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Object Tracking based on Online Learning and Local Features

Takayoshi Yamashita†1,†2 and Hironobu Fujiyoshi†1

Object detection, object tracking and action recognition are the building
blocks for understanding human behavior. Of the three, object tracking plays
a vital role in focusing on the person thus enabling action recognition. In this
paper, we propose a tracking framework called ”Online Real Boosting”, an im-
provement over the popular Online Boosting. Online Boosting is a learning
algorithm that selects a discriminative classifiers based on the just arrived sam-
ples, in a tracking scenario occlusion or appearance changes results in errors
that propagate resulting in drifts. The proposed method reduces drift utilizing
Real Adaboost and a probability density function of the object and background.
The proposed tracking algorithm was trained for tracking the human head, and
the results were compared against an existing method, mean-shift and Online
Boosting. As a result, proposed method achieved comparable or better per-
formance, besides improvement on processing speed by reducing the number
of weak classifiers by a half compared to Online Boosting. Of the many chal-
lenges in object tracking, appearance changes owing to the articulated nature
of the object is the biggest. In Online Boosting based tracking, weak classifiers
are selected from a pool of classifiers trained offline, and that are sensitive to
appearance changes. In this paper, a new feature structure that is robust to
appearance change, called the ”Soft Decision Feature” is also introduced. The
Online Real Boosting and Soft Decision Features were applied to snippets of
humans with complex appearance changes. Experimental results show that the
proposed combination tracked scenes with variations to human pose successfully
while the other methods either drifted or failed.

1. Introduction

Computer based Action recognition is a vital step in automated understand-
ing of Human behavior. Object detection6)7)8)9)14)16), object tracking11)10)15)and
action recognition are the inter-related building blocks that are individually suf-
ficient, but collectively efficient for action recognition. Many online training
methods that bootstrap from the first frame have been proposed10)13)17)19)20), but
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they do not cope with appearance changes owning to the limited prior knowledge.
Arbitrary, object tracking is gaining popularity but still class specific tracking
finds application in surveillance, digital camera, and behavior analysis. There are
many challenges in object tracking, such as appearance changes, partial or full
occlusion, rapid object movement, cluttered background and real-time process-
ing. Color histograms based methods like Mean Shift and top down approach
based on Particle Filter show promising results in cluttered backgrounds, but
drifts in case of similar colored background or low illumination. Methods like
”tracking by detection”10)19) and ”tracking by continuous recognition”13) that
use a discriminative classifier trained online, and is robust against scale and il-
lumination changes. But since the detector is updated based on samples in the
prior frame, detection errors propagate resulting in a drift. In this paper we
propose the following,
• Online Real boosting

It is an improvement over ”Online Boosting” that utilizes Real Adaboost
for offline training, and probability densities for the object and background
thereby reducing drift. The classifier performance improved, and perfor-
mance equalling or exceeding the state-of-the-art is achieved with half the
number of weak classifiers resulting in processing speed improvement.

• Soft Decision Features
Object tracking deals with articulate and non-rigid objects, where movement
is associated with changes to appearance. Features trained for a particular
shape would fail, and hence termed as rigid or ”Hard Decision Features”. An
online training algorithm for training pose invariant features termed as ”Soft
Decision Features” (SDF) is proposed. To track objects like human with pose
variations, a online training method that trains features which can adapt to
pose variations (SDF) is proposed.

In this paper, Online Real Boosting is discussed in Section 2, while Section 3
discusses about the features flexible features that supports pose changes, and
Section 4 summarizes the finding and concludes.

2. Online Real Boosting for Object Tracking

Boosting is a popular ensemble learning method for object detection, where a
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set of weak classifiers are trained and linearly combined to form a strong clas-
sifier. Oza et al.3) proposed an Online Boosting method that trained classifiers
online with the current view of the object to update the weights of the weak
classifiers. During each update even small errors would propagate resulting in a
drift Grabner et al.10) proposed semi-supervised Online Boosting algorithm based
on Adaboost, which achieved good tracking results against occlusions and clut-
tered background, but the large number of weak classifier trained for achieving
good results is a computational overhead. In this paper, we propose an Online
Boosting algorithm similar to Grabner et al.10), but replace Adaboost with Real
Adaboost. A probability density for the object and the background is associ-
ated with each of the weak classifier that significantly improves the classification
performance. First, we introduce original Online Boosting then a discussion on
Grabner’s method followed by the discussion on the proposed method.

2.1 Online Boosting
Online Boosting was proposed by Oza et al.3), and improved by Grabner et

al.10). In Online Boosting, the training sample is provided only once to the
learner and discarded afterwards. The weak classifiers are updated online each
time a new training example arrives. Using the classifier tracking is achieved by
exhaustive frame search with sliding window or particle filter.

Offline supervised learning is performed to train weak classifiers with least error
ε, which is calculated with the weights D(xi) and sample images xi as shown in
Eqn (1).

ht = arg min
hj∈H

εj =
m∑

i=1

Dt(xi)[yi 6= hj(xi)] (1)

Weak classifier weight αt is based on the classification errors and calculated as
shown in Eqn (2),

αt =
1
2

log
1− εt

εt
(2)

The weights D(xi) are updated with the weak classifier ht response,

Dt+1 =
Dtexp(−αtyiht(xi))

Zt
(3)

The above process is repeated for learning T weak classifiers, and a strong clas-

sifier H(x) is obtained as shown in Eqn (4),

H(x) =
T∑

t=1

αtht(x) (4)

In online learning, there is only one positive sample available at any time. The
weight αt is updated by Eqn.(2) and error rate of positive and negative samples
in current frame.

