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Abstract: Many studies applying neural networks to the field of education have 
focused on student performance prediction and explainability of their decisions. While 
those studies introduced neural networks into educational settings, such networks 
cannot directly support student learnings in place of teachers. Therefore, we present 
a method that uses a general Transformer encoder to recommend appropriate 
learning actions for improving student performance. By considering the attention 
weight of a low-performing student to be close to that of a high-performing student, 
our method recommends the learning materials and actions for learning the materials. 
To evaluate the effectiveness of our method, we trained a deep neural network (DNN) 
on a private dataset of student operations (e.g., NEXT, PREV, OPEN) on digital 
learning materials obtained from a Japanese university. The number of operations 
divided by each learning material and by type of operation are input to the DNN, and 
the DNN outputs the student’s grade on 5-point scale. We applied our method with 
this trained DNN to samples that successfully predicted grades, and the number of 
operations increased on the basis of the recommended learning materials and 
actions. By re-inputting modified sample into the DNN, we then observe how the 
student performance changes. The results of this simple experiment indicate that 
more students improved their performance with both the material-based and 
operation-based recommendations than with random recommendations. The 
percentage of students whose grades improved tended to be larger for those with low 
grades. Specifically, the improvement ratio for students with the two lowest grades 
was over 90% by operation-based recommendation. This is consistent with our 
intuition that low-performing students are more likely to improve. 
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1. Introduction 
 
Deep neural networks (DNNs) have been actively studied in various fields such as image 
processing and natural language processing. They are expected to be used for education in 
the current remote educational environment triggered by the COVID-19 pandemic (Adedoyin 
& Soykan, 2020). In an educational environment where there is physical distance between 



 

 

teachers and students, it is difficult for teachers to provide individual feedback, so support 
from DNNs is necessary.  

There have been many studies introducing DNNs into educational environments 
(Piech et al., 2015; Imran et al., 2019; Abdelrahman & Wang, 2019; Xing, & Du, 2019). 
These studies showed that we can use DNNs to predict a student’s performance and 
possibility of early school dropout. However, it is necessary to incorporate explainability and 
accountability in educational DNNs design (Webb et al., 2021). There many studies 
explained the basis for DNN predictions (Baranyi et al., 2020; Mu et al., 2020; Vultureanu-
Albişi & Bădică, 2021; Hasib et al., 2022; Swamy et al., 2022). However, these studies did 
not focus on DNNs replacing teachers, thus could not directly reduce the burden on 
teachers. 

We propose a method with which artificial intelligence (AI) instead of teachers 
recommend appropriate learning actions (e.g., selection of learning materials, operations on 
learning materials) for improving student performance (see Section 2). We developed this 
method to misidentify the output of AI predicting student grades as a good grade by 
minimally perturbing the input of a student with a low grade. The pipeline for integrating our 
method into an educational environment is shown in Figure 1. We conducted an experiment 
to evaluate our method, and the results are presented in Section 3. Here, the predicted 
grades are denoted by S (excellent) , A (good), B (satisfactory), C (pass), and F (fail). 

 
 

 
Figure 1. Pipeline for Deploying DNN into an Educational Environment. 

 

2. Proposed Method 
 
Given a DNN and dataset including student learning actions on digital-learning materials, we 
developed a method for recommending learning actions to improve grades in an input-data 
dependent manner. We first introduce the criterion to identify learning actions. 

 
2.1 Identification of Learning Actions that Significantly Affect Predictions  
 
When an input vector 𝒙 is perturbed 𝜹, the network loss ℒ changes as: 

Δℒ(𝒙) = |ℒ(𝒙) − ℒ(𝜹⊙ 𝒙)|, (1) 
where ⊙ denotes the Hadamard product. Next, to compute the impact of each input, 
Equation (1) is transformed with first order Taylor expansion by focusing on a single element 
𝑥𝑖 ∈ 𝒙: 

Δℒ(𝑥𝑖) = |ℒ(𝑥𝑖) − ℒ(𝛿𝑥𝑖)| 

= |ℒ(𝑥𝑖) − ℒ(𝑥𝑖) −
𝜕ℒ

𝜕𝑥𝑖
(𝛿𝑥𝑖 − 𝑥𝑖) − 𝒪(‖𝑥𝑖‖

2)| 

≅ |
𝜕ℒ

𝜕𝑥𝑖
(𝛿𝑥𝑖 − 𝑥𝑖)| , (2) 

where 𝒪 denotes terms of higher order than the 2nd degree. We evaluate the input data on 
material or operation in accordance with Equation (2).  
 

