人検出結果に基づく自己カメラキャリブレーションと3次元位置推定

A Method for Estimating 3D Position and Camera Self-Calibration

Based on Results of Human Detection

安藤寛哲† 藤吉弘亘†

Hiroaki Ando†, Hironobu Fujiyoshi†

†中部大学大学院工学研究科

†Department of Computer Science, Chubu University E-mail: ah@vision.cs.chubu.ac.jp, hf@cs.chubu.ac.jp

Abstract

本稿では、人検出結果に基づくカメラの自己キャリ ブレーション手法を提案する.提案手法は、推定する シーンに対し人検出と人領域のセグメンテーション結 果から、人の位置と高さを抽出し、複数人の高さと位 置情報と透視投影モデルにおける世界座標と画像座標 の関係を用いてカメラ位置の自己キャリブレーション を行う.一般的にカメラキャリブレーションを正確に 行うには大変な労力を要するが、提案手法は画像中か ら自動的に抽出したパラメータを用いて、自己キャリ ブレーションを行うため、未校正のカメラにおいても 物体の3次元位置を推定することが可能となる.評価 実験により、人領域のセグメンテーション結果を用い ることで、カメラパラメータの推定精度を向上させる ことができた.

1 はじめに

近年,公共施設だけではなくオフィスや一般家庭へ の監視カメラの普及とともに,物体検出や追跡などの 動画像処理技術による監視システムの需要が高まって いる.特に,映像中から人を検出[1,2]し,人の3次元 位置情報や身長を知ることは,場所に応じた人数カウ ントや人流測定において重要である.小川らは,人の 身長と位置情報の推定に,3次元空間の光線情報に基づ く手法を提案した [3].この手法では, Tsai モデル [4] に基づきカメラキャリブレーションを行い,カメラの 内部パラメータと外部パラメータを用いて人の位置と 身長の推定を行う.キャリブレーションにより求めたカ メラパラメータを利用することで,画像中の2次元座 標と世界座標における3次元座標の関係を求めること が可能となる.しかし,一般的にカメラキャリブレー ションは,画像中の座標に対応する世界座標を与える 必要があり,広い範囲でのキャリブレーションは難し

く,正確に行うには大変な労力が必要となる.

一方,手間を必要としない自己カメラキャリプレー ションの手法も多く提案されている.Lvらは,歩行者 を背景モデルとの差分から算出し,歩行者の頭と足下 の位置検出し,画像中の人の高さ世界座標と画像座標 の関係を用いて,消失点と水平線を算出することによ り,カメラの自己キャリプレーション手法を提案してい る[5].しかし,Lvらの手法では,ノイズ等の影響によ り画像中から人の大きさを安定して取得できないとい う問題がある.また,Hoiemらは,入力画像から物体 の検出を行い,検出結果から得られた複数の物体高さ の情報と,入力画像における三次元の面構造と消失点 を推定して,自己カメラキャリブレーションする手法 を提案している[6].これらの物体検出に基づくカメラ の自己キャリブレーション手法では,参照する物体の 高さ(例えば人の高さ)を精度良く求める必要がある.

そこで、本稿では人領域のセグメンテーション結果 に基づくカメラの自己カメラキャリブレーション手法 を提案する.提案手法は、推定するシーンに対し人検 出と人領域のセグメンテーションを行う画像から抽出 した複数の人の高さと位置情報と透視投影モデルにお ける世界座標と画像座標の関係を用いてカメラの自己 キャリブレーションを行う.また、自己キャリプレー ションの結果を用いることにより、未校正のカメラに おいても3次元位置の情報を推定することができる.

2 人領域のセグメンテーション

提案手法では,単眼のカメラで撮影された映像から, 画像中の物体の高さと位置,透視投影モデルにおける 世界座標と画像座標の関係を用いて,カメラの自己キャ リブレーションを実現する.本手法では,画像中の物 体の高さ情報を用いてカメラパラメータを高精度に推 定するため,人領域を正確にセグメンテーションする 必要がある.

図1 人領域のセグメンテーション処理の流れ

本手法では,人領域のセグメンテーション手法に,村 井らの提案した弱識別器の応答による類似シルエット の選択を用いたセグメンテーション手法[7]を用いる. この手法は,人検出器の学習と学習サンプルに対応す るシルエット画像のスコアからハッシュテーブルを求 めるオフライン処理と,入力画像からラスタスキャン による人検出を行い Chamfer Matching を用いてセグ メンテーションを行うオンライン処理から構成される. 処理の流れを図1に示し,以下に詳細を述べる.

