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Abstract. Self-Supervised Online Continual Learning (SSOCL) focuses
on continuously training neural networks from data streams. This presents
a more realistic Self-Supervised Learning (SSL) problem setting, where
the goal is to learn directly from real-world data streams. However, com-
mon SSL requires multiple offline training sessions with fixed IID datasets
to acquire appropriate feature representations. In contrast, SSOCL in-
volves learning from a non-IID data stream where the data distribution
changes over time, and new data is added sequentially. Consequently,
the challenges are insufficient learning with changing data distributions
and the learning of inferior feature representations from non-IID data
streams. In this study, we propose a method to address these challenges
in SSOCL. The proposal method consists of a Multi-Crop Contrastive
Loss, TCR Loss, and data selection based on cosine similarity to rep-
resentative features. Multi-Crop Contrastive Loss and TCR Loss enable
quick adaptation to changes in data distribution. Cosine similarity-based
data selection ensures diverse data is stored in the replay buffer, facili-
tating learning from non-IID data streams. The proposed method shows
superior accuracy compared to existing methods in evaluations using
CIFAR-10, CIFAR-100, ImageNet-100, and CORe50.

Keywords: Online Continual Learning · Self-Supervised Learning · data
stream

1 Introduction

In today’s society, vast amounts of data are continually generated, such as data
uploaded to the internet and frames continuously captured from in-vehicle cam-
eras. Using this vast amount of data to train neural networks offers various
advantages, including the accumulation of diverse knowledge and the reduction
of costs associated with data collection. However, as shown in Fig. 1, such data
streams have the characteristic that the data distribution changes over time and
is non-Independent and Identically Distributed (IID). This contradicts the as-
sumption that the data distribution a conventional neural network uses to train
the dataset is stationary and IID. Online Continual Learning (OCL) aims to
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Fig. 1: Properties of real-world data streams include non-IID characteristics due
to temporal correlation. For example, frames captured by an in-vehicle camera
exhibit non-IID properties. Additionally, real-world data distributions are non-
stationary and biased concerning the classes that appear over time.

address this problem and continuously learn models from data streams with the
properties shown in Fig. 1. However, most methods use labeled data for training,
and it is difficult to train directly from real-world data streams that have not
been manually annotated.

Self-Supervised Online Continual Learning (SSOCL) involves learning from
unlabeled data streams and aims to deploy these models in the real world. Self-
Supervised Learning (SSL) is a type of unsupervised learning that can learn
effective feature representations for downstream tasks from unlabeled data. Fea-
ture representations acquired by SSL have higher generalization performance
than those acquired by supervised learning [26] and have attracted significant
attention in continual learning [8,36,20], where new classes are added over time.
However, SSOCL has problems as shown in Fig. 2a and Fig. 2b. As Fig. 2a shows,
SSL converges more slowly than supervised learning, requiring more than 1, 000
epochs to reach 90% k-NN accuracy, while 200 epochs suffice for supervised
learning. Therefore, SSL is difficult to learn sufficiently in an online environment
where new data is generated sequentially and the data distribution changes over
time. In addition, the data stream is non-IID, with data arriving successively,
including extremely similar frames and a limited number of classes. Therefore,
as Fig. 2b shows, in adjacent iterations, the similarity of the gradients during
parameter updates is higher than when training on an offline IID dataset. As a
result, models trained on non-IID data streams learn degraded feature represen-
tations with poor generalization performance compared with models trained on
IID datasets.

In this paper, we propose a SSOCL method that addresses the slow conver-
gence of SSL and can learn effectively on non-IID data streams. The proposed
method consists of Multi-Crop Contrastive (MCC) loss, TCR Loss [35], and a
selection of data to store in the replay buffer based on cosine similarity. Con-
ventional SSL applies two types of data augmentations to a single image and
calculates the loss based on the two resulting images [26,10,11,4,9,48,23]. On the
other hand, MCC loss and TCR Loss apply three or more types of data aug-
mentations to a single image and calculate the loss based on them. Increasing
the number of crops speeds convergence and adapts quickly to changing data
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Fig. 2: Problems in Self-Supervised Online Continual Learning. (a)The k-NN
accuracy during CIFAR-10 learning with SSL method SimSiam and supervised
learning. The supervised learning is trained for 200 epochs, and SimSiam is
trained for 1,000 epochs, with the k-NN accuracy measured for each epoch.
(b)Similarity of the gradients during parameter updates in the tth and (t+ 1)th
iterations. CORe50 dataset (IID) and Seq-CORe50 (non-IID) are trained using
the SSL method SimSiam.