εt ←
λsw

t

λsc
t + λsw

t

(5)

Note that λsc
t and λsw

t are importance factors of weak classifier ht for correct
classification and misclassification, respectively. On correct classification, λsc

t is
updated to λsc

t + λ, λsw
t is updated to λsw

t + λ, otherwise.
In the original Online Boosting proposed3), weights for all the weak classifiers

are updated without any feature selection, however, effective features are selected
and their weights were updated for tracking with a selector approach in modified
online boosting proposed by Grabner et al10). This method tracked occluded ob-
jects, and to some extent objects that changed its appearance. The performance
of this method is proportional to the number of weak classifiers. An increase in
number of weak classifiers would improve the tracking performance, but compu-
tational costs would also increase. The detector is trained priori and tracking
might fail on appearance changes that are not part of the training samples.

2.2 Proposed method
The proposed method focuses on the training method and the feature type. For

example, to track frontal faces, Haar-like features are effective, but for side facing
faces, contour extracting edge features are effective. To track scenes with facial
pose changes, Haar-like, ABS Haar-like, EOH (Edge Orientation Histograms)
and Edgelet features are effective, and feature selection is performed from a
pool of features trained offline. To select weak classifier with high discriminative
ability, Real Adaboost is employed to select features, which outputs real value
as likelihood. The proposed method is shown in Fig. 1. In the proposed method
the detector is trained offline with Real Adaboost. The weak classifiers trained
offline are grouped into N selectors, based on the training sample a weak classifier
is trained online from each of the selector group, and linearly combined into a
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Fig. 1 Online Real Boosting.

strong classifier. The strong classifier is used as a detector the next frame. Object
is tracked either with particle filter approach.

2.3 Online Real Boosting
Online Real Boosting has the following three steps, preparation for online learn-

ing, weak classifier selection, and weak classifier update. The online learning flow
for the proposed method is captured in Fig 2. The following sections details the
steps.

2.3.1 Preparation for Online Learning
The strong classifier Hoffline include weak classifiers trained offline, for objects

such as face, human body, etc. As shown in Fig.2, the weak classifiers are grouped
into the N subsets and termed as a selector. One weak classifier is trained online
from each selector group, based on the current training sample. As shown in
Fig.2, L samples labeled as positive and negative samples are trained for online
learning. As shown in Fig.2, the importance factor λn which determines the
classification performance of each of the selector is initialized in Eqn.6.

2.3.2 Selection of Weak Classifiers
As shown in Step 4 of Fig.2, one weak classifier from each of the selector is

selected. First, in step 4.1.1, probability density function W y
n,m of weak classifier

hn,m is updated with importance factor λn as shown in Eqn.(7). The proba-
bility density function W y

n,m is obtained from offline learning, representing the
positive and negative probability distributions. Positive sample update W+1

n,m,j ,
while negative sample update W−1

n,m,j . The probability density function W y
n,m

is implemented as a histogram, and the histogram index binj decided from the
feature value. After updating the probability density function with all the sam-
ples, the hypothesis of each weak classifier is updated as shown in Eqn.(8), hence,
if the distribution in index binj is to be updated based on a sample, then the
neighboring indices are also updated based on a Gaussian smoothing function.
β is added to prevent divide-by-zero. In step 4.1.3, Eqn. (9), weak classifier are
evaluated by the Bhattacharya distance Zn,m, and the classifier with the least
Zn,m is selected from the selector.

2.3.3 Weak Classifier update
The error rate of selected weak classifier is calculated in step 4.3 of Fig.2. In

case of correct classification y · hn(x) is positive and as shown in Eqn.(11), ε+1
n

is updated, and in case of negative value and misclassification, ε−1
n is updated
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0.Train strong classifier in offline learning.
Strong classifier Hoffline(x) (weak classifier:M)
Weak classifiers hoffline,m(x) {m = 1, ...,M}

1.New sample in current frame {(x1, y1), .., (xL, yL), yi = ±1}, L: sample No.
2.Divide M weak classifiers to N(same as selector No.)
3.Initialize importance factor λn

λn = 1/N (6)
Initialize classification error ε = 0

4.For n=1,2,..,N //Selector No.
4.1.For m=1,2,..,M/N //weak classification No.
4.1.1.Update probability function
If hn,m(x) ∈ binj

W y
n,m,j = W y

n,m,j + λn (7)
4.1.2.Update hypothesis of weak classfiier
If hn,m(x) ∈ binj

hn,m(x) =
1
2

ln
G(W+

n,m,j) + β

G(W−
n,m,j) + β

(8)

G is a Gaussian smoothing function
4.1.3.Evaluation value for weak classfier selection

Zn,m = 2
T∑

j=1

√
W+

n,m,jW
−
n,m,j (9)

T :bin No. of histogram
4.2. Select weak classifier with least Z

m∗ = arg minm Zn,m

hn = hn,m∗
(10)

as shown in Eqn.(12). From the classification error εn calculated by Eqn.(13),
effectiveness of the weak classifier αn is calculated by Eqn.(14). In Real Adaboost,
each weak classifier outputs a real value as confidence, however, in our method,
each of the weak classifier is associated with an effectiveness coefficient αn, and
confidence is calculated as shown in Eqn.(18). The importance factor λn for

4.3.Calc classification error εn of hm(x)
If y · hn(x) ≥ 0
ε+1
n = ε+1

n + λn · |hn| (11)
Else
ε−1
n = ε−1

n + λn · |hn| (12)