2.1 人検出器の構築

人検出法として HOG (Histograms of Oriented Gradients)特徴量[1]を用いた Real AdaBoost[8]による人 検出器を用いる.HOG 特徴量は1つの局所領域内にお けるエッジ方向ごとのエッジ強度に着目した特徴量で あり,照明変動と,局所的な幾何学的変化に頑健な特 徴量である.人検出では,この HOG 特徴量を予め用 意した学習サンプルから算出し,Real AdaBoost によ り人検出器の構築を行う.

2.2 シルエット画像のスコア算出

入力画像から人検出を行い,シルエット画像のマッチ ングを行う候補領域を推定する.構築した検出器を用 いてシルエット画像のスコアを算出する.シルエット のスコアとは,人検出器の各弱識別器の応答値を多次 元のベクトルとして表現したものである.まず,学習 サンプルからシルエット画像を作成する.次に,作成 したシルエット画像に対応する学習サンプル(ポジティ ブのみ)を構築した人検出器に入力する.入力画像に対 して各弱識別器は人か人以外を識別した結果として返 す.T個の弱識別器に対応したT次元の特徴ベクトル を対応するシルエット画像のスコアとする.

2.3 ハッシュテーブルの作成

算出したシルエット画像のスコアは、Chamfer Matching を行う対象領域に類似したシルエットを選択するために使用する.シルエット画像のスコアを記録したハッシュテーブルを作成することで高速な類似シルエット画像検索を実現する.ある一つのシルエット画像 y から算出された弱識別器の応答に基づくスコアを,T 次元の特徴ベクトル $\mathbf{y} = \{h_1(y), h_2(y), \cdots, h_T(y)\}$ とする.まず、次式により各次元の特徴量を2値化し、ビットベクトル $\mathbf{u} = (u_1, u_2, \cdots, u_T)$ を作成する.

$$u_j = \begin{cases} 1 & if \quad h_j(y) \ge 0\\ 0 & otherwise \end{cases}$$
(1)

次に,以下の式を用いて,ハッシュテーブルのインデックス *H_{index}* を求め,ハッシュテーブルに特徴ベクトルとシルエット画像の ID を登録する.

$$H_{index} = \left(\sum_{i=1}^{T} u_i 2^i\right) \mod H_{size} \tag{2}$$

ここで, *H_{size}* はハッシュテーブルのサイズである.以上の処理をすべてのシルエット画像に対して行い,ハッシュテーブルを作成する.

2.4 類似シルエットの選択

オンライン処理として実際の入力画像から人検出を 行い,MeanShift クラスタリングによりウインドウを 統合する.検出されたウインドウ内の領域が検出器に 入力されたときの各弱識別器の応答値のT次元の特徴 ベクトルとシルエット画像のスコアとして記録した特 徴ベクトルを比較することで類似シルエット画像の選 択を行う.その方法として,作成したハッシュテーブル を用いて近似最近傍探索を行う.人検出により検出さ れた領域から得られた弱識別器の応答に基づく特徴ベ クトルを $\mathbf{x} = (h_1(x), h_2(x), \dots, h_T(x))$ とする.この特

図2 人領域のセグメンテーション結果例

徴ベクトルに対しても式(1),(2)を用いてハッシュの インデックスを求め,同じハッシュのインデックスを持 つ特徴ベクトルをハッシュテーブルから探索すること で類似する特徴ベクトルを持つシルエット画像を選択 する.

2.5 Chamfer Matching によるセグメンテーション 人検出により検出された領域と,弱識別器の応 答値から選択された類似シルエット画像を Chamfer Matching[9] によりマッチングすることで人領域のセ グメンテーションを行う.入力画像として人検出により 検出された領域,テンプレート画像としてシルエット 画像を用いて相違度に基づいてマッチングを行う.こ のとき,人検出により検出された領域は必ずしもきれ いに人領域を検出しているとは限らないため, Chamfer Matching を行う領域としてマージンを持たせて少 し大きめに切り出した領域を使用する.また, Chamfer Matching はスケール変化に敏感であるため,シルエッ ト画像のスケールを変化させながらマッチングを行う. 最終的に, 最も Chamfer Matching の相違度が小さくな る位置とスケールとシルエット画像を決定し,シルエッ ト画像が重なっている部分を切り出すことで人領域の セグメンテーションを行う.図2にChamfer Matching を用いた人領域のセグメンテーション結果例を示す.セ グメンテーション結果から,画像中の人の高さh_iと位 置 v_i を精度よく抽出することができる.