distributions. Data selection using cosine similarity calculates the representative
features of each data from the average of the features computed by the MCC
loss. Then, it calculates cosine similarity for these representative features and
removes redundant data with high similarity from the replay buffer. This ensures
that diverse data with low similarity is retained in the replay buffer, preventing
high similarity of gradients during parameter updates by learning from these
diverse data. The proposed method improves the convergence speed of learning
by increasing the number of crops[12,43], enabling the rapid learning of feature
representations that are effective for data selection and the retention of a greater
variety of data in the replay buffer.

The contributions of this paper are as follows.

1. We propose a new Self-Supervised Online Continual Learning method that
can address two problems in Self-Supervised Online Continual Learning:
convergence speed and gradient similarity during parameter updates.

2. The proposed method improves the convergence speed of Self-Supervised
Learning, enabling quick adaptation to changes in data distribution in online
learning with unlabeled data streams.

3. The proposal method can select diverse data from the data stream and store
them in a replay buffer, and uncorrelate gradients during parameter up-
dates. This prevents the learning of degraded representations in non-IID
data streams.

4. Comprehensive experiments using CIFAR-10, CIFAR-100, ImageNet-100,
and CORe50 demonstrate that our method outperforms conventional meth-
ods.
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2 Related Work

In this section, we systematically summarize Self-Supervised Learning and con-
tinual learning, which are closely related to this study.

2.1 Self-Supervised Learning

Self-Supervised Learning (SSL) is a method of offline learning from unanno-
tated data, which pretrains feature representations useful for various downstream
tasks. The feature representations acquired through SSL exhibit higher gener-
alization performance compared to those acquired through supervised learn-
ing, achieving performance equal to or exceeding that of supervised learning in
downstream tasks [26,10,11,4,9,17,6,48,7]. Contrastive learning[9,10,26] applies
different data augmentations to create positive pairs that potentially have the
same label. The model learns to ensure that the feature representations of these
positive pairs are similar, while distinguishing them from those of other data
(negative pairs). A negative-free method that does not use negative examples
has also been proposed [11,23,7]. Other methods include those that reduce re-
dundancy in feature representation [48,18,4] and those based on clustering [6].
However, these SSL methods typically require hundreds of epochs of training
on a fixed dataset in an offline environment to achieve accuracy comparable to
supervised learning on downstream tasks. They do not focus on learning in an
online setting.

2.2 Continual Learning

Continual learning [40,16,3,39,20,5,42] involves using sequentially acquired datasets
containing new task data while discarding previously learned datasets and using
the data in the new datasets for training. Sequentially arriving datasets con-
tain data for different tasks, and the goal of continual learning is to acquire
knowledge of new tasks while retaining knowledge of previous tasks. Methods of
continual learning can be broadly classified as replay-based, regularization-based,
and architecture-based. Replay-based methods use a replay buffer [3,40,28,5] or
generative model [42,22,13] to learn from both past task data and new task
data simultaneously, thereby mitigating catastrophic forgetting. Regularization-
based methods prevent the disappearance of previously acquired knowledge by
constraining changes in the model’s output[5,40,16,31] or by restricting the vari-
ation of parameters[32,29]. Architecture-based methods use different parameters
for different tasks[41,19].

In contrast to normal continual learning, which trains on datasets for multiple
epochs in an offline environment, Online Continual Learning (OCL) [14,49,45,44,1]
learns from a stream of data in an online environment using a single pass. Data
arrive sequentially in small batches, and a batch can only be trained for a lim-
ited amount of time before the next batch arrives. Old batches are discarded
after the arrival of a new batch, and it is not possible to reuse discarded batches
for further learning. Similar to common continual learning, many replay-based
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and regularization-based methods have been proposed [24,25,49,14]. OCL aims
to learn directly from real-world data streams. However, many traditional OCL
methods focus on labeled data streams, making it challenging to learn from
unlabeled data streams in the real world.