εn =
ε+1
n

ε+1
n + ε−1

n

(13)

4.4.Set weight of weak classifier

αn =
1
2

log
1− εn

εn
(14)

4.5.Update importance factor of selector
If y · hn(x) ≥ 0

λn =
λn

2(1− εn)
(15)

Else

λn =
λn

2εn
(16)

5.Strong classifier
H(x) = sign(conf(x)) (17)

conf(x) =
n∑

n=1

αnhn(x) (18)

Fig. 2 Online learning of Online Real Boosting.

each of the selector is updated based on the classification error εn, as shown in
Eqn.(15) and Eqn.(16). The importance factor λn, determines the classification
performance of the selector n. A large value of λn, means that the selector
has selected an effective classifier for tracking, while a small value of λn means
otherwise.

2.3.4 Tracking based on Particle Filter using Weak Classifiers
Tracking is achieved by Particle Filter using the strong classifier trained online.

To predict the sampling points in Particle Filter, the confidence of strong classifier
H(x) is calculated. The particle with the maximum confidence of H(x) is output
as tracking result. Weights for each of sampling points is updated based on
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Table 1 Comparison Online Boosting and Online Real Boosting.

　　　　　　　 　　 Online Boosting 　　 Online Real Boosting
weak classifier 　　 local feature 　　　 local feature

　　　　　　　　　　 Probability function of
positive and negative

Hypothesis 　　　 　　　　 threshold 　　　　 Probability function
training method 　　 AdaBoost 　　　 　 Real AdaBoost

confidence of the strong classifier result H(x).
2.4 Proposed Method, compared with Online Boosting
The major differences of the proposed method, Online Real Boosting to that

of Online Boosting10) is captured in Table 1. The major difference is that each
of the weak classifier has a probability density function W y

n,m,j , and trained
by Real Adaboost. Online Boosting select the weak classifiers by re-creating
the probability density function of target and background based on the current
samples. The weights are updated based on the just arrived sample, and any large
changes to appearance will lead to a large difference between the training sample
and the target frame, resulting in tracking failure. In the proposed method, the
Probability density function is derived from offline training, and updated online
based on the just arrived training samples. The probability density function for
the positive samples is obtained by offline learning with a sample set containing
various facial poses and illumination condition, hence tracking faces with large
changes to facial pose and illumination condition is possible.

2.5 Experiments
2.5.1 Comparison of Tracking Performance
The performance of the proposed method compare with Online Boosting. For

the experiments, human head is selected as the target object, as it has a wide
range of appearance and pose variations. The evaluation dataset from Jepson5)

was selected. It contains 1145 frames, with various face poses and cluttered back-
ground. The detector was trained offline with 5000 positive and 9000 negative
samples, normalized to 24x24 pixels size. Both Online Real Boosting, and On-
line Boosting trained 300 weak classifiers offline. Some examples from the offline
training dataset are shown in Fig.3. The training dataset includes various face
poses like frontal, side view, etc. The face size is normalized to 20x20 pixels of

Fig. 3 Example of training samples.
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Fig. 4 Weak classifiers trained in offline
learning.
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Fig. 5 Tracking Errors in each frame.

the 24x24 pixels, and the rest contains the background. The top 10 weak clas-
sifiers learned from offline training is shown in Fig.4. (a), (b), (e), (g), and (h)
are Haar-like features, (c) and (d) are EOH features, and (f), (i) and (j) are ABS
Haar-like features.
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Table 2 Comparison of tracking performance.

Average Error SD
Mean Shift 11.2% 20.1

Online Boosting 9.8% 6.1
Online Ral Boosting 6.8% 5.7

The 300 weak classifiers trained offline are grouped into 100 selectors, and one
weak classifier is selected online from each selector during training. The number
of particles in the Particle Filter is set to 200, and as shown in Fig.2, Eqn.(18),
the locations with the highest confidence are selected. Both the methods were
initialized with the same set of locations. Table 2 captures the tracking perfor-
mance for both the methods and Mean Shift. Error is defined as the distance
between the actual object center to that of the tracked result. The average
and standard deviation on errors are captured and the figures indicates that the
proposed method outperforms the other two. A very small standard deviation
for the proposed method indicates that during occlusion and changes to facial
expression, the tracker would not drift. Fig.5 captures the tracking errors on a
frame-by-frame basis indicating that the proposed method outperforms the other
two for almost all the frames. Tracking results for all the 3 methods are shown
for few frames around the 200th and 800th frame for all 3 methods in Fig.6 and
Fig.7, respectively. Fig.6 and Fig.7, (a) is for Mean Shift, (b) for Online Boosting
and (c) for Online Real Boosting. In the 200th frame, face is occluded with the
hand, in this case, Mean Shift exhibits a large drift, while online boosting and
the proposed tracks correctly. In the 800th frame, the object to be tracked is
seen in front of a cluttered background. In this case, Mean Shift drifts to similar
objects in the background, classification errors of the weak classifiers increase in
Online Boosting, and hence the tracking position drifts right. On the other hand
in the proposed method, the tracking coordinates almost matches the correct
coordinates, owing to the reduced classification errors proving the effectiveness
of the proposed method.

