本手法 では、Harrisと FAST では固定のサイズを、DoG とス ケールを考慮した FAST(FAST+S) では特徴点が持つ スケールを局所領域のサイズとする.以上により、特 徴点の移動量 ($\Delta x, \Delta y$)を求めることができる.特徴点 追跡は、tフレームにおける特徴点全てに対して行う. さらに、tフレームにおける特徴点の算出を全フレーム に対して繰り返し行う.繰り返し処理を行うことによ り、各フレームの特徴点の移動量を算出できる.拍動 フレームにおいては、超音波画像上の血管領域が拡張 するため、tフレームにおける特徴点の移動量の変化が 大きくなるフレームを検出することで拍動フレームを 検出することができる.

図 5 特徴点追跡による変化量の算出

3 超音波動画像からの特徴点追跡に基づく拍動フレーム検出

本研究では,超音波動画像からの特徴点追跡に基づ く拍動フレーム検出法を提案する.提案手法では,特 徴点追跡結果から連続するフレームにおける血管領域 の変化量を算出する.次に,血管領域の変化量の周期 性を利用することで拍動フレームを検出する.以下に, 拍動フレーム検出法のアルゴリズムについて述べる.

3.1 特徴点追跡による変化量の算出

提案手法では、まず超音波画像から特徴点を検出す る.特徴点の検出には、Harrisのコーナー検出、DoG、 FASTを用いる.次に、各特徴点のt-1からtフレー ムへの移動量をLK(Lucas-Kanade)法[3]を用いて求め る.画像上の画素値の勾配を E_x , E_y ,画素値の時間微 分を E_t として、式(9)によりx,y軸方向の特徴点の移 動量 Δx , Δy を算出する.次に、変化量v(t)として、tフレームにおける各特徴点pの移動量の総和を式(10) により求める.ここで、P(t)はtフレームにおける特 徴点の総数である.

$$v(t) = \frac{1}{P(t)} \sum_{p=1}^{P(t)} \sqrt{(\Delta x_p)^2 + (\Delta y_p)^2}$$
(10)

以上の変化量算出の流れを図 5(a) に示す. 図 5(a) に示 す処理を各フレームにおいて行うことで, 図 5(b) に示 すような波形となる. このとき, 画像上の血管領域の 変化は非常に小さいため, 特徴点の移動はサブピクセ ルオーダーとなる. 変化量のピークが拍動フレームで あり, 拍動フレーム間隔は一定であることがわかる.

3.2 ピッチ検出

変化量v(t)からピッチ周期を自己相関により求める. まず,図6に示すように分割したi番目のフレームバッファ(128フレーム)から自己相関 $R_i(\tau)$ を式(11)によ

図 6 自己相関を用いたピッチ検出

り算出する. ここで τ は遅れ時間を表す.

$$R_i(\tau) = \sum_{t=1}^{128} v(t)v(t+\tau)$$
(11)

自己相関を算出した波形のピーク位置にあたる τ が変 化量波形のピッチ周期となる.しかし、自己相関結果 には包絡成分が含まれているため、包落成分を抑制す るために、自己相関値 $R_i(\tau - 1) \ge R_i(\tau)$ の差分処理 $(D_i(\tau) = |R_i(\tau - 1) - R_i(\tau)|)$ を行う.図6より自己相 関値の差分の計算により、本来のピッチ周期が強調さ れていることがわかる.最後に、差分値 $D_i(\tau)$ の τ 毎 にフレームバッファ数により総和を求め、式(12)より 最大となる τ をピッチ周期として検出する.

$$\hat{\tau} = \arg\max_{\tau} \sum_{i=1} D_i(\tau) \tag{12}$$

3.3 拍動フレーム検出

3.2 節で求めたピッチ周期 τ を用いて, 拍動フレーム を検出する.まず, 拍動フレームの候補を, t フレーム とピッチ周期 τ だけ離れたフレームの相関から検出す る.図7(a)に示すように,式(13)によりピッチ周期間 の変化量の相関の計算を行い,変化量の相関が最大と なるずらし幅 k^* を求めることで拍動フレーム候補を検

図7 拍動フレーム候補の検出

出する.

$$k^* = \arg\max_{0 \le k \le \tau} \sum_{j=1}^{J} v(k + (j-1)\tau)v(k+j\tau)$$
(13)

しかし, 拍動フレームは必ずしも一定の周期で発生し ないため, 図7(a)の赤丸で示すように検出したフレー ムにずれが発生する場合がある.そこで, 図7(b)に示 すように各フレームの周辺フレーム間で,変化量が最 大となるフレームを拍動フレームとして検出する.ず れの補正を行う範囲は,ピッチ周期 r に基づいて決定 する.このように,提案手法では超音波動画像から算 出した血管位置の変化量の周期性を利用することで拍 動フレームを検出することができる.

