
Binary code-based Human Detection

Yuji Yamauchi1,a) Hironobu Fujiyoshi1,b)

Abstract: HOG features are effective for object detection, but their focus on local regions makes them high-
dimensional features. To reduce the memory required for the HOG features, this paper proposes a new
feature, R-HOG, which creates binary codes from the HOG features extracted from two local regions. This
approach enables the created binary codes to reflect the relationships between local regions. Converting fea-
ture values to binary, however, results in the loss of much information included in the features. In response
to this problem, we have been focusing on“ quantization residual”information that is lost at this time. In
this study, we introduce a transition likelihood model into the classifier based on two ideas using quantiza-
tion residuals to consider the possibility that a binary code observed from the image will make a transition
to another binary codes. This enables classification that takes into account all binary codes including the
originally desired binary codes even if an observed binary code differs from the truly desired binary codes
due to some sort of effect from another binary codes. Experimental results show that a classifier equipped
with transition prediction based on quantization residuals as proposed here achieves high-accuracy human
detection compared to the same classifier without transition prediction.

1. Introduction

With the increasing use of digital cameras and vehicle-
mounted cameras, the expectations for practical detection of
humans in image for the purposes of improving image quality
and assisting the drivers of vehicles are also rising. Research
on the use of Field Programmable Gate Arrays (FPGA) or
other such hardware implementations of that function has
been done [3], [6], [12]. In hardware implementations, it is
important that the detection method can operate with high
accuracy, high-speed and low memory requirements.

Most detection methods proposed in recent years use com-
binations of local features of images and stochastic learning
[2], [7], [16], [18], [19]. Local region gradients [1], [5], which
are used as features in many proposals, can capture the
shape of an object, but very many dimensions are required
to obtain the features of each local region. The difficulty of
accomplishing that with small-scale hardware that has lim-
ited memory is a major problem whose solution requires a
reduction in the amount of feature data. Less data has two
benefits. One is that less memory is needed and the other is
that features can be categorical, each representing common
properties.

Two approaches to reducing the amount of data can be
considered: compressing the feature space to reduce the
number of features and reducing the amount of data needed
for each feature. The former approach includes methods
such as vector quantization to reduce the number of fea-
tures [9] and principle component analysis to compress the

1 Chubu University
1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan

a) yuu@vision.cs.chubu.ac.jp
b) hf@cs.chubu.ac.jp

feature dimensions. These methods can retain the original
amount of data while reducing the number of feature dimen-
sions. Human detection, however, involves the processing of
a huge number of detection windows, so these methods are
very inefficient.

The latter approach involves quantizing features at a low
bit rate. Scalar quantization, for example, can represent the
feature data at a bit rate that fits the problem. Quantiza-
tion is also an effective way to reduce the amount of data.
In addition to representing the information with the mini-
mum amount of data, it has the advantages of being robust
against noise and easy to use. One method of quantization
is threshold processing, which is simple and has the advan-
tage of low computational cost. However, determining the
optimum threshold for many samples is difficult. Another
binarization method uses the size relationship. The Local
Binary Pattern (LBP) [11], [13], [17] and a method that
expands on that [4] have the advantage of not requiring a
threshold, as binarization is based on comparison of the two
values. Threshold binarization and size relationship bina-
rization also differ in the data contained in one binary value.
In threshold processing, the value represents only size, but
when size relationship is used, the relation between two val-
ues is also included.

Our method focuses on binarization using the size rela-
tionship, which is one of the latter methods of reducing data
quantity. To achieve highly accurate object detection while
reducing the amount of feature data, we propose the Re-
lational HOG (R-HOG) feature, a binarization method in
which the size relationship is obtained by comparing HOG
features from two local regions. Since R-HOG features uses
the size relationship of two HOG features, they can represent

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

1

Vol.2012-CVIM-182 No.35
2012/5/24

the relatedness of local regions.
However, the process of quantizing a features into binary

form creates a problem in that a great deal of the informa-
tion within the features drops out. If information divided
into two classes is included in the missing information, the
classification capability deteriorates when a binarized fea-
tures are is used.

In this study, we focus on the information that drops out
during the binarization of the feature. This missing infor-
mation is called a quantization error that is defined as the
difference in values before and after quantization, but in this
study we define the missing information as“ quantization
residual”since the values after the quantization are“0/1”.
A quantization residual indicates the difference between a
real number value and a threshold value, when the values
of a feature represented by real numbers are subjected to
threshold value processing, by way of example. One char-
acteristic of quantization residuals is that binary encoding
that is stable and less likely to invert is obtained when the
quantization residual is larger. If the quantization residual is
small, on the other hand, unstable binary encoding in which
inversions can easily occur are obtained. Binary codes that
is expressed by combining a number of binary encodings
is a discrete variable that forms another feature by simply
inverting one binary code. For that reason, it can happen
that even when features are similar when represented by real
numbers, they are not observed to be the same binary code
when binarized. Essentially, since it is necessary to extract
elements that are common to the detection objects, in order
to detect humans highly accurately, such representations of
features are not suitable.

