
Auxiliary selection: optimal selection of auxiliary tasks
using deep reinforcement learning

Hidenori Itaya† Tsubasa Hirakawa† Takayoshi Yamashita† Hironobu Fujiyoshi†
† Chubu University

Abstract

A method using auxiliary task is a type of multi-task learn-
ing. This improves the performance of the target task by si-
multaneously learning auxiliary task. However, this method
requires that the auxiliary task must be effective for the tar-
get task. It is very difficult to determine in advance whether
a designed auxiliary task is effective, and the effective aux-
iliary task changes dynamically according to the learning
status of the target task. Therefore, we propose an auxil-
iary task selection mechanism, Auxiliary Selection, based
on deep reinforcement learning. We confirmed the effec-
tiveness of our method by introducing it to UNREAL, a
method that has achieved high agent performance by intro-
ducing auxiliary tasks.
Keywords: Deep learning, Auxiliary task, Reinforcement
learning

1. Introduction

Real-world problems are complex mixtures of various ele-
ments, and even seemingly completely different tasks can
be closely related. Solving these different tasks simulta-
neously with a single model can improve model perfor-
mance and reduce training and inference time. This learn-
ing method is called multi-task learning, and it can effi-
ciently learn features that are common to multiple different
tasks. For example, in computer vision, solving object de-
tection and semantic segmentation simultaneously has been
reported to improve the performance of both tasks [1, 2].

Auxiliary learning is a type of multi-task learning. This
is a learning method that improves the performance of the
main task as a kind of normalization by adding auxiliary
tasks that are not related to the main task to be solved to the
target task and learning the auxiliary tasks at the same time.
In automated driving, it has been reported that the accuracy
of the main task can be improved by using depth estimation
and semantic segmentation from in-vehicle camera images
as the main task and introducing time and weather estima-
tion as auxiliary tasks [3]. In game playing, game score
improvement has been confirmed by introducing three dif-
ferent auxiliary tasks, with game playing by deep reinforce-
ment learning as the main task [4]． However, since all
these auxiliary tasks are designed manually, the designed

auxiliary tasks don’t necessarily contribute to solving the
various main tasks. On the contrary, some auxiliary tasks
prevent learning depending on the main task. This problem
could be solved by carefully designing auxiliary tasks that
depend on the main task, but validating the effectiveness of
auxiliary tasks is expensive.

In this paper, we target auxiliary learning and aim at
avoiding interference with learning by unsuitable auxiliary
tasks. Therefore, we propose a new auxiliary task called
“Auxiliary selection,” which adaptively selects auxiliary
tasks according to the main task. Auxiliary selection is de-
signed as a deep reinforcement learning agent that outputs
weights for each auxiliary loss and adaptively selects aux-
iliary tasks for network update according to the main task.
Auxiliary selection’s network is trained simultaneously with
other networks and shares the reward signal with the main
task to find the appropriate auxiliary task according to the
learning stage of the main task. We applied auxiliary selec-
tion to UNREAL, a method that introduces auxiliary tasks
in game strategy, and analyzed the selected auxiliary tasks
and game scores to demonstrate the selection of suitable
auxiliary tasks for the main task.

The contributions of this study are as follows.

• Our method efficiently improves the performance of
the main task to select the optimal auxiliary task for
the main task and its training stage.

• Our method automatically suppresses unnecessary
auxiliary tasks for the main task, thus reducing the de-
sign cost of auxiliary tasks.

2. Related work

In the research field of multi-task learning, there is a perfor-
mance improvement of the main task by introducing auxil-
iary tasks. Liebel et al. have improved the accuracy of the
main task in automated driving by using semantic segmenta-
tion and depth estimation as the main task and learning the
auxiliary tasks of time and weather estimation in parallel
[3]. Jaderberg et al. propose Unsupervised reinforcement
learning and auxiliary learning (UNREAL), which learns
auxiliary tasks simultaneously with the main task in deep

Environment

Replay
Buffer

Co
nv
.

Co
nv
.