Self-Supervised Online Continual Learning (SSOCL) continuously learns us-
ing unlabeled data streams [47,38,2,46]. This study aims to learn directly from
real-world data streams with the characteristics shown in Fig. 1. SCALE [47]
mitigates catastrophic forgetting [21] in changing data distributions without us-
ing labels or prior knowledge by using Pseudo-Supervised Contrastive Loss and
Self-Supervised Forgetting Loss. However, it does not address the slow conver-
gence of SSL. MinRed [38] demonstrated the ability to learn from non-IID data
streams by using cosine similarity for data selection and maintaining diverse
data in the replay buffer. However, it does not address the convergence speed
of SSL, and since it uses pre-trained models when learning from data streams
with changing distributions, insufficient evidence exists regarding its ability to
learn directly from the data streams. RALS [2] addresses the slow convergence of
SSL in data streams by dynamically adjusting hyperparameters. This approach
improves accuracy in single-pass learning with data streams, but it does not
explicitly address non-IID data streams.

Existing SSOCL methods address either the challenge of learning with non-
IID data distributions or the slow convergence of SSL, but no method addresses
both problems simultaneously. To the best of our knowledge, the method pro-
posed in this paper is the first SSOCL approach that explicitly addresses both
problems. Note that this paper focuses on single-pass learning using the lim-
ited data available in the data stream and does not address the computational
processing required for learning.

3 Problem Formulation

In this section, we formulate the problem of Self-Supervised Online Continual
Learning (SSOCL). In this paper’s problem setting, the objective is to learn a
model fθ with parameters θ from real-world data streams. Therefore, no prior
knowledge such as labels and task IDs is used.

The training data is incrementally provided from the data stream and the
training batch at a given time t is denoted as Xt. The training batch Xt contains
data for a batch size b, where Xt = [x1, x2, ..., xb]. Data contained in Xt will not
be included in batches other than Xt. Learning with Xt is only possible until the
training batch Xt+1 arrives at the next time t+ 1, after which Xt is discarded.
Let K be the number of times the model can learn from the data Xt before it
is discarded. The model trains K times on Xt. Discarded data cannot be used
for subsequent training and must be trained in a single pass.

Data streams in the real-world can be broadly classified into two types:
(i) Data collected in the wild or the vast amount of data uploaded daily to
the internet exhibit changing data distributions over time, with weak correla-
tions among the data within a batch Xt. (ii) Continuous frames captured by
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cameras mounted on agents such as cars or humans, which have strong corre-
lations among the data within batch Xt. In this paper, the first type of data
stream is replicated using CIFAR-10, CIFAR-100, and ImageNet-100, while the
second type of data stream is replicated using CORe50. When the data distri-
bution changes, the model begins learning on the new data distribution without
sufficient training on the previous one. Additionally, when there is a strong cor-
relation among the data within a batch, the model’s parameters may become
overly fitted to specific data. The learning objective in this problem setting is
to quickly adapt to changes in data distribution and to learn effective feature
representations from strongly correlated and redundant data streams.

4 Proposal Method

We propose a method to address two issues in Self-Supervised Online Continual
Learning (SSOCL): the slow convergence of Self-Supervised Learning (SSL) and
the correlation of gradients during parameter updates from data streams. The
method learns online from unlabeled data streams. The proposed method con-
sists of two main components: two types of self-supervised losses, Total Coding
Rate (TCR) [35] and Multi-Crop Contrastive (MCC) loss, and the selection of
data to be stored in the replay buffer based on cosine similarity. MCC loss and
TCR loss address the slow convergence of SSL, as shown in Fig. 2a, and help
learn better feature representations in single-pass data streams. Additionally, a
replay buffer utilizing cosine similarity for data selection is used to choose di-
verse data from the data stream and retain it in the replay buffer. To address
the challenge shown in Fig. 2b, the proposal method learns only from the diverse
data stored in the replay buffer. This alleviates the bias in parameter updates
caused by learning from non-IID data streams.

MCC Loss and TCR Loss enable rapid learning of better feature representa-
tions, which are then used to select the data to be stored in the replay buffer.
By accelerating learning convergence, it is possible to learn meaningful feature
representations even in data streams where the data distribution changes over
time. Furthermore, by using cosine similarity to select data based on the learned
meaningful feature representations, selecting and retaining diverse data is possi-
ble from single-pass data streams. The diverse data retained in the replay buffer
prevents learning from biased data in temporal data streams, leading to further
improvements in feature representations. Thus, the proposed method improves
performance through the cooperation of its two components.