2.5.2 Selector - Performance Comparison
The performance of the proposed method and Online Boosting was compared

against the number of selectors and weak classifiers. Fig.8 captures the effect
of changing the number of selectors and weak classifiers on tracking errors. The

!"#$%&"'$()*+ 
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Fig. 6 Tracking result of each methods in around 200 frame.
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Fig. 7 Tracking result of each methods in around 800 frame.

tracking errors decrease with the increase in number of selectors. As observed
from Fig.8, a consistent difference in performance can be observed, where the
proposed method outperforms Online Boosting. For example, average error rate
from the actual location for the proposed method is a little over 8% for the
proposed method, but the error rate falls just below 10% for Online boosting
with 90 selectors, a 3 fold increase. This plot indicates that the proposed method
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Fig. 8 Error comparison of number of selector.

Table 3 Performance comparison by number of selectors.

Average Error SD
Mean Shift 12.0% 8.6

Online Boosting 9.5% 6.3
Online Real Boosting

(Selector : 100) 8.2% 5.1
Online Real Boosting

(Selector : 50) 8.8% 5.5
Online Real Boosting

(Selector : 30) 10.0% 6.4

outperforms Online boosting for various the number of selectors.
2.5.3 Performance in a Scene with Pose Variation
Human face pose changes to a large extent when capturing a scene with a

hand-held camera, especially when capturing a movie of a kid. A scene with
such a scenario was selected for comparing the performance for various number
of selectors. The evaluation dataset is a 500 frame movie with face pose variation
of a kid. Table 3 captures the average error rate and the standard deviation.
Fig.9 and Fig.10 show the tracking results for Online Boosting and the proposed
method respectively. In both Fig.9 and Fig.10, (a) shows the results for 30
selectors, (b), (c), (d) and (e) are for 50, 70, 90 and 100 selectors respectively.

From table 3, tracking error rate of the proposed method is less compared to
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Fig. 9 Tracking performance of Online Boosting in face pose variation scenario.
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Fig. 10 Tracking performance of Online Real Boosting in face pose variation scenario.

Mean Shift and Online Boosting. The evaluation dataset has upright face around
the 46th frame, and left-downward facing face around the 127th frame, and right-
upward facing face at the around 265th frame. On a evaluation data with these
face poses, Online Boosting tracked successfully with a large number of selectors.
The proposed method achieved matching performance with 50% of the selectors
which proves that the proposed method achieves matching performance with just
half the number of selectors.
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Fig. 11 Weak Classifier of human data in offline learning.

2.5.4 Human Tracking Performance
The proposed method can track an arbitrary object trained offline. Human

body with wide appearance and pose variation was set as the target object. A
detector with 300 weak classifiers was trained offline with 6700 positive samples
and 10000 negative samples. Fig. 11 shows the top 10 weak classifiers, and
(c) shows the Edgelet feature. Edgelets were not selected for face detector, but
selected for Human detection as it captures the the shoulder area. Fig. 12 and
Fig. 13 shows human tracking result for the proposed method. Fig.12 shows
a human changing pose indoors, and the resulting tracking bounding box show
that the proposed method can track human body with change in appearance.
Fig. 13 shows a scene with low illumination condition where the proposed tracks
successfully.

2.6 Summary
In this section, we proposed a new Online Boosting method that trained weak

classifiers with Real Adaboost and a probability density function of positive
and negative associated with each classifier to obtain better classification per-
formance. The method also employs various feature types to reduce the number
of weak classifiers. The method was compared with Online Boosting and Mean
Shift, for tracking a human head with a dataset of facial images in a cluttered
background, and the results indicate that the proposed method outperforms the
other methods. The proposed method was also applied for tracking human body
and it showed robust performance for both changes in appearance and illumina-
tion.

Fig. 12 Tracking performance in a scene with human pose variation scenario.

Fig. 13 Tracking performance in a low illumination scenario.

3. Soft Decision Features for Object Tracking

In Object tracking, appearance change associated with an object pose is one
of the critical issues. In Online Real Boosting, features are trained offline and
grouped into selectors. In the case of human tracking, weak classifiers should be
trained for an array of possible human poses like sitting, standing, bending, etc.
which is not a simple task. In this section, we describe a new structure of weak
classifier that are flexible to appearance changes of target object.

3.1 Problem of Online Boosting
Online Real Boosting selects a set of weak classifiers and linearly combine

them for detecting the target object from a candidate pool trained offline. To
track non-rigid objects like human body, which can assume various poses, the
candidates should be trained offline for all the poses. In the case of human
tracking, the detector shall detect sitting and standing (upright) poses. It is
practically impossible to exhaustively select weak classifiers for all the poses that
the human body can assume. An attempt to exhaustively detect all the human
poses by brute force is limited by the number of classifiers. An increase in the
number of supported poses would increase the computational costs. Hence most
of the methods limit the number of poses supported. Tracking fails for the poses
that are not learned offline. The weak classifier is hard-coded for a particular
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HypothesisFeatures Probability density

HypothesisFeature Probability density 11
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Fig. 14 SDF Structure.

object pose, and is termed as a Hard Decision Feature (HDF).
3.2 Object tracking applied pose variation
To track human with Online Real Boosting, a framework of weak classifiers that

adapt flexibly to change in appearance is proposed. The weak classifiers trained
online flexibly adapts to the appearance changes in the target object, and these
features are termed Soft Decision Features (SDF), this section discusses the offline
and the online training method of SDF.