That is why, in this study, a transition likelihood model
that represents the relationships between binary code based
on quantization residuals is introduced into classifiers. A
transition likelihood model represents the degree of likeli-
hood of an observed binary code x transitioning to another
binary code x’. This study uses transition likelihood distri-
butions created on the basis of binary code and quantiza-
tion residuals obtained from training samples, as a transition
likelihood model. This predicts transitions from an observed
binary code to another binary code, in accordance with the
transition likelihood distribution created during the classifi-
cation. By introducing this binary code transition prediction
into classifiers, it becomes possible to take into consideration
transitions to the originally obtained binary code, even if the
observed binary code differs from the actually desired binary
code for some reason.

This paper is organized as follows. We summarize related
works in Section 2. We describe HOG feature and binary
code in Section 3, and report the experimental results in
Section 4. We discuss the transition likelihood model and
the classifiers that this model has been introduced into in
Section 3, and we describe evaluation experiments that we
performed in order to confirm the validity of the proposed
method in Section 4. Finally, we summarize this paper in
Section 5.

2. Related works

Local Binary Patterns (LBP) are a technique that is being
applied in a variety of fields such as object detection, face
recognition, and action recognition. The LBP features pro-
posed by Ojala et.al. [13] represent the magnitude relations
of a pixel to adjacent pixels with a code, thus allowing repre-
sentations of fixed shapes such as edges. Liao et.al. proposed
a method for application to face recognition in which LBP
is extended to represent magnitude relations between the
average luminance values in multi-resolution block areas [8].
Another technique applied in face recognition[15] and action
recognition [21] is the Local Ternary Pattern (LTP), which
extends LBP by using three values for the threshold. Al-
though that method can capture the relations of nearby and
adjacent pixels, it cannot represent other effective combina-
tions that exist. Furthermore, the LTP approach requires
optimum values for the three thresholds.

Methods that combine multiple feature quantities include
the Joint Haar-like features proposed by Mita et.al., which
capture the relations of Haar-like features in different posi-
tions [10], and co-occurrence features that link the output
values of weak classifiers with operators proposed by Ya-
mauchi et.al. [20]. These methods combine feature quanti-
ties on the basis of recognition results, so the combination
of features may be negatively affected when the results are
in error or when the target of detection is obscured.

3. HOG features and binary code

This section describes HOG features and binarization as
means of reducing the amount of HOG feature data.

3.1 HOG features

The Histograms of Oriented Gradients (HOG) feature
proposed by Dalal et.al. [2] is a one-dimensional histogram
of gradient orientations of intensity in local regions that can
represent object shape. This feature is a histogram of adja-
cent pixel gradients for local regions, so it is not easily af-
fected by local lighting conditions and is robust to changes
in geometry.

To compute HOG features, first, the magnitude m and
gradient orientation θ are calculated from the intensity I

of the pixels. Next, using the calculated magnitude m and
gradient orientation θ, the sum of the magnitudes of quan-
tized gradient orientation θ′ in cell region c (p × p pixels)
are calculated. We represent the set of sums of magnitude
in gradient orientation θ′ as the N -orientation histogram
V c = {vc(1), vc(2), · · · , vc(N)}. Finally, we use Eq. (1) to
normalize the histogram by each block region (q × q cells)
to extract the features.

v′
c(n) =

vc(n)√(∑q×q×N
k=1 vc(k)2

)
+ ϵ

(ϵ = 1) (1)

After normalization, the histogram v′
c is v′

c =
{v′

c(1), v′
c(2), · · · , v′

c(B × N)}. Here, B is the number

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

2

Vol.2012-CVIM-182 No.35
2012/5/24

Fig. 1 B-HOG feature calculation method.

of cell regions that are contained in the block region.

3.2 Binarized HOG features (B-HOG)

Binarized HOG (B-HOG) features are obtained by thresh-
olding. Those features can capture the relatedness of the
gradient orientations within the cell region by observing the
binary values for N orientations in the cell region as a single
feature (binary pattern).

We use the eight-orientation histogram v′
c for the

cell region subjected to threshold processing as shown
in Eq. (2) to produce the B-HOG features xB

c =
{xB

c (1), xB
c (2), · · · , xB

c (8)}. In reference [2], nine orienta-
tions are used, but in our work we choose eight orientations
so that features can be represented as one byte.

xB
c (n) =

{
1 if v′

c(n) ≥ t

0 otherwise
(2)

Here, the t represents the threshold. For example, when
extracting HOG features for an input image such as Fig. 1
and binarizing the features, we get xB

c = (00001011)2.