3 カメラの自己キャリブレーション

人領域のセグメンテーション結果から得られた画像 中の人の高さを用いてカメラの自己キャリブレーショ ンを行う.まず,文献[6]を参考に,透視投影モデルに おけるカメラ位置と人の高さと人の位置の関係を定式 化する.本章では,画像座標と世界座標とカメラパラ

図3 カメラと人の高さの関係

メータの関係と,その関係からカメラパラメータの導 出方法について述べる.

3.1 カメラ位置と人の高さの関係

図 3 に,カメラ位置と人の高さの関係を示す.画像 の左下の座標を (0,0) とし,画像の縦と横を画像の縦 幅のサイズで正規化した画像の座標系を (u,v) で与え る.また,世界座標系を (x,y,z) とする.ただし,yを 高さ,zを奥行きとする.次に,カメラのチルト角を θ ,焦点距離を f,カメラ中心 (u_c,v_c) ,カメラの高さ を y_c とする.世界座標系は,カメラ位置を基準として, $z_c = 0, x_c = 0$ とし,接地平面を y = 0 と定義する.ま た,カメラ中心 (u_c, v_c) は画像中心とし,焦点距離 f は 1.4 とする.カメラにロールは発生せず,画像座標系の 地面の消失ラインとして水平線を v_0 と定義する.この とき,カメラのチルト角(ラジアン)は次式で与えら れる.

$$\theta = 2\arctan\frac{v_c - v_0}{2f} \tag{3}$$

г٦

カメラモデルとして, 歪み無しの単位アスペクト比であ る透視投影モデル(Perspective projection model)を 使用すると,世界座標系から画像座標系への変換は以 下の式で与えられる.

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z} \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & y_c \\ 0 & \sin\theta & \cos\theta & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$
(4)

3.2 カメラパラメータの導出

世界座標系と画像座標系とカメラパラメータの関係 から,カメラパラメータの導出方法について説明する. 式(4)を物体の高さ y について解くと次式となる.

$$y = \frac{z(f\sin\theta - (v_c - v)\cos\theta) - fy_c}{(v_c - v)\sin\theta + f\cos\theta}$$
(5)

ここで,画像中の人(直立と仮定)領域の上底と下底 の位置をそれぞれ $v_t \ge v_b \ge 0$ て与える(図3).下底 位置 v_b で地面と接する.つまり v_b のとき y = 0なの で,物体の奥行き z は次式のように求められる.

$$z = \frac{fy_c}{f\sin\theta - (v_c - v_b)\cos\theta} \tag{6}$$

式(5)と式(6)から,物体の高さyは次式のようになる.

$$y = \frac{fy_c(f\sin\theta - (v_c - v_t)\cos\theta)/(f\sin\theta - (v_c - v_b)\cos\theta) - fy_c}{(v_c - v_t)\sin\theta + f\cos\theta}$$

ここで,カメラのチルト角が小さい(推定された水平線の位置が画像内に存在する)場合, $\cos \theta \approx 1$, $\sin \theta \approx \theta$, $\theta \approx \frac{v_c - v_0}{f}$ と近似できる.従って,式(7)は以下のよう に表現できる.

$$y \approx y_c \frac{v_t - v_b}{v_0 - v_b} / \left(1 + (v_c - v_0)(v_c - v_t) / f^2 \right)$$
(8)

分母の $(v_c - v_0)(v_c - v_t)/f^2$ は , チルト角が小さいと き $v_c - v_0 \approx 0$ となるため , $(v_c - v_0)(v_c - v_t)/f^2 \approx 0$ と近似できる . 従って , 式 (8) は以下のようになる .

$$y \approx y_c \frac{v_t - v_b}{v_0 - v_b} \tag{9}$$

ここで,画像中に存在するi番目の人領域を考えたとき, $v_t - v_b$ は画像中のi番目の人領域の高さ h_i とする. また,人領域の基準座標を矩形領域の左下に設定したとき, $v_b = v_i$ となる.従って,求めたい式は以下のようになる.

$$y_i \approx y_c \frac{h_i}{v_0 - v_i} \tag{10}$$

式 (10) を変形し, n 人のサンプルとの関係を行列で表 現すると次式のようになる.

$$\begin{bmatrix} v_0 \\ y_c \end{bmatrix} = \begin{bmatrix} y_i & -h_i \\ \vdots & \vdots \\ y_n & -h_n \end{bmatrix}^{-1} \begin{bmatrix} y_i v_i \\ \vdots \\ y_n v_n \end{bmatrix}$$
(11)

式 (11) からカメラの高さ y_c と水平線の位置 v_0 を求める.