Fig. 3 shows the pipeline of the proposed method in detail. The size of the
replay buffer is M . When the number of retained data exceeds M , data selection
using cosine similarity is performed to choose the data to keep in the replay
buffer, and the rest are discarded. A batch of data X = [x1, x2, . . . , xb] is ex-
tracted from the replay buffer to form a mini-batch for training. X1, X2, . . . , XN

are generated by applying N types of data augmentation to mini-batch X,
where Xi = [x1

i , x
2
i , . . . , x

b
i ]. Each augmented mini-batch Xi is input into the

model fθ to obtain the features Zi = fθ (Xi), where Zi = [z1i , z
2
i , . . . , z

b
i ] and
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Fig. 3: The pipeline of proposal method. The blue part is for data selection, and
the green part is for faster learning convergence.

Z = [Z1, Z2, ..., ZN ]. Using the output features Z, MCC and TCR loss are cal-
culated, and the model parameters θ are updated. The process of extracting data
X from the replay buffer and updating the model parameters θ is repeated K
times until new data input is received from the data streams. In the following,
we provide a detailed explanation of each component in the proposed method.

4.1 Multi-Crop Contrastive Loss and Total Coding Rate Loss

The proposed method uses Multi-Crop Contrastive (MCC) and TCR loss as its
loss function, which is formulated by:

L = LTCR + λLMCC (1)

where λ balances the two losses. LMCC and LTCR do not require explicit labels
and can learn from unlabeled data streams.
Multi-Crop Contrastive Loss. MCC loss is a contrastive loss based on 2-
crop (N = 2) losses like InfoNCE Loss [37] and NT-Xent Loss [9], but it can
be calculated using multiple crops (N > 3). The positive pairs

(
xj
1, x

j
2

)
loss in

NT-Xent Loss is defined as:

Lj = − log

(
exp(sim(zj1 · z

j
2)/τ)∑b

k=1,k ̸=j exp(z
j
1 · zk1/τ) +

∑b
k=1 exp(z

j
1 · zk2/τ)

+
exp(sim(zj2 · z

j
1)/τ)∑b

k=1 exp(z
j
2 · zk1/τ) +

∑b
k=1,k ̸=j exp(z

j
2 · zk2/τ)

) (2)

where z is a feature, sim is a pairwise similarity and τ is a temperature parame-
ter. In traditional contrastive loss, two different data augmentations are applied
to a single data to create positive pairs. The model learns to bring the feature
representations of the positive pairs closer together, while pushing those of the
negative pairs, which are other data, further apart. The traditional contrastive
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loss, shown in Eq. (2), requires multiple iterations of learning the same data
until convergence, as it brings the feature representations of positive pairs closer
together in a one-to-one manner. Fast-MoCo[12] and EMP-SSL[43] improve the
speed of convergence in SSL by increasing the number of positive feature rep-
resentations that are brought closer together at one time. MCC loss is based
on the idea of improving the speed of convergence by increasing the number of
data feature representations that are brought closer together at one time and is
defined as follows:

LMCC =
1

Nb

N∑
i=1

b∑
j=1

(
− log

exp(z̄j · zji /τ)∑N
k=1

∑b
l=1 exp(z̄

j · zlk/τ)

)
(3)

where z̄j is the average of all feature representations of xj with data augmenta-
tions, calculated as follows:

z̄j =
1

N

N∑
i=1

zji . (4)

MCC loss brings the feature representations of the data points xj
1, x

j
2, . . . , x

j
N ,

which are created by applying data augmentations to the data xj , closer to their
averages z̄j instead of bringing them closer individually. Additionally, the model
learns to push away the feature representations zlk, which are created by applying
data augmentation to different data, from the average feature representations z̄j .
Total Coding Rate Loss. Total Coding Rate (TCR) loss [35] regularizes the
covariance of the feature representations, uncorrelated each dimension of the
learned features. VICReg [4] enhances the similarity of positive feature repre-
sentations while regularizing the covariance to obtain better feature representa-
tions. The proposed method is based on the VICReg concept and uses TCR loss
to regularize the covariance of the feature representations, along with MCC loss
to directly bring feature representations closer or push them apart. This enables
the acquisition of better feature representations in single-pass learning from data
streams. TCR loss is defined as follows:

LTCR =
1

N

N∑
i=1

(
−1

2
log det

(
I +

d

bϵ2
ZiZ

T
i

))
(5)

where I is an identity matrix, d is the number of output dimensions of the
Projection, and ϵ is a hyperparameter representing distortion.