3.3 Benefits and problems with B-HOG features

B-HOG features and HOG features vary with the amount
of feature data. The HOG features obtained with Eq. (1)
must usually be represented by double precision real num-
bers (8 bytes), but the B-HOG features can be represented
by one unsigned character (1 byte). Thus, B-HOG features
can reduce memory use to 1/8 that required by HOG fea-
tures. However, the need to obtain the optimum binariza-
tion threshold values t for different human detection envi-
ronments is a problem.

3.4 Relational HOG

Relational HOG(R-HOG) features are binarized by com-
paring the two values of HOG features obtained from two
local regions as shown in Fig. 2, thus reducing data quantity
by eliminating use of a threshold. While B-HOG features
can represent gradient magnitudes only as binary values, R-
HOG features can also represent the relationship between
two features. Furthermore, R-HOG feature binarizes the
size relation of HOG features, so processing to normalize
the HOG is not needed. Because the normalization process-
ing has the highest computational cost of the HOG feature
processing, the proposed method can greatly reduce the pro-
cessing cost.

R-HOG features are the binarized feature quantities
xR

c1c2 = {xR
c1c2(1), xR

c1c2(2), · · · , xR
c1c2(8)} that result from

comparing the size relationship of the eight-orientation his-

Fig. 2 Binarization using HOG features of two cell regions.

Fig. 3 Introducing a shift in the orientation.

tograms vc1 and vc2 obtained from two cell regions c1 and
c2, as shown in Eq. (3).

xR
c1c2(n) =

{
1 if vc1(n) ≥ vc2(n)
0 otherwise

(3)

Note that vc(n) does not require a normalization process.
As we see in Fig. 2, we can create a binary pattern that
captures the relatedness of local regions by using the size
relationship of features in two cell regions. In doing so, the
R-HOG features are computed from all combinations of cell
regions. However, as shown in Fig. 3, if the extracted fea-
tures are similar, their size relation is not distinct, and so is
difficult to represent clearly as binary values.

3.5 Shifted Relational HOG features (SR-HOG)

To solve the problems associated with R-HOG features,
as shown in Fig. 3 (b) and (c), we shift the orientation of
the eight-orientation histogram vc2 extracted from one of
the cell regions by s(s = 0, 1, 2, · · · , 7) to create the eight
histograms vc2s. Then, we use Eq. (4) in the same way
as Eq. (3) to obtain the size relationship and calculate the
eight binarized features, xSR

c1c2s.

xSR
c1c2(n, s) =

{
1 if vc1(n) ≥ vc2((n + s)%8)
0 otherwise

(4)

Here, % is the modulo operator. By calculating the size
relationship with the orientation-shifted histograms, the size
relationship can be represented clearly even if the extracted
features are similar. In this paper, we refer to the R-HOG
features extracted with orientation shifting as Shifted Rela-
tional HOG (SR-HOG) features.

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

3

Vol.2012-CVIM-182 No.35
2012/5/24

Fig. 4 Examples of INRIA person dataset.

4. Evaluation Experiments

To evaluate the effectiveness of binary codes, we con-
ducted experiment.

4.1 Dataset

We use the INRIA person dataset[2] as the dataset used
in these evaluation experiments. The INRIA person dataset
consists of 2,415 positive samples and 1,218 negative images
for training, and 1,126 positive samples and 453 negative im-
age for evaluation purposes. The positive images for training
and evaluation are cropped to conform with regions contain-
ing, and are normalized to an image size of 64 × 128 pixels.
The negative images for training and evaluation are images
with no people in them. For the negative samples for train-
ing, we use ten sections taken at random from each image,
giving a total of 12,180 samples. For the negative samples
for evaluation, we perform a comprehensive raster scan on
each evaluation image, giving approximately 2,000,000 sam-
ples.

Part of the INRIA person dataset is shown in Fig. 4. The
images within the positive samples include people in var-
ious different poses and orientations, forming images with
greatly differing viewpoints. This is an extremely challeng-
ing benchmark dataset.

4.2 Experiment outline

In our experiments, we compare HOG features and bi-
narized HOG features. We use Real AdaBoost [14], which
enables highly accurate and fast classifications, as the sta-
tistical training method. We use Detection Error Tradeoff
(DET) curves in the comparison. A DET curve plots False
Positives Per Window (FPPW) along the horizontal axis
and miss rates along the vertical axis, with detection per-
formance increasing with closeness to the origin at bottom
left.

4.3 Experiment results

We tested the effectiveness of R-HOG and SR-HOG fea-
tures. The DET curves that represent the results for the
two datasets are presented in Fig. 5.

First, we compare the B-HOG features with the R-HOG
features. Comparing the human detection rates for when
the FPPW from Fig. 5 is 10−3, the detection rate for the
R-HOG features is about 7.5% higher than for the B-HOG
features.

Fig. 5 DET curves of experiment.