3.3 RANSAC によるカメラパラメータ推定

式 (11) において, 既知のパラメータは, 2.5 で述べた ように,人領域のセグメンテーション結果より画像中 から抽出した人の高さ h_i と人領域の位置 v_i である.世 界座標におけるカメラの高さ y_c と画像座標上の水平線 の位置 v_0 を求めるためには,世界座標系での人の高さ y_i が必要である.しかし,与えられている映像からそ れぞれの世界座標系の人の高さの真値を知ることは不 可能である.そこで,提案手法では人の身長として文 部科学省の平成20年度体力・運動能力調査の調査結果 [10]の男性20-24歳の身長測定の結果を用いて,平均値 171.9[cm],標準偏差5.9の正規乱数により人の高さを 与え RANSAC(RANdam SAmple Consensus)[11]を用 いてカメラの高さとチルト角の推定を行う.RANSAC の流れは以下の通りである.

Step1 ランダムに2点のサンプルを選択

Step2 最小二乗法によりカメラの高さと水平線位置を 推定

Step3 推定値から全サンプルとの誤差を算出 Step4 誤差の中間値を選択

Step5 Step1 ~ Step4 を繰り返し,誤差の中間値が 最小となるパラメータを求め,最終的なカメラの 高さと水平線位置とする

3.4 人の3次元位置推定

推定したカメラパラメータと画像中における物体の 位置 (u,v)から,世界座標における物体の3次元位置 (x,y,z)を推定する.物体の奥行きzは,世界座標系と 画像座標系の変換式から,y = 0のとき求めたカメラパ ラメータのカメラの高さと,画像座標における位置関 係から次式となる.

$$z = \frac{fy_c}{f\sin\theta - (v_c - v_b)\cos\theta}$$
(12)

次に,式(12)から求めた奥行き *z* と画像中の位置から, *x* と *y* を求めることが出来る.世界座標における高さ *y* は,奥行き *z* と,カメラの高さ *y*_c と画像中での高さの 関係から次式となる.

$$y = \frac{z(f\sin\theta - (v_c - v)\cos\theta) - fy_c}{(v_c - v)\sin\theta + f\cos\theta}$$
(13)

世界座標における x の推定には,世界座標系から画 像座標系に変換する式 (4) を画像座標 u について解く と次式となる.

$$u = \frac{fx + u_c(y\sin\theta + z\cos\theta)}{z} \tag{14}$$

式(14)から, x は次式のようになる.

$$x = \frac{z(u + u_c \cos \theta) - u_c y \sin \theta}{f} \tag{15}$$

式 (15) から求めた世界座標における x 座標と,式(13) と式(12) から求まる y, z 座標の値を,自己カメラキャ リプレーションで求めたカメラパラメータを用いて算 出することで,対象物体の 3 次元位置を推定すること ができる.

4 シミュレーションによる評価実験

提案手法は,推定するシーンのカメラチルト角や推 定に用いるサンプルの分布(世界座標における人の身 長)の影響を受ける.そこで,シミュレーション実験 により評価する.実験には図4に示すように人体シル エットを OpneGL で描画したシミュレーションモデル を用いる.このモデルは,カメラの位置や高さ等のカ メラパラメータと,人の身長や位置等の人モデルのパ ラメータを変更することで様々な撮影環境が表現可能 である.