       
              

                      

       
                  

       

Anal sis of  earning Actions

     
  

     

    

                          

 

 

 

 

 

           
     

        



 

 

Materials: If the number of learning materials is 𝑀 and the type of operations (e.g., NEXT, 

PREV, OPEN) is 𝑁, the input data are denoted as 𝑿 ∈ ℝ𝑀×𝑁. When 𝑿 is input, the score of 
material 𝑚 is expressed by using Equation (2) as the following equation: 

𝑆𝑚(𝑿) = ∑ |
𝜕ℒ

𝜕𝑥𝑚,𝑛
(𝛿𝑥𝑚,𝑛 − 𝑥𝑚,𝑛)|

𝑁

𝑛=1

, (3) 

where 𝒙𝑚,𝑛 represents the number of operations per type of operation in 𝑚. We select the 

material with the highest score and recommend it to students. 
 
Operations: The score for each operation is expressed as: 

𝑆𝑛(𝑿) = ∑ |
𝜕ℒ

𝜕𝑥𝑚,𝑛
(𝛿𝑥𝑚,𝑛 − 𝑥𝑚,𝑛)|

𝑀

𝑚=1

. (4) 

We identify the type of operation that is effective for learning by using Equation (4). As with 
the material criterion, we recommend to students the operation with the highest score. 
 

2.2 Optimization for Transformer 
 
The theory introduced in Section 2.1 is applied independently of DNN structure. However, 
calculation of automatic differentiation using the loss between the correct label and output 
incurs large computational cost. Therefore, we introduce an additional lightweight criterion 
optimized for a Transformer (Vaswani et al., 2017). 

A Transformer introduces an attention mechanism to determine the dependencies of 
various ranges (e.g., shorter, or longer range) within a sequence. In this attention 

mechanism, attention weight 𝑨 in the first layer is derived using input 𝑿 ∈ ℝ𝑀×𝑁 as: 

𝑨 = Softmax(
𝑸𝑲𝑇

√𝑑𝑘
) ∈ ℝ𝑀×𝑀 , (5) 

𝑠. 𝑡. 𝑸 = 𝑿𝑾𝑞 , 𝑲 = 𝑿𝑾𝑘 , 
where 𝑑𝑘 is a scaling coefficient, and  𝑾 ∈ ℝ𝑑×𝑀 denotes learnable parameters. By 
considering the interrelationships between input sequences using Equation (5), we can 
determine which inputs are contributing to the prediction. 
 Given an ideal attention weight 𝑨′ of a high-performing student, we can reduce the 
computational cost from Equation (3) and (4). The method is simply to replace the loss in 
Equations (3) and (4) by the squared loss between 𝑨′ and 𝑨: 

ℒ =∑∑(𝑎′𝑖,𝑗 − 𝑎𝑖,𝑗)
2

𝑀

𝑖=1

𝑀

𝑗=1

, (6) 

𝑠. 𝑡. 𝑎𝑖,𝑗
′ ∈ 𝑨′, 𝑎𝑖,𝑗 ∈ 𝑨. 

This optimization method makes it possible to recommend learning actions only through 
processing by the first layer of Transformer encoders. 
 

3. Experiment 
 
We evaluated the recommendation of learning actions on a private dataset obtained in a real 
educational environment. To verify that the ideal attention weight is obtained from the 
training data, we first investigate the attention weight per grade. We then investigated the 
validity of recommending learning actions. 
 

3.1 Dataset 
 
We use log data of real student learning actions and the grades collected at a Japanese 
university. These log data were compiled for 21 types of operations (e.g., NEXT, PREV, 
OPEN) executed on 12 types of materials in a single course. The number of training data 



 

 

was 114, and the number of test data was 51, because we used one year of such data for 
evaluation collected for a period of three years 2020, 2021 and 2022. 
 Figure 2 illustrates how the data were preprocessed. We treated the number of 
operations for each type of operation as a histogram for each learning material. Thus, the 

input for a student was 𝑿 ∈ ℝ12×21. The values of these histograms were normalized by the 
maximum number of operations calculated using the histograms of all students. 
 