4.2 Data selection using cosine similarity for representative features

Data selection using cosine similarity selects diverse data from the data stream
and stores it in the replay buffer. As shown in Fig. 1, data streams are non-IID,
and learning from them directly results in continuously learning similar data.
As a result, the gradients during parameter updates become highly similar. This
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leads to the model parameters becoming overly fitted to specific data distri-
butions, resulting in learning feature representations with low generalization
performance that do not work well on other data distributions. To prevent such
issues, diverse data is retained in the replay buffer, and learning from this diverse
data helps prevent overfitting to a specific data distribution. The simplest way
to retain diverse data is to select and store an equal number of data from each
class [14]. However, in real-world data streams without labels, such label-based
data selection is impossible. When selecting data from unlabeled data streams,
clustering the feature representations or calculating the distance between data
using metrics such as cosine similarity or Chebyshev distance can be used to se-
lect the data to [47,38,33]. In the proposed method, data selection for the replay
buffer is performed using cosine similarity on the feature representations of the
data.

In the proposed method, the replay buffer stores not only the data input from
the data stream but also the representative feature representations of that data.
OnPro[44] uses the average of the feature representations of all data in class
i as the representative feature for that class. Additionally, CoPE [14] adapts
to changes in representative features caused by changes in model parameters
and data distribution in the data stream by taking the moving average of the
mean of new features and the mean of old features. In the proposed method, the
representative feature of data xi is calculated using the average of the feature
representations computed by Eq. (4). The representative feature of the data
retained in the replay buffer is defined as follows:

z̄∗i = αz̄∗i + (1− α) z̄i (6)

where z̄∗i is the representative feature of data xi retained in the replay buffer,
α is the moving average coefficient, and z̄i is the average feature representation
of the data xi calculated by Eq. (4). Using the average feature representation
calculated when computing the MCC loss in Eq. (3) can reduce the computa-
tional cost. Data selection using the representative feature calculated by Eq. (6)
is formulated as follows:

x∗
i = arg min

xi∈M
min
xj∈M

Sim
(
z̄∗i , z̄

∗
j

)
(7)

where M is the replay buffer, x∗
i is the data to be stored in the replay buffer, and

Sim(, ) is the cosine similarity. Cosine similarity is calculated for the representa-
tive features of the data in the buffer, and by retaining the data with low simi-
larity in the replay buffer, an IID dataset is constructed within it. Thus, learning
from the data in the buffer enables learning even in non-IID data streams.

5 Experiment

5.1 Experimental Setup

Datasets. The datasets used are CIFAR-10, CIFAR-100 [30], and ImageNet-100
[15]. Each dataset is constructed as sequential (Seq), sequential blurred (Seq-
bl), and sequential imbalance (Seq-im) data streams following [47]. Additionally,
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CORe50 [34] is selected as a non-IID data stream and used as the Seq-CORe50
data stream.
Networks. ResNet-18[27] with an output dimension of 512 is used for all datasets.
The proposal method connects a projector with a hidden layer dimension of 4,096
and an output layer of 1,024 behind ResNet-18.
Baselines. The Self-Supervised Online Continual Learning (SSOCL) methods
MinRed [38] and SCALE [47], as well as the Self-Supervised Learning (SSL)
method EMP-SSL [43] that can be trained in one epoch, are used as baselines.
EMP-SSL uses the same replay buffer as the proposed method to verify the
effectiveness of the Multi-Crop Contrastive (MCC) loss. SSOCL and normal
Self-Supervised Continual Learning (SSCL) methods are not used as baselines
because their effectiveness cannot be fully demonstrated due to differences in
problem settings. Optimization methods and data augmentations follow the set-
tings in each respective paper.
Evaluation Metric. k-NN classifier, which does not require retraining, is used
as the evaluation metric, and accuracy is evaluated on the validation dataset.
Hyperparameters. Unless otherwise noted, the hyperparameters used in the
experiments meet the following settings. The batch size arriving from the data
stream is set to 100. For all methods, the replay buffer size is set to 1,024, and
the mini-batch size extracted from the replay buffer is set to 100. The number
of iterations K for learning before a new batch arrives from the data stream
is set to 3 for the proposed method and EMP-SSL, 20 for SCALE, and 40 for
MinRed. The hyperparameter λ used in the loss function of the proposed method
is set to 200, and the number of crops N is set to 20, and α is set to 0.5. Other
implementation details are provided in the Supplementary Materials.