Next, we compare R-HOG features and SR-HOG features.
Comparing the people detection rates for when the FPPW
from Fig. 5 is 10−3, the detection rate for the SR-HOG
features is about 6.8% higher than for the R-HOG features.
From these results we know that R-HOG features, which
are binary patterns obtained by size relationship, are supe-
rior to B-HOG features, which are binary patterns obtained
by threshold processing, in capturing the relations between
cell regions and thus provide a higher detection rate. Fur-
thermore, shifting the gradient orientation of HOG features
from one of the cell regions to obtain a binary pattern as is
done for SR-HOG features clarifies the size relationship, so
the performance is even higher than for R-HOG features.

Finally, we compare the R-HOG features and the SR-
HOG features with the HOG features. For both human
and vehicle detection, the detection rates for the R-HOG
features are lower than for the HOG features. However,
the detection rates for the SR-HOG features come closer to
those for the HOG features, even though the feature data is
reduced.

4.4 Comparison of memory and computational

cost

Table 1 shows the memory use and computational cost
required for feature extraction and classification in one de-
tection window (64× 128 pixels) for HOG features, B-HOG
features, R-HOG features, and SR-HOG features, assuming
500 weak classifiers.

The R-HOG features used about 87.5% less memory than
the HOG features, and the SR-HOG features used 75.0% less
memory than the HOG features. Both the R-HOG features
and the SR-HOG features reduced the computational cost
by about 50.0% compared with the HOG features. This is
because the R-HOG features and the SR-HOG features do
not require normalization processing.

In general, binarization of features decreases the detec-
tion accuracy such as for B-HOG due to the reduction of

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

4

Vol.2012-CVIM-182 No.35
2012/5/24

Table 1 Comparison of memory use and computational cost.

Feature HOG B-HOG R-HOG SR-HOG
Memory[KB] 3.91 0.50 0.49 0.98

Computational cost[ms] 5.39 × 10−7 5.40 × 10−7 2.70 × 10−7 2.70 × 10−7

Fig. 6 Classification using transition prediction of a binary code.

information effective for classification. However, SR-HOG
features are able to achieve higher discrimination accuracy
than HOG features even though binarization is applied.

5. Classifier Introducing Transition

Likelihood Model Based on Quanti-

zation Residual

Our approach introduces into classifiers a transition like-
lihood model created based on“ quantization residuals”,
which have not been used at all previously. The transi-
tion likelihood model outputs a transition likelihood that ex-
presses the possibility of an observed binary code transition-
ing into another binary code. Since the proposed method
makes it possible to represent relationships between binary
code even though they are discrete variables, by consider-
ing these transition likelihoods during classification, it can
output classification results that are even more reliable.

The flow of classification in accordance with the proposed
method is shown in Fig. 6. The proposed method creates a
transition likelihood model from binary code and quantiza-
tion residuals obtained from training samples. In addition,
human and non-human objects are classified by inputting
into the classifiers based on the transition likelihood ob-
tained from a binary code of an unknown input image and
the transition likelihood model.

In this section, we first discuss problems of binary codes.
And we define the quantization residual of a binary code

and discuss the transition likelihood distribution created on
the basis of quantization residuals as a transition likelihood
model. We then discuss classifiers into which the binary
code transition likelihood model has been introduced.

5.1 Problems of binary code

The amount of memory for representing a feature can be
reduced to 1/64 by binarizing a feature represented by real
numbers(double : 8 bytes). This also has other advantages
such as it is completely unaffected by factors other than
those that affect the characteristics during the binarization
of the feature. However, the reduction in the amount of
memory for representing the feature inevitably leads to a
large reduction in the feature representation capability. This
is because information that is valid for classification is com-
prised in the“ quantization residual” (Fig. 7(a)) that is
information that drops out during the binarization.

In addition, since the binary code that is used in previ-
ous human detection methods are discrete variables, a com-
pletely different feature is represented if just one code is
different (Fig. 7(b)). For that reason, it can happen that
the same binary code cannot be observed, even if features
that are similar appear during the representation by real
numbers. In essence, in order to perform highly accurate
human detection, it is necessary for features to extract el-
ements that are common to the detection objects, so such
feature representations are not suitable.

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

5

Vol.2012-CVIM-182 No.35
2012/5/24

Fig. 7 Problems of binary code.

5.2 Quantization residuals

The proposed method focuses on quantization residuals,
which are the amounts of information that drop out when a
feature represented by real numbers is binarized. The cal-
culations of the B-HOG feature and R-HOG feature used in
this study are described below.

B-HOG feature

The quantization residual of a B-HOG feature is the dif-
ference between the gradient strength vc(n) of a gradient
direction histogram in a direction n and a threshold value
th, as shown by Equation (5):

qB
c (n) = vc(n) − th (5)

We obtain quantization residuals qB
c =

{qB
c (1), qB

c (2), · · · , qB
c (8)} in all 8 directions from Equation

(5).

R-HOG feature

The quantization residual of an R-HOG feature is the dif-
ference between two gradient direction histograms vc1(n),
vc2(n), as shown by Equation (6):

qR
c1,c2(n) = vc1(n) − vc2(n) (6)

We obtain quantization residuals qR
c1,c2 =

{qR
c1,c2(1), qR

c1,c2(2), · · · , qR
c1,c2(8)} in all 8 directions

from Equation (6).