Fig.14 shows the proposed SDF. The Online Real Boosting that was proposed
in the previous section, trains a weak classifier with feature for a particular object
shape, a hypothesis, and a Probability density function. The proposed method
trains a weak classifier with a set of transformable features, probability density
function for the object and background and a hypothesis function. Transformable
features are divided into 2 types based on the supported object shape. ”Basis
type” is the feature that supports the original object shape, and ”Transform
type”, that supports the transformed shape. The shapes for the ”Transform
type” are obtained during offline training by transforming the Basic type using
a transform G as shown in Eqn.19,

Ftrans = G(Forg; p, s) (19)
where Ftrans represents the transformed shape, and Forg is the Basis type,

p and s represent position and scale respectively. The transformed shapes is
grouped with the basis for offline training of the SDF feature. During online

Input:Training samplesX= (xn, yn); n ∈ [1, N ], yn ∈ [−1,+1]
Outpt:Strong classifierHoff (X)
1.Initialize weight of training samples

λn = 1/N (20)
2.For t = 1, . . . , T 　//Training No.

2.1. For m = 1, . . . ,M 　//Weak classification candidate No.
2.1.1.Probability density function W y

org

W y
org,m,j = W y

org.m,j + λn (21)
2.1.2.Transform weak classifier

Ftrans = G(Forg; p, s) (22)
2.1.3.Probability density function W y

trans

W y
trans,m,j = W y

trans,m,j + λn (23)
2.1.4.Calc similarity

Sm = 2
J∑

j=1

√
W+1

org,m,jW
+1
trans,m,j (24)

2.1.5.Merge probability density functions
if Sm > θ

W+1
m,j = W+1

org,m,j + W+1
trans,m,j (25)

Repeat 2.1.2 - 2.1.5 to grouping

2.1.6.Calc Evaluation value Z

Zm = 2
J∑

j=1

√
W+1

m,jW
−1
m,j (26)

training an optimal shape is selected from a set of shapes for tracking.
3.3 Offline training for SDF
Offline training for SDF is shown in Fig.fig2. The following section discusses

each one of the steps involved in the training, and its difference to Online Real
Boosting.
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2.2.Select Weak classifier with least Zm

m∗ = arg min
m

Zm (27)

t = m∗ (28)
2.3.Hypothesis of weak classifier ht(X)
For j = 1, . . . , J 　//Bin No. of histogram

ht,j(X) =
1
2

ln
(W+1

t,j + β

W−1
t,j + β

)
(29)

2.4.Calc error rate (initil: εt = 0)
εy
t = εy

t + λn|ht(xn)| (30)

εt =
ε+1
t

(ε+1
t + ε−1

t )
(31)

2.5.Update weight
if ynht(xn) > 0　

λn =
λn

2(1− εt)
(32)

else

λn =
λn

2εt
(33)

3.Strong classifier
Hoff (X) =

∑T
t=1 ht(X) (34)

Fig. 15 Offline training using SDF.

3.3.1 Preparation for Offline training
Training samples are labeled, X = (xn, yn; n ∈ [1, ..., N ], y ∈ [−1,+1]) as

positive (y = +1) and negative (y = −1) samples, and weight for all the samples
are initialized to λn = 1/N . In offline training from M candidates, T weak
classifiers are selected. Weak classifiers are selected as shown Fig. 15 steps 2.1 to
2.5 and the above steps are repeated in a loop till a predefined number of weak
classifier is reached.

3.3.2 Weak classifier candidates Generation
First, for each weak classifier, the probability density function, W y

org for posi-
tive and negative classes are determined, where the probability density function

differentiates the object from the background, and defined by histogram. As
shown in Fig.15, step 2.1.1, the feature value obtained for a training sample xn

is calculated as the index for adding λn into the histogram, and the probability
density function is obtained.

3.3.3 Grouping of transformed shapes
After generating the candidates, the transformed shapes Ftrans are generated

from the Forg as shown in Step 2.1.2. The transformation parameters are adjusted
to deduce the transformed shapes and a probability density function is defined for
each one of them, similar to that of the basis type as shown in 2.1.1. The similarity
of the probability distribution for the basis and the transform types is defined
by the Bhattacharya distance, as shown in Step 2.1.4. Transformed shapes with
similarity values greater than the threshold θ is selected as SDF in step 2.1.5.
The parameters for the transformation function G are adjusted to deduce the
transformed shapes Ftrans and steps 2.1.2 through 2.1.5 are repeated for all
Ftrans. Similarly grouping is performed for all the weak classifier candidates. The
similarity of positive and negative classes Z is calculated as shown in equation
2.1.6.

3.3.4 Weak classifiers selection
As shown in Step 2.2, the weak classifier with a minimum Z score is selected

from the candidates. For the selected weak classifier, the weak hypothesis ht(X) is
calculated with the probability density function W y

t for the positive and negative
class.

3.3.5 Updating weight and Strong classifier
As shown in Step 2.4, the error rate for a weak classifier is calculated using the

all training samples, and the weights λn are adjust as shown in Step 2.5. Based
on this, for the selected classifier, weight of misclassified samples are incremented.
The steps are repeated and T weak classifiers are selected and linearly combined
to form the strong classifier Hoff (X).

3.3.6 Difference from Online Real Boosting
The difference of the proposed method to that Online Real Boosting is in

Steps 2.1.2 through 2.1.5 shown in Fig.15. In the proposed method, during
offline training, shapes with similar probability density function are grouped into
a single weak classifier. The similarity of the probability density function implies
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that the hypothesis function of the weak classifier is also similar. Transformation
types can be obtained by locally constraining the parameters in transformation
process in Step 2.1.2, and transforming the basis type.