5.2 CIFAR-10, CIFAR-100, and ImageNet-100

Final accuracy. Table 1 shows the k-NN accuracy at the end of training for the
models trained on the CIFAR-10, CIFAR-100, and ImageNet-100 data streams.
Training is performed three times with different seed values, and the accu-
racy represents the average of these three runs. Table 1 shows that the pro-
posed method achieved higher accuracy than the conventional methods across
all streams. The proposed method improved accuracy by up to 18.3pt, 19.11pt,
and 17.36pt for the different settings of CIFAR-10. For CIFAR-100, it achieved
maximum improvements of 12.92pt, 13.39pt, and 12.97pt. For ImageNet-100, it
achieved maximum improvements of 10.35pt, 10.23pt, and 9.47pt. MinRed has
a lower accuracy on the Seq-im data stream compared with the Seq and Seq-bl
data streams. This result likely stems from varying numbers of data available
for training across different data distributions, leading to insufficient learning
for data distributions with fewer data. In contrast, the proposed method main-
tains consistent accuracy across different data streams, indicating its capability
to learn regardless of the type of data stream.
Comparison in the learning process. To investigate the speed of learning
convergence, we compare the k-NN accuracy during the training process for
each dataset. Fig. 4 shows the k-NN accuracy transitions during the training
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Table 1: k-NN accuracy [%] at the end of training for each data stream

CIFAR-10 CIFAR-100 ImageNet-100

Seq Seq-bl Seq-im Seq Seq-bl Seq-im Seq Seq-bl Seq-im

MinRed[38] 50.04 51.18 46.41 22.38 23.20 21.26 22.87 22.71 20.46

SCALE[47] 41.41 40.85 41.31 17.49 16.93 17.03 15.46 15.41 15.77

EMP-SSL[43] 57.02 57.32 57.31 27.81 28.40 27.90 22.79 22.01 22.99

Ours 59.71 59.96 58.67 30.41 30.32 30.00 25.81 25.64 25.24
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Fig. 4: k-NN accuracy in the learning process. The vertical and horizontal axes
represent k-NN accuracy and training progress, respectively. The solid line rep-
resents the average accuracy of three runs with different seed values, and the
shaded area represents its standard deviation.

process for Seq-CIFAR-10, Seq-CIFAR-100, and Seq-ImageNet-100 data streams.
Fig. 4 shows that the k-NN accuracy of the proposed method at 20% progress in
training is approximately 56.00% for Seq-CIFAR-10, 28.00% for Seq-CIFAR-100,
and 22.50% for Seq-ImageNet-100. This is equal to or better than the accuracy
of other methods at the end of their training. Compared with EMP-SSL, which
can be trained in one epoch, the proposed method achieves a higher accuracy
during the training process. Furthermore, it demonstrates improved accuracy
as training progresses, indicating an improved convergence speed and a high
adaptability to changes in data distribution.

5.3 CORe50

We will compare the gradient similarity of parameter updates and the k-NN
accuracy during training on the Seq-CORe50 data stream. The replay buffer
sizes are set to 1,024, 2,048, and 4,096, and the number of rehearsal iterations
K is set to 5, 10, and 20.
Final accuracy. Table 2 shows the k-NN accuracy at the end of training for each
method, in which the proposed method achieves the highest accuracy for each
value of K. These results show that the proposed method is more effective than
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Table 2: k-NN accuracy [%] at the end of training for Seq-CORe50
Buffer Size