図4 シミュレーションモデルの例

4.1 チルト角による推定精度の比較実験

提案手法は,推定するシーンにおけるカメラチルト 角に精度が影響することが考えられる、そこで、カメ ラのチルト角に対するパラメータの推定精度を調査す る.シミュレーションモデルを用いてカメラチルト角θ を 0 度 ~ 40 度 まで 5 度 刻みで変化させた時のカメラ パラメータ推定精度を比較する.ここでカメラの高さ y_c は3m,人の位置(x,z)は乱数によって決定し,人の 身長は文献 [10] の成人男性の結果に従った正規乱数に より与えてサンプルを生成する.各角度でカメラパラ メータ推定に用いた人モデルのサンプル数は600 であ る.図5にシミュレーションモデルにより生成したサ ンプルの例を示す.実験の結果を図6に示す.図6よ **り**, チルト角が 40 度のとき推定誤差は約 11.0[degree] となった.推定するシーンのチルト角が大きくなるに つれ推定誤差が増加することが分かる.これは,カメ ラパラメータの導出の過程でカメラのチルト角が小さ いと仮定しているため,チルト角が大きくなるほど推 定する際に誤差が生じると考えられる.

4.2 サンプルの分布による推定精度の比較実験

提案手法で用いる人の身長の分布とサンプルの分布 の違いによるカメラパラメータの推定精度を比較する. 実験では提案手法の人モデルと同様に,人の身長とし

図6 チルト角と推定誤差の比較結果

図7 生成したサンプルの例2

ての平均値 171.9[cm],標準偏差 5.9 の正規乱数によっ て高さを与えて生成したサンプルと文献 [10] 中の男子 6歳の身長測定の結果である平均身長116.7[cm],標準 偏差 4.8 の正規乱数によって高さを与えて生成した子供 のサンプルを用いる.サンプルを生成したシミュレー ションモデルの環境はカメラの高さ yc を 3m, 人の位置 (x, z) を乱数によって決定する.また,カメラのチルト 角は推定結果に含まれる誤差を抑えるため0度でサン プルを生成した.図7にシミュレーションモデルにより 生成したサンプルの例を示す.実験ではカメラパラメー タ推定に用いる人のサンプル数を1000とし,成人男性 の人体モデルで生成したサンプルと子供のモデルによ り生成したサンプルの割合を変化させ精度を比較する. サンプルの割合は成人男性の人モデルが0%~100%ま で10%毎変化させる.実験結果を図8に示す.成人男 性が 60%以上の場合,高精度にカメラの高さを推定で きることが分かる.提案手法では,RANSACを用いて 全サンプルからカメラパラメーラ推定に最適なサンプ ルの組み合わせを選択して推定するため,成人男性の 人モデルに当てはまらない身長のサンプル (子供のサ ンプル等)を含んでいるシーンに対しても高精度に推 定できると考えられる.

図8 サンプルの分布と推定誤差の比較結果

表1 カメラパラメータ推定結果

カメラパラメータ	真値	セグメンテーション		
カメンハンメーシ		あり	なし	
カメラの高さ y _c [cm]	184.6	184.3	214.1	
カメラ角度 $ heta[ext{degree}]$	10.0	13.3	18.1	

5 実画像による評価実験

提案手法の有効性を確認するために,実画像におけるカメラパラメータの推定と3次元位置の推定の評価 実験をする.

5.1 カメラパラメータの推定

撮影した映像から人領域のセグメンテーションを行 い,その結果から撮影したカメラの自己キャリブレー ションを行う.求めるパラメータはカメラの高さ y_c と 水平線位置 v₀ で,水平線位置 v₀ と式 (3) からカメラ の角度 θ である.また,推定したパラメータを用いて 現実世界での3次元位置の推定を行う.推定に用いる オリジナルデータセットは 640×360 ピクセル, セグメ ンテーション結果のサンプル数は 600 である.図 9(a), (b) にカメラパラメータの推定に用いた 600 サンプルの 人検出結果の分布を示す.表1にパラメータ推定結果 を示す.表1より,セグメンテーションありの場合に カメラ高さが真値との誤差が約0.3 [cm],カメラの角度 が真値との誤差は約 3.3 [degree] の精度で推定できた. 図 10,図 11 に自己キャリブレーションにより推定した 水平線位置 v₀, カメラの高さ y_c と式 (10) から推定し た検出した人の身長, チルト角 θ と式 (12) から求めた 奥行き zの値を示す.提案するカメラの自己キャリブ レーション法は,カメラの内部パラメータを推定する ことはできないが,推定したカメラの高さ yc と水平線 位置 v₀を用いることで人検出の誤検出抑制やトラッキ ング精度の向上が期待できる.