3.4 Online learning of SDF
Online training flow for SDF is shown in Fig.16. The proposed method consists

of steps 3.1 and 3.2 where the probability distribution for the the basis type is
updated and optimal SDF classifier is selected, steps 3.3 and 3.4, where the weak
classifiers are optimized and shapes are selected. Online Real Boosting is made
only of steps 3.1 and 3.2, and in the proposed steps 3.3 and 3.4 were added for
shape optimization. The following sections details the steps involved in online
training.

3.4.1 Preprocessing of online learning
The target object in the just arrived frame is taken as the positive sample

(y = +1) and the background as negative sample (y = −1). The T number of
classifiers selected offline are divided into R random groups, similar to the earlier
method. Selecting SDF from each group might be computationally intensive if
there are many candidate features in each of the groups. To improve on processing
speed, Online Real Boosting divided the groups randomly and constrains the
number of SDF in each group.

3.4.2 Selection of SDF
The weights for the training samples λk are initialized as show in Step 2, Fig.16.

Step 3 is executed for all the divided groups, and a weak classifier from each group
is selected. At first, the weights for the samples are used to update the probability
distribution function W y

r,m weak classifier candidate m, in group r, as shown in
Step 3.1.1. The probability distribution is updated similar to offline training, i.e.,
the feature values of the samples are used to update the corresponding histogram
bin by adding the weights λk. The histogram is normalized as shown such that
the area under the curve is 1. The variance Z for the weak classifier candidate is
calculated as shown in Step 3.1.2. and as in Step 3.2, the classifier with the least
value of variance, Z is selected.

3.4.3 Shape optimization
In Section 3.3, Shape optimization is performed for the the weak classifier

selected. In Steps 3.3.1, and 3.3.2, the probability density function of the weak

Input:Trainig samlesX= (xk, yk); k ∈ [1,K], yk ∈ [−1,+1]
Weak calssfier candidatesHoff (X) = ht(X); t ∈ [1, T ]

Output:Strong classfierHon(X)
1.Split weak classifier T to group R

2.Initialize weight of training samples
　 λk = 1

K

3.For r = 1, 2, . . . , R //No. Selectors
3.1 For m = 1, . . . , T/R　//No. weak classifier candidates
3.1.1 Update PDF W y

r,m

W y
r,m,j = W y

r,m,j + λk

3.1.2 Calc Z

Zr,m = 2
∑J

j=1

√
W+1

r,m,jW
−1
r,m,j

3.2 Select best SDF as selector
m∗ = arg min

m
Zr,m

horg,r(X) = hr,m∗(X)

3.3 Optimize shape of SDF
For l = 1, . . . , L　//No. transfrom types
3.3.1 Update PDF of transform types

W y
trans,r,l,j = W y

trans,r,l,j + λn 　
3.3.2 Calc Z

Ztrans,r,l = 2
∑J

j=1

√
W+1

trans,r,l,jW
−1
trans,r,l,j

3.4　 Select best shape of SDF
l∗ = arg min

l
Ztrans,r,l

hr(X) = hr,l∗(X)
4.Strong classifier Hon(X) =

∑R
r=1 hr(X)

Fig. 16 Online training for SDF.
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classifier’s transformed shape is updated, and Z is calculated. As in Section 3.4,
the model with minimum Z is selected as the selector. Step 3 is executed for all
groups, and the selectors are linearly combined into a strong classifier Hon(X).
In Online Real Boosting, the weak classifiers got from Step 3.2 are used as the
selector. In the proposed method, the candidate weak classifiers are made up of
various shapes, and the shape that suits the target object are selected ensuring
a shape invariant robust tracking method.

3.4.4 Feature type of SDF
An SDF is a weak classifier that consists of features with similar probability

density function. As the weak classifiers are made up of similar shaped features,
it can track objects with little appearance change. Offline training for SDF and
optimal shape selected during online training was discussed. Features form the
basis for implementation, and in this paper Edgelet and EHOG are selected as
they perform very well for Human detection.

3.4.5 SDF based Particle Filter Tracking
In object tracking, searching methods includes the sliding window that ex-

haustively slides through the given region, and Particle Filter with a probability
distribution for arriving at the sampling points. Performance of sliding window
can be improved by applying the classifier entire image, which might be compu-
tationally expensive and would impact performance. Methods based on sampling
assigns weights to each of the sampling points based on the likelihood previous
frame, thus limiting the sampling region. Sampling based methods outperform
sliding window based approaches. The tracking performance is based on the prior
probability, and for most of the cases it achieves reasonable performance. The
proposed method utilizes Particle Filter to achieve high processing speed. Object
location (x, y) and scale s are the state vectors for the particle filter. The state
model is a random walk where each particles are randomly distributed based on
a 2D normal distribution. The sampling region width is taken as the 2 times
the width of the target object with respect to the object center in the previous
frame, and scale factor is set to ±0.1 of the original size. The weights for each of
the particle is calculated based on the weights of the classifier output got from
online training.

Fig. 17 Training samples in online learning.

Fig. 18 Example of selected features in on-
line learning: (a)Top 10 weak clas-
sifiers，(b)Feature distribution of all
weak classifiers.

3.5 Experiments
3.5.1 Experiment Overview
SDF and HDF based Online Real Boosting was compared for tracking perfor-

mance. Errors in tracking were compared for around 800 Frames that included
appearance and pose variations.