5.3 Transition likelihood distribution of binary

code

We create a binary code transition likelihood distribution
in order to represent how possible it is that a binary code
will transition to another binary code. A transition likeli-
hood distribution accumulates binary code transition scores
that are calculated based on the quantization residuals of
all training samples. The flow for calculating the transition
scores of binary code are shown in Fig. 8. We consider the
case in which an observed binary code, such as that shown
in Fig. 8(a) transitions to every other binary code. First

of all, we calculate the degree of non-inversion of each bi-
nary encoding, based on quantization residuals, as shown in
Fig. 8(b). The degree of non-inversion of binary encoding
represents the likelihood of a transition (bit inversion) oc-
curring in the binary encoding, with it being more unlikely
for binary code to transition as the degree of non-inversion
increases. We also obtain a binary code transition score
(Fig. 8(c)) from the degrees of non-inversion of these binary
code. The calculations of transition scores for the binary
code are described below.
5.3.1 Binary code transition score

To calculate the binary code transition score, we first ob-
tain the degree of non-inversion z of the binary code. As
shown in Fig. 8, when we have assumed that a binary code
x that is observed from a certain training sample transi-
tions to another binary code x′, we determine the degree
of non-inversion from whether or not there is a transition
for each binary code x(n) that makes up the binary code x

and that quantization residual. In this study, we consider
the following two points on the calculation of the degree of
non-inversion of binary code:

(1) Whether or not the binary code inverts
(2) Magnitude of the quantization residual

Taking into account the above two points, our considera-
tions are divided into four patterns. First of all, if there is
no inversion of the binary code and the quantization resid-
ual is large, the degree of non-inversion increases, but if the
quantization residual is small, the degree of non-inversion
decreases. If there is inversion of the binary code and the
quantization residual is large, the degree of non-inversion de-
creases, but if the quantization residual is small, the degree
of non-inversion increases. In the calculation of the degree of
non-inversion of this study, we use a concave function F (q)
and a convex function F̄ (q) in which one-dimensional func-
tions are combined, as shown in Fig. 9. We calculate the
degree of non-inversion of the binary code by using a con-
cave function F (qi(n)) and a convex function F̄ (qi(n)), as
shown in Equation (7), from a binary code xi(n) observed
from a sample i and whether or not there is a transition

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

6

Vol.2012-CVIM-182 No.35
2012/5/24

Fig. 8 Flow to compute the transition score of binary code based on quantization residu-
als. Blue represents that a binary code does not invert. Red represents to invert of
a binary code.

Fig. 9 Non-invert score of a binary code is computed from con-
cave function F () and convex function F̄ ().

in a binary code x′(n) when we considered transitions to a
certain binary code x′.

z(xi(n),x′(n),qi(n)) =

{
F (qi(n)) if xi(n)=x′(n)
F̄ (qi(n)) otherwise

(7)

The degree of non-inversion of binary code obtained from
Equation ((7)) is high when there is no transition in the
binary code (codes indicated by the blue characters in Fig.
8(b)) and low where there is a transition (codes indicated
by the red characters). In addition to the presence or ab-
sence of transitions of the binary code, a transition score
corresponding to the value of the quantization residual is
output.
5.3.2 Transition scores of binary code

We obtain a transition score e(x′|xi) for the binary code
on the assumption that the binary code x transitions to
the binary code x′, from the thus-obtained degree of non-
inversion z of the binary code. The transition score of the
binary code is obtained by taking the sum total of the de-
grees of non-inversion of the binary encoding, as shown in
Equation (8), to take into account synchronism of the binary
encoding.

e(x′|xi, qi) =
8∏

n=1

z(xi(n), x′(n), qi(n)) (8)

This is obtained from all of the training samples I, to create
a transition likelihood distribution E for the binary code by
summing them as shown by Equation (9):

E(x′|x) =
I∑

i=1

e(x′|xi, q
i
)δ[xi − x′] (9)

δ[·] is the Kronecker delta function, which outputs 1 when
xi − x′ = 0 and 0 otherwise. We create a transition like-
lihood distribution E as described above for each feature.
Thus 72 transition likelihood distributions are created for a
B-HOG feature or 8,128 transition likelihood distributions
for an R-HOG feature.

An example of transition likelihood distributions that we
have created is shown in Fig. 10(a). This transition likeli-
hood distribution has higher transition likelihoods as codes
become more similar to the input binary code. For example,
if the input binary code is {00000000}, the binary code af-
ter transition where the Hamming distance is 0 is naturally
the most likely. After that, the next likely binary code are
{00000001} and {10000000}. When the Hamming distance
increases, on the other hand, transitions in the binary code
are unlikely to occur, so it is clear that the transition likeli-
hood is less. However, transition likelihoods assume values
that are different from the Hamming distances because they
are determined on the basis of the quantization residuals of
the training samples. For that reason, when transitions of
the binary code are likely to occur, in other words, when
there are many samples with small quantization residuals
within the training samples, the proposed method is better
at representing transitions between binary code that is likely
to occur in practice than with Hamming distance.