4 評価実験

提案手法の有効性を確認するために、ピッチ検出と 拍動フレーム検出の評価実験を行う.データセットは、 被験者 18 人の腕の血管を撮影した、図 8 に示すような 超音波画像 (80 × 80 画素)を用いており、1 人当たり 連続する 300 枚の動画像を対象とする.超音波画像は、 38[ms] で1 フレームを取得している.

4.1 ピッチ検出実験

特徴点検出法を Harris, DoG, FAST とした際のピッ チ検出率を比較する.特徴点追跡には LK 法を使用し, 局所領域のサイズは3×3から25×25までとする.た だし, DoG やスケールを考慮した FAST においては各 特徴点が持つスケールを局所領域のサイズとする.ピッ チ検出実験では,超音波画像を17レームずつ目視で 確認することにより作成したピッチ周期の正解データ

図8 データセット

図 9 複数の局所領域におけるピッチ検出結果

とピッチ検出結果の正誤を式(14)によって評価する.

ピッチ検出結果を図9に示す.結果から,局所領域を 15×15とした際に,Harrisは検出率が94.4%となっ た.スケールの有無を比較すると,スケールを考慮し ない場合の方が精度が高いことがわかる.これは,局 所領域のサイズが大きい場合,複数のフローが混入し てしまい,追跡に失敗しているためと考える.

4.2 拍動フレーム検出実験

ピッチ検出実験と同様に特徴点は Harris, DoG, FAST, スケールを考慮した FAST を用いる. LK 法 における局所領域のサイズは, ピッチ検出実験において 最も精度が高いときの局所領域を使用するため, Harris は15×15, FAST は17×17のサイズとする. DoG と スケールを考慮した FAST においてはピッチ検出実験 と同様に特徴点が持つスケールを局所領域のサイズとす る. 拍動フレーム検出実験では,事前に作成した正解フ レームと検出結果から算出した F 値 (F_means)により 評価する. 正解データは,超音波動画像より目視で作成 した. F 値は,式(15)に示すように適合率(*Precision*) と再現率(*Recall*)から求める.

$$F_means = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$
(15)

表1 拍動フレーム検出結果				
	Harris	DoG	FAST	FAST+S
拍動検出率 [%]	92.2	80.7	91.3	89.4
処理時間 [ms]	4.59	26.13	3.58	4.23

図 10 補正率と未検出率の関係

各手法における拍動フレーム検出精度及び特徴点検出 に要する処理時間を表1に示す.表1より,特徴点に Harris を用いた場合に高速かつ高精度な拍動フレーム 検出が可能であることがわかる.処理時間では、DoG と比べ Harris と FAST が高速で同等である.次に,拍 動フレームのずれの補正率の検討をする.図10に補正 率を変化させた際の拍動フレームの未検出率のグラフ を示す. 図から、補正率が0%の時の未検出率が最大 で、補正率約30%から未検出が低下していないことが わかる. ずれの補正率を, τ±30%の範囲としたとき の拍動フレーム検出結果を図11に示す。図中の青丸は 検出した拍動フレームを示す.図12に拍動フレーム前 後の超音波画像を示す. このように、微小な変化量で ある拍動フレームを高精度に検出可能であることがわ かる.提案手法は、ピッチ周期を用いて拍動フレーム を検出するため、図 12 の 230 フレーム辺りに発生した ノイズの検出を抑制することができる.

5 おわりに

本研究では,超音波動画像からの特徴点追跡に基づ く拍動フレーム検出法を提案した.提案手法では拍動 フレームの検出に周期性を用いることで,92.2% と高 精度な拍動フレーム検出を実現した.今後は,不整脈等 のピッチ周期の検出が困難な場合における拍動フレー ム検出法について検討する予定である.

参考文献

 Stoner L, Sabatier MJ, "Use of ultrasound for non-invasive assessment of flow-mediated dilation", J Atheroscler Thromb. 2012.

図 11 拍動フレーム検出例

図 12 拍動フレーム前後の超音波画像

- [2] Harris RA, Nishiyama SK, Wray DW, Richardson RS, "Ultrasound assessment of flow-mediated dilation", Hypertension 2010.
- [3] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision", Proc. of International Joint Conference on Articial Intelligence, 1981.
- [4] C. Harris and M. Stephens, "A crombined corner and edge detector", Proc. of Fourth Alvey Vision Conference, pp. 147-151, 1988.
- [5] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, 60(2), pp. 91-110, 2004.
- [6] E. Rosten and T. Drummond, "Machine learning for highspeed corner detection", European Conference on Computer Vision, pp. 430-443, 2006.
- [7] S.M.Smith and J.M.Brady, "SUSAN a new approach to low level image processing", International Journal of Computer Vision 23, pp.45-78, 1997.
- [8] H.Bay, A.Ess, T.Tuytelaars and L.V.Gool, "Speeded-Up Robust Features (SURF)", Computer Vision Image Understanding, 110-3, pp.246-259, 2008.
- [9] J.R.Quinlan, "Induction of decision trees", Machine Learning 1 pp.81-106, 1986.