Initially, 500 weak classifiers were trained offline with 5000 training samples,
normalized to 24 × 60 pixels. Fig. 17 shows some of the samples from offline
training set. The sample set contains standing humans, while other poses like
sitting present in the test data set is absent. Parameters in the transformation
function are changed, Basis type is adjusted by ±1 pixel, and the size s is changed
between −0.8 to 1.2 times of the Basis type’s width with 0.1 increments. The ori-
ented gradient g changes the HOG elements by ±1. The parameters are changed
for experimental purposes, and by large changes to the parameters shapes that
are further apart would be grouped which might lead to a grouping of shapes
that vary to a large extent from that basis type. The grouping threshold θ was
experimentally set to 0.8.

Fig. 18 shows the top 10 weak classifiers trained offline and the classifier pattern
distribution. In Fig. 18(a) the features with rectangles are the HOG, and the
features with lines are the Edgelet. Fig 18(b) shows the overlapped feature
distribution of all the features both like Edgelet and EHOG. The distribution
shows that the features are concentrated around the head and along the body
contour. The average number of shapes in an SDF is 3.5. For both SDF and
HDF based Online Real Boosting, 500 weak classifiers were trained offline, and
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Fig. 19 Tracking performance for each group.

the number of selectors was set to 50. Each selector selects a weak classifier
from the random grouping of 500 weak classifiers. The number of groups is
same as the selector, 50, and each group contains 10 weak classifiers. Both
sliding window and Particle Filter based approach were adopted for verifying
the tracking performance of the proposed method against pose and positional
changes. Sliding window was employed over a window 2 times the width of the
object detected in the previous frame. The Particle filters set the object center
detected from the previous frame as the center. The number of particles was
set to 100. Tracking performance was compared as the accuracy of tracking
location. Humans in the evaluation image set were marked manually with a
bounded rectangle beforehand. Tracking performance is defined as the distance
between the centers of the tracking result and the correct rectangle. Positional
performance Pa is calculated as shown in Eqn (35),

Pa = Dist(Tracking, GroundTruth)/Width[%] (35)
3.5.2 Tracking performance comparison
Tracking performance was compared with snippets of human body that in-

cluded pose and direction changes. The snippets contained human body in a

Table 4 Tracking Performance comparison (Sliding Window).

SDF HDF
Pose variation Error[%] SD Error[%] SD

(a)standing(front) 1.17 0.81 1.13 1.03
(b)standing(side) 1.62 1.45 2.46 2.35

(c)sitting 1.33 2.69 4.24 7.22
(d)standing(front) 1.91 4.74 Miss -
(e)standing(side) 1.90 3.89 Miss -

total 1.58 2.71 6.46 38.97

Table 5 Tracking Performance comparison (Particle Filter).

SDF HDF
Pose variation Error [%] SD Error[%] SD

(a)standing(front) 1.73 1.17 1.84 1.91
(b)standing(side) 1.83 4.26 3.95 9.72

(c)sitting 2.10 4.12 7.34 4.08
(d)standing(front) 3.07 4.64 Miss -
(e)standing(side) 2.70 4.19 Miss -

total 2.28 3.76 7.52 39.99

frontal standing pose, and also sideways standing, sideways sitting, and a se-
quences like standing, sitting and standing up again.

Fig. 19 captures the tracking performance of frames with a sliding window in
chronological order. The performance of SDF and HDF matches for the first 200
frames. SDF performs better for sideways standing and for sitting pose. In the
later part of the snippet, for sitting, walking and then eventually frontal walking,
HDF fails. For the same scenario, tracking errors in SDF also increases to some
extent, but tracking succeeds.

Tables 4 and 5, captures the average and Standard deviation on errors for
tracking location for each of the pose in both Sliding window and Particle Filter
based methods. As seen in Table 4, standard deviation(SD) changes for human
pose changes, while the average errors do not vary much. For HDF, for changes
in pose the average errors vary to a large extent and while sitting, tracking fails.
As shown in Table 5, the positional errors for Particle Filter do not vary much
compared to the sliding window approach. This shows that Particle Filters with
higher processing can be adopted over sliding windows.

Tracking result of SDF and HDF with Particle Filter is shown in Fig.21 and
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Fig. 20 HDF based tracking: Results for (a)Walking(Frontal), (b)Walking(Side), (c)Sitting,
(d)Walking(Side), (e)Walking(Frontal).

Fig. 21 SDF based tracking: Results for (a)Walking(Frontal), (b)Walking(Side), (c)Sitting,
(d)Walking(Side), (e)Walking(Frontal).

Fig. 21, respectively. As seen in Fig.21(c), SDF tracks correctly even for a
sitting pose. In Fig.20(c) a large deviation from the target is seen for HDF
tracking and Fig.20(d) and (e) shows that following the failure, tracking also
fails for walking. This error is a result of the probability density function not
being updated correctly, due to a large deviation in the tracking position. In
the proposed method, tracking succeeds even for sitting poses indicating that the
probability density function was updated correctly. As shown in Fig. 21(d) and
(e) which is also proven by the fact that tracking succeeds for the subsequent
walking pose.

This shows that the proposed method that trained features offline only for
upright poses, also flexibly tracks sitting pose, which proves that the method is
pose invariant to some extent.

3.5.3 Generalization of Pose changes
The previous sections showed that the tracking performance of the proposed

method, is robust even for snippets with sitting pose. This section explains
the tracking performance results with other poses. To test pose variations, a
snippet with a person jumping, and to test occlusions, a snippet from a mogul
competition were used. The performance results are shown in Fig. 22 and Fig.
23. The results in Fig. 22 and Fig. 23 shows that proposed method is robust

Fig. 22 Pose variation with sudden movements.

Fig. 23 Pose variation with occlusion.