5.4 Transition prediction based on quantization

residual

In this section, we discuss classifiers into which are intro-
duced a transition likelihood model created on the basis of
quantization residuals obtained from training samples (Fig.
6(b)).

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

7

Vol.2012-CVIM-182 No.35
2012/5/24

Fig. 10 Visualization of transition likelihood distribution E(x′|x) of binary code.

5.4.1 Classifiers using transition likelihood distri-

butions

In our research, we use Real AdaBoost [14], which en-
ables highly accurate and fast classifications, as the statisti-
cal training method. A strong classifier H(x) that is trained
by the Real AdaBoost algorithm is represented by linear
linking of weak classifiers ht(x), as shown in Equation (10):

H(x) =
T∑

t=1

ht(x) (10)

where T is the total number of weak classifiers that are com-
bined and t is the number of each weak classifier. Subse-
quently, since the number of the weak classifier is irrelevant,
we express h(x) as a general weak classifier. The weak clas-
sifiers h(x) are determined by the log ratio of the probability
of occurrence of positive class or negative class, as shown in
Equation (11).

h(x) =
1
2
ln

W+(x)
W−(x)

(11)

where the probability density function W± of the binary
code is created by summing the weighting wi of the training
samples as shown by Equation (12) and Equation (13):

W+(x) =
∑

xi=x∧yi=+1

wi (12)

W−(x) =
∑

xi=x∧yi=−1

wi (13)

Since this study considers the transition from the observed
binary code x to another binary code x′, we introduce the
transition likelihood model into Equation (14) and define
each weak classifier h(x) as shown by Equation (14).

h(x)
△
=

1
2

∑
x′∈X

(
P (x′|x)ln

W+(x′)
W−(x′)

)
(14)

where P (x′|x) represents the probability of the binary code

x transitioning to the binary code x’. However, in prac-
tice the observed binary code does not transition to another
binary code so P (x′|x) cannot be obtained. That is why
in this study, we substitute a transition likelihood distribu-
tion E(x′|x) that represents the possibilities of transitions
between binary code, as shown by Equation (15). The tran-
sition likelihood distribution E(x′|x) can simulate the rep-
resentation of the transition probability P (x′|x) of binary
code that cannot be observed in practice.

P (x′|x) ≈ E(x′|x)∑
x′∈X

E(x′|x)
(15)

If the binary code x is not observed during this time, we con-
sider that there is also no transition between binary code. In
such a case, both the denominator and numerator of Equa-
tion (15) are zero, so P (x′|x) = 0. As described above,
classification can be done by taking into account the possi-
bility of an observed binary code transitioning into another
binary code, from Equations (14) and (15). However, since
Equation (14) is considered for transitions to all of the bi-
nary codes, the log ratio of the probability of occurrence of
a binary code that differs greatly from the observed binary
codeg also has an effect on the weak classifiers. Since the log
ratio is obtained during this process even when the probabil-
ity of occurrence of the probability density function W± is
equivalent to substantially zero, an extremely large or small
value is added, which has an adverse effect on the value of
the weak classifier h(x). To resolve that problem, we sub-
ject the transition likelihoods to threshold value processing
as shown in Equation (16), to suppress the effects on the
classification results of binary- codes with low possibilities
of transition from the observed binary code.

E′(x′|x) =

{
E(x′|x) if E(x′|x) > ϵ

0 otherwise
(16)

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

8

Vol.2012-CVIM-182 No.35
2012/5/24

Fig. 11 DET curves of experiment.

This threshold value ϵ creates a model that does not take
account of transitions of the binary code if it is set to an ex-
tremely large value. In this study, we set ϵ = 0.005 from pre-
liminary experiments. The transition likelihood distribution
before the threshold value processing is shown in Fig.10(a)
and the transition likelihood distribution after the threshold
value processing is shown in Fig.10(b). Weak classifiers us-
ing the binary code transition likelihood distribution that
we propose (Equation (14)) seem at first glance to have
larger computational costs when compared with the Real
AdaBoost weak classifiers (Equation (11)) that are generally
used. However, the same computational costs are achieved
by previously computing outputs for each binary code that
is observed in practice, and saving them as a look-up table.
5.4.2 Classification

We discuss the flow when classifying an unknown input
image using trained classifiers. We first calculate binary
code from the unknown input image, as shown in Fig.6(b).
We also obtain the degree of likelihood of an observed bi-
nary code transitioning into another binary encoding from
the transition likelihood distribution, and take the summa-
tion of the product with the log odds to be a weak classifier.
We calculate the final classification results by summing a
number of weak classifiers h(x) as shown in Equation (10).