FC LS
TM

Last reward

Last action

!(#)
%(&|#)

FC

V
De
Co
nv
.

Ad
v

De
Co
nv
.

()*+
0
+

-

Environment

!!, #!, $!, !!"#

Buffer
Auxiliary selection

C
on
v.

C
on
v.

FC

LS
TM

+
0
-

Last reward

Last action

C
on
v.

C
on
v.

FC

FC

V
D

ec
on

v.
Ad

v
D

ec
on

v.

!
!
""(!)

%$%&!!"

!#!

#(%|'%)

)('%)

#&' %|'%

)&'('%)
= +(), +*+, ++(

: main task (A3C)
: Pixel control
: Value function replay
: Reward prediction

Skewed
sampling

!!"#$%& = !%2, + $+,%
-
!.
(-) + $1#!1# + $#+!#+

Figure 1: UNREAL with Auxiliary selection.

reinforcement learning [4]. They use three different aux-
iliary tasks in their work: Pixel control learns actions in
which pixels in the input image change significantly, Value
function replay shuffles past experiences and learns a state
value function V (s), Reward prediction predicts rewards to
be obtained in the future. By introducing these auxiliary
tasks, they have achieved high scores on the maze task of
DeepMind Lab. The main task of this method is a video
game strategy using Asynchronous Advantage Actor-Critic
(A3C) [5].

Auxiliary learning by introducing auxiliary tasks im-
proves performance on the main task. However, if auxil-
iary tasks that are not suitable for learning the main task are
used, these tasks prevent the learning of main task and re-
duces its accuracy. Therefore, it is necessary to introduce
auxiliary tasks that are suitable for the main task, and sev-
eral works have been reported to solve this problem. Teh et
al. use distillation to learn policy that are common multi-
ple tasks, thereby avoiding interference with the main task
and stabilizing learning [6]. This method achieves robust-
ness and stability across different tasks by introducing re-
strictions such that the shared policy does not deviate from
the effective policy for all tasks. Du et al. blocked training
data acquired by an auxiliary task that was not effective [7].
This method focuses on the gradient of losses in the main
and auxiliary tasks and uses the auxiliary task losses if the
cosine similarity between the gradients is high, and blocks
the auxiliary task training data if it is low. Riedmiller et al.
propose Scheduled auxiliary control (SAC-X) [8], which se-
lects a policy to solve the main task from multiple low-level
policies. Their method designs several low-level auxiliary
tasks, and each auxiliary task learns a policy that is aligned
with a low-level target. Lin et al. calculate the gradient sim-
ilarity between the main and auxiliary losses using a Taylor
approximation involving the gradient of the auxiliary loss
[9]. The method determines the auxiliary task to be used
when learning the main task based on the calculated gradi-

ent similarity. On the other hand, we consider the purpose
of the auxiliary task to be to improve the accuracy of the
main task, and design a deep reinforcement learning agent
that controls the auxiliary loss with the same reward signal
as the main task, i.e., to improve the accuracy of the main
task, independent of other tasks. This agent is trained in
parallel with the main task to achieve dynamic selection of
the auxiliary task.

3. UNREAL with Auxiliary selection

The effectiveness of the auxiliary task depends on the main
task, and an unsuitable auxiliary task may prevent learning
of the main task. Therefore, we propose an Auxiliary se-
lection that adaptively selects an auxiliary task according to
the main task. In this section, we describe our method in
detail by applying it to UNREAL.

3.1. Auxiliary selection

Figure 1 shows the network structure of our method. Our
method was built based on UNREAL, and we added the
auxiliary selection. In the auxiliary selection, images stored
in a replay buffer are input and then a state value VAS(s) and
a policy πAS are output. Among them, the policy πAS rep-
resents whether we use each auxiliary task for the main task
training or not. Here, we denote weights for each task as
CPC = {0, 1}, CVR = {0, 1}, and CRP = {0, 1}. The suf-
fixes are PC for Pixel control, VR for Value function replay,
and RP for Reward prediction. The policy πAS is defined as

πAS = (CPC, CVR, CRP). (1)

Unlike other auxiliary tasks, the network for auxiliary selec-
tion is not shared with the network of the main task, it train
independently. Thus, we adaptively select auxiliary tasks
depending on the environment.