K Method 1,024 2,048 4,096

5
MinRed[38] 16.52 15.87 16.31
SCALE[47] 14.99 15.48 16.02

Ours 18.06 22.05 22.68

10
MinRed[38] 17.25 16.61 17.46
SCALE[47] 16.88 16.35 16.57

Ours 19.73 22.06 23.55

20
MinRed[38] 18.93 17.39 18.71
SCALE[47] 15.30 15.23 15.20

Ours 20.92 23.16 23.47

conventional methods for learning on non-IID data streams. Focusing on K = 5,
the accuracy of conventional methods increases slightly or remains constant as
the buffer size increases from 1,024 to 4,096. In contrast, the proposed method
shows an accuracy increase of 4.62pt with the increase in buffer size, indicating
the highest benefit from the buffer size increase.
Similarity of gradient during parameter updates. Fig. 5 shows the gradi-
ent similarity histograms during parameter updates of each method. Fig. 5 shows
that SCALE has a higher gradient similarity during Seq-CORe50 training. Also,
Table 2 shows that the accuracy of SCALE decreases when the value of K is
increased from 10 to 20. These observations indicate that increasing K causes
SCALE to train on biased data, resulting in decreased accuracy. On the other
hand, increasing the value of K improves accuracy for each buffer size in both
the proposed method and MinRed, with MinRed showing an improvement of up
to 2.41pt and the proposed method showing an improvement of up to 2.86pt.
Fig. 5 shows that MinRed has a higher gradient similarity when trained with Seq-
CORe50 than when trained with IID-CORe50. In contrast, the proposed method
does not exhibit higher gradient similarity when trained on Seq-CORe50, and
the histogram is similar to that obtained when trained on IID-CORe50. These
results show that the proposed method is able to address gradient bias, which
is a problem when training on non-IID data streams.

5.4 Ablation Study

We investigate the effectiveness of the data selection method used in the replay
buffer of the proposed method. We compare the proposed method and the pro-
posed method with random data selection. The dataset used is Seq-CORe50,
and the accuracy is compared while changing the buffer size. The comparison
results are shown in Fig. 6. When random data selection is used, increasing the
value of K results in a decrease in accuracy regardless of buffer size. This is
because biased data was stored in the replay buffer and used for learning. In
contrast, the proposed method often shows improved accuracy as the value of K
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Fig. 5: Gradient similarity between the tth and (t + 1)th iterations during the
training of the Seq-CORe50 data stream. The gradient similarity when learning
the Seq-CORe50 data stream with each method, along with that when training
SimSiam on the IID-CORe50, are displayed simultaneously.
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Fig. 6: k-NN Accuracy with different Data Selection Methods.

is increased. This is because more diverse data were kept in the buffer and were
used for training. These results confirm the effectiveness of the data selection
method of the proposed method.

5.5 Analysis

The number of rehearsal iterations K and the number of crops N are important
in the proposed method and SSOCL methods. We investigate the impact of K
and N on SSOCL and confirm the effectiveness of the proposed method.

The result of the experiment with changes in the number of rehearsal it-
erations K are shown in Fig. 7. Fig. 7a shows that increasing the value of K
generally leads to improved accuracy. It is also observed that when the value
of K exceeds a certain point, the accuracy remains constant or decreases. This
is because increasing the number of training sessions with limited data leads to
a loss of the model’s generalization performance. This result shows that there
is a limit to the improvement of accuracy by increasing K. On the other hand,
comparing the proposed method at K = 1 with MinRed’s highest accuracy at
K = 80, we can confirm that the proposed method is about 4.0 pt higher. Fur-
thermore, Fig. 7b shows that the learning time of MinRed when K = 80 is about
15 times longer than that of the proposed method when K = 1. Considering the
problem setting of SSOCL, the proposed method is more suitable for SSOCL
because it can be learned in a small number of times and in short learning time.
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Fig. 7: k-NN accuracy and training time for Seq-CIFAR-100 with changing the
number of rehearsal iterations K. (a) shows the k-NN accuracy for different
values of K. The value of K varies from 1 to 50 for the proposed method and
from 1 to 100 for MinRed. (b) shows the time it takes to train before new data
arrives from the data stream.
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Fig. 8: k-NN accuracy when changing the number of crops N . The vertical axis
represents k-NN accuracy, and the horizontal axis represents training progress.

The results of the experiment with changes in the number of crops N are
shown in Fig. 8. Fig. 8 shows that the accuracy of the proposed method improves
as the number of crops N is increased. These results show that the proposed
method can improve accuracy in learning with only limited data from a data
stream, a challenge for existing methods.

6 Conclusion

This paper demonstrates that Self-Supervised Online Continual Learning from
real-world data streams faces challenges such as adapting to change distribu-
tions and learning degraded feature representations from non-IID data streams.
The proposed method addresses these issues through a Multi-Crop Contrastive
Loss, TCR Loss, and data selection based on cosine similarity to representa-
tive features. The proposed method demonstrated significant accuracy improve-
ments compared to conventional methods through evaluation experiments using
CIFAR-10, CIFAR-100, ImageNet-100, and CORe50. Also, the proposed method
can potentially enhance the effectiveness of conventional methods using knowl-
edge distillation by addressing the problem of insufficient learning in OCL.
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