6. Evaluation Experiments

We performed experiments to evaluate the validity of the
proposed method.

6.1 Experiment results

A DET curve of the results of the experiments is shown
in Fig.11. First of all, if the HOG feature , B-HOG feature
, and the proposed method based on the B-HOG feature
are compared, the proposed method, the HOG feature , and
the B-HOG feature are shown to be in decreasing order of
detection performance. The detection rate of the B-HOG
feature , which is a HOG feature that has been subjected to

threshold value processing where the FPPW is 10−3, deteri-
orated by approximately 2.9% in comparison with the HOG
feature. When the proposed method based on the B-HOG
feature where the FPPW is 10−3 was compared with the
HOG feature and B-HOG feature, the detection rate rose by
approximately 5.4% and 8.4% respectively. From the above,
we see that the detection performance deteriorated when the
HOG feature was simply binarized by threshold value pro-
cessing, but we were able to obtain detection performances
that exceeded those of the HOG feature by introducing bi-
nary code predictions into the classifiers, in accordance with
the proposed method.

In addition, this tendency produced similar results even
when the binarization method was different. A comparison
of the R-HOG feature where FPPW was 10−3 and the pro-
posed method based on the R-HOG feature demonstrated
an increase in detection performance of approximately 3.0%.

From the above results, we have confirmed that the pro-
posed method enables human detection that is more accu-
rate than that of previous methods. With previous methods
that use binary code, binary code that is discrete variables
are handled as mutually independent values. For that rea-
son, if the observed binary code has been observed to be
another binary code for some reason, only the observed bi-
nary code will be considered during the classification, so it is
possible that that classification results will vary widely. The
proposed method, on the other hand, forms a framework
which enables predictions of how likely the observed binary
code will transition into all the other binary codes. Since
the binary code transitions are based on the transition like-
lihood distribution created from the binary code obtained
from training samples and the quantization residuals, the
possibilites of binary code transitions that occur readily in
practice are considered. For that reason, even if a binary
code has been observed to be another binary code for some
reason or other, that adverse effect can be restrained.

6.2 Discussion

We have confirmed from the results of the evaluation ex-
periments that weak classifiers into which a binary code
transition likelihood model has been introduced contribute
to an increase in detection performance, irrespective of the
method used to binarize the feature. In this section, we dis-
cuss to what degree is the detection performance of each
weak classifier raised by the introduction of binary code
transition predictions.

The results of miss-classification rates of general Real
AdaBoost weak classifiers (Equation (11)) and the miss-
classification rates of weak classifiers into which transition
predictions have been introduced (Equation (14)) are plot-
ted on two-dimensional graphs in Fig. 12. All of the plotted
points represent miss-classification rates when the same fea-
ture is used. If there is no change in the performance of a
weak classifier, it is plotted on the red line indicating y = x.
If the detection performance is higher with the proposed

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

9

Vol.2012-CVIM-182 No.35
2012/5/24

Fig. 12 The graph of error computed from equation (11) and equation (14). The ploted
points are represented equal error rate. (a) B-HOG feature base. (b) R-HOG
feature base.

method, the point is plotted to the right and below the red
line.

From Fig. 12, it is clear that the detection performance
of a large number of weak classifiers is increased by the pro-
posed method. When based on the B-HOG feature, the
detection performance for approximately 96.2% of the weak
classifiers can be raised, and when based on the R-HOG fea-
ture, the detection performance for approximately 88.3% of
the weak classifiers can be raised. The classification rate for
each individual weak classifier increases by approximately
5.0% at a maximum. However, since Real AdaBoost, which
is an ensemble training method in which large numbers of
weak classifiers are combined, is used as the training method,
the final classifiers trained by the proposed method can
achieve an even higher detection performance.

7. Conclusions

In this paper, we proposed binary codes from HOG fea-
ture and classifier introducing transition likelihood model
based on quantization residual. Binary codes were reduced
the memory used for representing features by subjecting
HOG features to threshold value processing then binariz-
ing in accordance with the magnitude relationships of two
histograms. However, the process of quantizing a features
into binary form creates a problem in that a great deal of
the information within the features drops out. Then, we pro-
posed a method of effective utilization of quantization resid-
uals, which have not been used previously in the pattern
recognition field. The proposed method introduces a tran-
sition likelihood model into classifiers, in order to consider
the possibility of a binary code that has been observed from
an image transitioning into another binary code. We used a
transition likelihood distribution created from binary code
and quantization residuals obtained from training samples,
as the transition likelihood model. The proposed method
is capable of outputting highly reliable classification results

since it can consider the possibility of an observed binary
code transitioning into another binary code. The results of
experiments show that the proposed method enables an in-
crease in detection performance while maintaining the same
levels of memory and computing costs as those for previous
methods of binarizing features.

The approach that makes effective use of quantization
residuals in accordance with the proposed method is im-
plemented by Boosting-based classifiers in this study, but
we consider it will be possible to expand it into other clas-
sifiers such as Random Forest and SVM. We will examine
expansion into such training methods in the future.