(a) nav_naze_static_01 (b) seekavoid_arena_01 (c) lt_horseshoe_color

Figure 2: The game scores of DeepMind Lab over different global steps. The horizontal axis shows the number of global
steps to update network parameters and the vertical axis shows scores of each task.

3.2. Loss function

We formulated the loss function of our method by using the
loss function of conventional UNREAL as follows:

L = LA3C + CPC

∑
c

L
(c)
Q + CVRLVR + CRPLRP, (2)

where LA3C is a loss value of the main task (i.e., A3C), and∑
c L

(c)
Q , LVR, and LRP are loss values of each auxiliary

task. Note that, in terms of the pixel control, we split an
input image into n × n grid and compute losses for each
grid. Hence, L(c)

Q represents the loss of n-step Q-learning
for a grid c. In our method, we select auxiliary tasks by
multiplying auxiliary loss and binary weight obtained from
auxiliary selection.

In case that we train the auxiliary selection by using
Eq. (2) simultaneously, the network is trained so that
CVR, CPC, and CRP become zero. Therefore, we define
another loss function to train the network of the auxiliary
selection and train the network apart from training the main
and auxiliary tasks. At the same time, the rewards used for
training the auxiliary selection are the same as those used
for the main task. In this way, the auxiliary selection con-
trols the weights of the auxiliary tasks to improve the ac-
curacy of the main task. The loss function of the auxiliary
selection can be formulated using loss functions of the state
value VAS(s) and the policy πAS(a|s) as follows:

LASv = (r + γVAS(st+1, θ
−)− VAS(st, θ))

2 (3)
LASp = − log(πAS(a|s))A(s, a)− βH(πAS), (4)

where θ− is the network parameters before a network up-
date, r is the same rewards of main task, A(s, a) is advan-
tage function. And, an entropy H(πAS) promotes explo-
rations that prevent the network parameters from converg-
ing into a local minima, and β is a scale parameter for the
entropy H(πAS).

Finally, the loss function of auxiliary selection is defined
by adding losses of Eqs. (3) and (4) as

LAS = LASv + LASp. (5)

4. Experiments

We used the DeepMind Lab [10] for an evaluation of our
method. DeepMind Lab mainly contains three games:
i) nav maze static 01 (maze), ii) seekavoid arena 01
(seekavoid), and iii) lt horseshoe color (horseshoe).

We compared our method with the following baselines:
UNREAL (Three auxiliary tasks are used for training), PC,
VR, and RP (Each of them uses an auxiliary task for train-
ing, respectively). The common hyperparameters during
training were unified. The training steps are 5.0× 107 steps
for maze and seekavoid, and 1.0× 108 steps for horseshoe.

4.1. Comparison by game scores

maze. Figure 2(a) shows scores for the maze. UNREAL
and PC achieved higher performances, while scores of VR
and RP are almost zero. This means that VR and RP did not
improve the main task. The PC promoted an agent to take
action changing pixel values. In other words, this enabled
an agent to move in every corner of the maze environment.
Our method also achieved a higher score as UNREAL and
PC.

seekavoid. Figure 2(b) shows the score of the seekavoid.
PC was inadequate for the seekavoid because pixel val-
ues changed significantly even when negative rewards were
obtained. RP was also not efficient because this environ-
ment is dense rewards. On the other hand, UNREAL and
VR achieved higher scores. Surprisingly, VR outperformed
UNREAL, and our method also achieved higher perfor-
mance as VR.

horseshoe. Figure 2(c) shows the score of the horseshoe.
PC was the most high score in horseshoe. The reason is
that actions that defeat enemies change pixel values signif-
icantly. However, UNREAL outperforms the other meth-
ods, and our method achieved the same performance as UN-
REAL.

Table 1: The number of times and percentage each auxiliary
task was selected in one episode.