(a) (b) (c) (d) 

Fig. 24 Selected weak classifiers: (a) and (c) Tracking (sitting) for SDF and HDF (b) and
(d) Feature distribution (sitting) for SDF and HDF.

against pose variations and occlusions.
3.6 Comparison with earlier method
3.6.1 Comparison of features selected
Tracking result for SDF and HDF, and the corresponding feature distribution

for sitting is shown in Fig. 24. Fig. 24(a) captures the tracking performance
for SDF, and Fig. 24(b) shows the feature distribution. Fig. 24(a) captures
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Table 6 Weak Classifier count and HDF tracking performance.

SDF HDF(same weak no.) HDF(2pose)
Pose variation error[%] SD error[%] SD error[%] SD

(a)standing(front) 1.73 1.17 1.63 1.60 2.65 3.01
(b)standing(side) 1.83 4.26 2.88 5.93 4.02 4.56

(c)sitting 2.10 4.12 4.95 4.87 10.01 15.91
(d)standing(front) 3.07 4.64 6.64 5.54 14.32 21.23
(e)standing(side) 2.70 4.19 6.23 5.81 17.71 17.66

total 2.28 3.76 4.46 4.75 9.74 12.74

the tracking performance for HDF, and Fig. 24(b) shows the feature distribu-
tion. The features are overlaid over each other, and the degree of brightness in
the feature distribution indicates the density of overlaid lines. For sitting pose,
features for SDF are concentrated around the head and back and some features
are scattered around the feet, and hence the entire human body can be extracted
with the features. On the other hand for HDF, as seen in Fig. 24(d), the features
are concentrated near the head, and hence the deviation in the result indicat-
ing that, HDF selected weak classifiers for fixed regions, for example head in
the above example, and hence features are concentrated around the head but
sparsely distributed on other parts. The proposed feature is trained offline with
the transformed models that are grouped for similar poses. Hence, the features
are more scattered adapting to pose changes. The difference is due to the effect
of probability density function update. In the proposed method, weak classifiers
that are robust towards pose changes are selected, and the probability density
function is updated correctly. This is shown by the fact that tracking works in
the proposed method even after encountering a sitting pose. On the other hand,
HDF selects a classifier with high probability, and ignore the pose change, which
results in a wrong update of the probability density function, and tracking fails
for pose variations like sitting.

3.6.2 Tracking performance of No.of Weak Classifier, and Pose Vari-
ations

The number of HDF candidate weak classifier is made equal to the number
of grouped shapes in the SDF (1750), and trained offline for sitting and stand-
ing poses. The tracking performance in this scenario was compared. 500 weak
classifier were trained offline with 2000 images in sitting pose, while the number

of standing pose images is same as the previous experiments. The weak classi-
fiers selected for various poses were randomly grouped with parameters similar to
prior experiments. The comparison result is shown in Table 6. The results show
that an increase in weak classifier resulted in performance increase, but even after
this increase, SDF based method performs better. When samples with 2 pose
were used for training, the performance dropped. In HDF based method, when
the number of weak classifier is increased, or the number of pose for training is
increased to 2, most of the features concentrate around the head whose pose does
not vary much. Due to this, tracking deviates for sitting poses, and their is a
decrease in performance in the vertical direction. The proposed method groups
weak classifier for the transformed shapes, hence even during appearance changes
SDF does not concentrate over a single area. And this enables SDF to achieve
good tracking performance for objects with varying poses.

3.6.3 Comparison of Processing Speed
Tracking speed for shape invariant SDF and that of HDF for a particular shape

is compared. Test parameters for HDF are similar to the one described in the
previous section, the number of candidate weak classifiers trained offline is made
equal to the number of grouped shapes in the SDF for both sitting and stand-
ing poses. The strong classifier is a linear combination of 500 weak classifiers.
Table 7 captures the processing speed for a Intel Core 2 Duo 2.4GHz system.
The processing speed for the proposed method is around 30ms for a single frame
indicating the possibility of real-time tracking. While the HDF performance was
49ms. Since the selection of weak classifiers during online training is computa-
tionally intensive, it impacts the processing speed. The processing speed for HDF
with 2 pose support is 42ms. This shows that the proposed method improves
the processing speed by 28%. The processing time depends on the selector count
and the weak classifiers per selector. By training classifiers with high classifica-
tion performance in offline training, the selector count can be reduced, thereby
improving processing speed.

3.7 Summary
In this section, an offline and online training framework was proposed for track-

ing objects with appearance changes, by using SDF that adapts to changes in
appearance. In the proposed method, during online training, the shape of the
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Table 7 Comparison of Processing Speed.

SDF HDF(same weak no.) HDF(2 pose)
process time 30ms 49ms 42ms

weak classifier is changed along with that of the target object, and achieved good
results by robustly tracking objects with varying poses. The tracking perfor-
mance results for the proposed method was compared with that of HDF, and the
SDF out performed over the former. The transform parameters can be altered
to derive SDF that support size and rotation variations.

4. Conclusion

In this paper, we proposed an object tracking method, which is essential for un-
derstanding human actions. In chapter 2, a method termed Online Real Boosting
with Real Adaboost and probability density function was proposed. Real Ad-
aboost enabled the reduction of number of weak classifier, there by improving the
processing speed. Tracking errors were reduced with a probability distribution
for the target and background. In chapter 3, shape invariant tracking method
based on SDF was proposed. Soft Decision Features selects efficient features for
tracking based on shape changes. With this method, tracking performance for
pose changing scenes was achieved.
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