References

[1] Bosch, A., Zisserman, A. and Munoz, X.: Representing shape
with a spatial pyramid kernel, international conference on
Image and video retrieval (2007).

[2] Dalal, N. and Triggs, B.: Histograms of Oriented Gradients
for Human Detection, Computer Vision and Pattern Recog-
nition, Vol. 1, pp. 886–893 (2005).

[3] Ess, A., Leibe, B., Schindler, K. and Gool, L. V.: A Mo-
bile Vision System for Robust Multi-Person Tracking, IEEE
Conf. on CVPR, pp. 1–8 (2008).

[4] Hadid, A., Pietikainen, M. and Ahonen, T.: A Discrimi-
native Feature Space for Detecting and Recognizing Faces,
IEEE Conf. on CVPR, Vol. 2, pp. 797–804 (2004).

[5] Hou, C., Ai, H. Z. and Lao, S. H.: Multiview Pedestrian
Detection Based on Vector Boosting, Asian Conference on
Computer Vision, pp. 210–219 (2007).

[6] Khattab, K., Dubois, J. and Miteran, J.: Cascade Boosting-
Based Object Detection from High-Level Description to
Hardware Implementation, EURASIP Journal on Embedded
Systems, Vol. 2009, pp. 1–12 (2009).

[7] Leibe, B., Seemann, E. and Schiele, B.: Pedestrian detection
in crowded scenes, Computer Vision and Pattern Recogni-
tion, Vol. 1, pp. 878—-885 vol. 1 (2005).

[8] Liao, S., Zhu, X., Lei, Z., Zhang, L. and Li, S.: Learning
Multi-scale Block Local Binary Patterns for Face Recogni-
tion, in Advances in Biometrics, pp. 828–837 (2007).

[9] Linde, Y., Buzo, A. and Gray, R.: An Algorithm for Vector
Quantizer Design, IEEE Trans. on Communications, Vol. 28,
pp. 84–95 (1980).

[10] Mita, T., Kaneko, T. and Hori, O.: Joint Haar-like Fea-
tures Based on Feature Co-occurrence for Face Detection (in
Japanese), IEICE Trans., Vol. J89-D, No. 8, pp. 1791–1801
(2006).

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

10

Vol.2012-CVIM-182 No.35
2012/5/24

[11] Mu, Y. D., Yan, S. C., Liu, Y., Huang, T. and Zhou, B. F.:
Discriminative local binary patterns for human detection in
personal album, Computer Vision and Pattern Recognition,
pp. 1–8 (2008).

[12] Nair, V., Laprise, P. O. and Clark, J. J.: An FPGA-Based
People Detection System, EURASIP Journal on Applied Sig-
nal Processing, Vol. 2005, pp. 1047–1061 (2005).

[13] Ojala, T., ainen, M. P. and Harwood, D.: A comparative
study of texture measures with classification based on fea-
tured distributions, Pattern Recognition, Vol. 29, pp. 51–59
(1996).

[14] Schapire, R. E. and Singer, Y.: Improved boosting algo-
rithms using confidence-rated predictions, Machine Learn-
ing, Vol. 37, No. 3, pp. 297–336 (1999).

[15] Tan, X. and Triggs, B.: Enhanced Local Texture Feature
Sets for Face Recognition under Difficult Lighting Condi-
tions, IEEE Transactions on Image Processing, Vol. 19, pp.
1635–1650 (2010).

[16] Tuzel, O., Porikli, F. M. and Meer, P.: Human Detection via
Classification on Riemannian Manifolds, Computer Vision
and Pattern Recognition, pp. 1–8 (2007).

[17] Wang, X., Han, T. X. and Yan, S.: An HOG-LBP Hu-
man Detector with Partial Occlusion Handling, International
Conference on Computer Vision (2009).

[18] Watanabe, T., Ito, S. and Yokoi, K.: Co-occurrence His-
tograms of Oriented Gradients for Human Detection, Infor-
mation Processing Society of Japan Transactions on Com-
puter Vision and Applications, Vol. 2, pp. 39–47 (2010).

[19] Wu, B. and Nevatia, R.: Detection of Multiple, Partially
Occluded Humans in a Single Image by Bayesian Combina-
tion of Edgelet Part Detectors, International Conference on
Computer Vision, pp. 90–97 (2005).

[20] Yamauchi, Y., Takaki, M., Yamashita, T. and Fujiyoshi, H.:
Feature Co-occurrence Representation Based on Boosting for
Object Detection, International Workshop on Socially In-
telligent Surveillance and Monitoring(in conjunction with
CVPR), pp. 31–38 (2010).

[21] Yeffet, L. and Wolf, L.: Local Trinary Patterns for human
action recognition, Proc. of IEEE International Conference
on Computer Vision (2009).

c⃝ 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

11

Vol.2012-CVIM-182 No.35
2012/5/24