Env. Auxiliary task
PC VR RP

maze 435.4 487.8 369.0
(48.3%) (54.1%) (41.0%)

seekvoid 0.3 300.0 0.0
(0.1%) (100.0%) (0.0%)

horseshoe 8545.1 14.1 8998.2
(94.9%) (0.1%) (99.9%)

4.2. Analysis of the selected auxiliary tasks

Table 1 shows the number of times and the percentage each
auxiliary task was selected in one episode. Note that the
number of selected auxiliary tasks was calculated by aver-
aging over 50 episodes. The number of action steps in an
episode was 900 for the maze, 300 for seekavoid, and 9,000
for horseshoe.

The results of the maze show that all auxiliary tasks were
equivalently selected. Because appropriate auxiliary tasks
for the maze task were UNREAL or PC, our method equally
selected all auxiliary tasks. In seekavoid, our method stably
selected the value function replay. Since these results cor-
respond to the results in Fig. 2(b), our method only selects
auxiliary tasks that contribute to the training of the main
task. In horseshoe, pixel control and reward prediction were
often selected. Although the best score was achieved by
UNREAL, auxiliary selection for horseshoe did not select
value function replay. To analyze the reason of the selec-
tion, we conducted additional experiments. In addition to
the results of baselines shown in Fig. 2(c), we added the
following baselines: A3C (Without auxiliary tasks), PC+RP
(Uses pixel control and reward prediction). Figure 3 shows
the scores of each baseline and our method. This results
shows that the score of VR was lower than that of A3C.
And PC+RP achieved the same score as UNREAL and our
method. Therefore, our method successfully removes the
value function replay from the training of horseshoe.

These results above show that our approach can select
auxiliary tasks that contribute to training the main task.

5. Conclusion

In this paper, we propose an auxiliary selection that dy-
namically selects auxiliary tasks according to the main task.
Auxiliary selection is a deep reinforcement learning agent
that controls auxiliary losses in order to improve the per-
formance of the main task. It dynamically selects the aux-
iliary task according to the learning situation of the main
task. Experimental results show that our method can train
the network to select appropriate auxiliary tasks and solve

Figure 3: Game score in horseshoe with additional auxiliary
task combinations.

the main task efficiently. As future work, we plan to ap-
ply our method to other auxiliary learning methods and to
experiment with various tasks.

References

[1] M. Teichmann, M. Weber, et al., “Multinet: Real-time
joint semantic reasoning for autonomous driving,” In
IV, pp.1013–1020, (2018).

[2] Y. Qian, J.M. Dolan, and M. Yang, “Dlt-net: Joint
detection of drivable areas, lane lines, and traffic ob-
jects,” In T-ITS, vol.21, no.11, pp.4670–4679, (2020).

[3] L. Liebel and M. Körner, Auxiliary Tasks in Multi-
task Learning, arXiv preprint, arXiv:1805.06334,
(2018).

[4] M. Jaderberg, V. Mnih, et al., Reinforcement Learning
with Unsupervised Auxiliary Tasks, In ICLR, (2017).

[5] V. Mnih, A.P. Badia, et al., “Asynchronous methods
for deep reinforcement learning,” In ICML, pp.1928–
1937, (2016).

[6] Y. Teh, V. Bapst, et al., “Distral: Robust multitask
reinforcement learning,” In NeurIPS, pp.4496–4506,
(2017).

[7] Y. Du, W.M. Czarnecki, et al., Adapting Auxil-
iary Losses Using Gradient Similarity, arXiv preprint,
arXiv:1812.02224, (2018).

[8] M. Riedmiller, R. Hafner, et al., Learning by Playing –
Solving Sparse Reward Tasks from Scratch, In ICML,
(2018).

[9] X. Lin, H. Baweja, et al., “Adaptive auxiliary task
weighting for reinforcement learning,” In NeurIPS,
pp.4772–4783, (2019).

[10] C. Beattie, J.Z. Leibo, et al., DeepMind Lab, arXiv
preprint, arXiv:1612.03801, (2016).