(a)検出結果の分布(セグメンテーションあり)

(b)検出結果の分布(セグメンテーションなし)

図9 人検出結果の分布

図 10 推定結果 1(オリジナルデータセット) $y_c = 184.3$ [cm], $v_0 = 0.825, \theta = 13.3$ [deg]

5.2 人の3次元位置の推定

推定したカメラパラメータを用いて,検出した人の 世界座標における3次元位置を推定をする.図12に示 す15点のランドマーク点の画像座標を用いて世界座標 の真値と推定結果比較することで3次元位置の精度評 価を行う.図13に3次元位置の推定結果を示す.また, 表2に3次元位置推定誤差の x 軸, z 軸の平均と分散 を示す.セグメンテーションした結果により推定した カメラパラメータを用いて3次元位置を推定すること で,推定誤差を小さくすることができた.また,図13 の結果から提案手法で3次元位置をおおまかに推定で きていることから,数mの領域に人がどのように存在 しているかなどの位置関係を推定できることが分かる.

図 14, 図 15 に提案手法を用いた 3 次元位置の推定 結果を示す.未校正のカメラから自己キャリブレーショ

図 11 推定結果 2(CAVIAR dataset 2[12]) y_c = 350.05[cm], v₀ = 1.12, θ = 29.2[deg]

図 12 推定する 3 次元位置

ンを行い,その結果を用いることで検出した人の3次 元の位置関係や身長を推定することが可能となる.

6 おわりに

本稿では,人検出とセグメンテーション結果に基づ く,カメラの自己キャリブレーション手法を提案した. セグメンテーションの結果から画像中の人の高さと,位 置を自動的に抽出することで自己キャリブレーション を行い,カメラパラメータの推定を行った.これによ り,推定シーンにおける物体の3次元位置推定が可能 となり,評価実験によりその有効性を確認した.

今後は推定した物体の3次元位置情報を用いた高精 度な人の追跡を行う予定である.

参考文献

 N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection", IEEE Computer Vision and Pattern Recognition, vol.1, pp.886–893, 2005.

図 13 3 次元位置の推定誤差

表 2	3 次元位置の誤差の平均と分散 [cm]	
-----	----------------------	--

	セグメンテーションあり		セグメンテーションなし			
	平均	分散	平均	分散		
x 座標	5.6	14.1	9.1	76.1		
z 座標	20.6	43.9	33.8	573.0		

- [2] Bo Wu and Ram Nevatia, "Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors", International Journal of Computer Vision, 75(2), pp.247–226, 2007.
- [3] 小川雄三,藤吉弘亘,"実空間に対応した Master-Slaving による追尾カメラシステム",第9回画像
 センシングシンポジウム, June, 2003.
- [4] R. Y. Tsai: "A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses", IEEE journal of Robotics and Automation, Vol. RA-3, No.4, pp. 323–344, 1999.
- [5] F. Lv, T. Zhao, R,Nevatia "Camera calibration from video of a walking human", IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.28, no.9, pp.1513-1518, September 2006.
- [6] D. Hoiem, A. A. Efros and M. Hebert, "Putting Objects in Perspective", International Journal of Computer Vision, vol. 80, No. 1, 2008.
- [7] 村井陽介,藤吉弘亘,"弱識別器の応答に基づく類 似シルエット画像選択による Chamfer Matching を用いた人領域のセグメンテーション",第12回画 像の認識・理解シンポジウム,2009.
- [8] R. E. Schapire and Y. Singer, "Improved Boosting Algorithms Using Confidence-rated Predictions", Machine Learning, No. 37, pp. 297–336, 1999.
- [9] D.M. Gavrila, "Multi-feature Hierarchical Template Matching Using Distance Transforms",

図 14 3次元位置の推定結果 1(オリジナルシーケンス) $y_c = 180.5 [cm], v_0 = 0.5, \theta = 0.0 [deg]$

図 15 3次元位置の推定結果 2(CAVIAR dataset 2) $y_c = 350.05$ [cm], $v_0 = 1.12, \theta = 29.2$ [deg]

IEEE International Conference on Pattern Recognition, pp. 439–444, 1998.

- [10] 平成 20 年度体力・運動能力調査
 調査結果統計表:文部科学省, "
 http://www.mext.go.jp/b_menu/houdou/21/10/
 attach/1285568.htm".
- [11] M. Fischer, and R. Bolles, "Randam sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography", communications of the ACM 24, pp. 381-385, 1981.
- [12] http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/