 
Figure 2. Preprocessing of The Data of One Student. 

 

3.2 Experimental Setup 
 
We construct a success-prediction model that can accurately classify the corrected 
label (final grade) ys for student s from learning actions, as shown in Figure 2. We 
rely on a DNN architecture that is based on Transformer encoders, which can 
combine high with reduced computational cost due to Equation (6). An overview of 
the model structure is shown in Figure 3. The features input to the model are linear 
projections from student data such in Figure 2. The number of Transformer encoders 
𝐿 was 4. The model was trained using Adam (Kingma & Ba, 2015) for 200 epochs 
with an initial learning rate of 0.0001 and batch size of 32. The loss function uses 
cross-entropy loss. 
 

 
Figure 3. Overview of Model Structure for Grade Prediction. 

 
3.3 Prediction of Student Grades 
 
To coordinate the number of embedding dimensions 𝒅 and heads 𝒉, we compare 
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their prediction accuracy with Transformer models of various scales. 
 Table 1 shows the top-1 accuracy of grades on the test dataset. The number 
of embedding dimensions was investigated in the range from 64 to 256, and the 
highest test accuracy was achieved at 128. The highest accuracy was then obtained 
with one head in all comparisons. Using the results of this experiment as a guide, we 
recommend learning actions using a model with 128 embedding dimensions and one 
head. 
 
3.4 Attention Weight Differences Between Grades 
 

Table 1. Test Accuracy of Grade Prediction 

 𝑑 ℎ  Top-1 Accuracy [%] 

64 1 39.21 

64 2 39.21 

128 1 52.94 

128 2 47.06 

256 1 45.10 

256 2 45.10 

256 4 27.12 

 
 
Attention is conducted multiple times in parallel, which results in higher performance 
than just using a single head. However, our results were the exact opposite (see 
Section 3.3). This means that mixing features between materials does not require 
such complex patterns. We hypothesize that if the mixing between materials is 
represented by a simple pattern, there is an ideal attention weight, as described in 
Section 2.1, common to high-performing students. To confirm this hypothesis, we 
investigated the attention weight by grade. 
 Figure 4 shows the attention weights of the first layer, calculated using the 
training dataset. In Figure 4, high values of attention weight are shown in light colors 
and low values in dark colors. These attention weights are averaged per grade. 
Since the number of teaching materials was 12, the size of attention weight was 
12x12. We observed that the attention weights of the high-performing students, such 
as those with grades S and A, had a biased attention to fewer materials. The 
attention of the lowest-performing students are plotted across many learning 
materials. Therefore, we use the attention weight of students with grade S as an 
ideal attention weight to reduce the computational cost of recommending learning 
actions.  
 

Figure 4. Average of Attention Weight per Grade Obtained  
from First Layer of Transformer Encoder. 

 



 

 

3.5 Recommending Learning Actions 
 
Our method recommends appropriate materials and operations to a student using 
the trained DNN.  
 
Material Recommendation: Our method recommends the materials that students 
should be learning to improve their grades. To investigate such improvement, we 
increased the number of operations included in recommended materials by a factor 
of 1.5. We then re-input the sample with an increased number of operations into the 
DNN to check for changes in performance. Figure 5 shows the ratio of performance 
improvement for the sample that successfully predicted grade before modification 
when our method was used to recommend materials to be learned. For comparison, 
Figure 5 plots the improvement ratio with dashed lines when learning materials were 
randomly recommended (the results plotted with solid lines are from our method). 
The vertical axis is the ratio of predicted improved performance after re-input, and 
the horizontal axis is the number of materials that were modified using our method or 
randomly. 
 High rate of improvement was observed in the lowest-performing students 
with grades C and F. Their performance tended to improve more in proportion to the 
number of materials modified. These results are consistent with the intuition that 
lower-performing students are more likely to improve with a small amount of 
learning, and that students who learn more improve their performance. Then, the 
improvement ratio with our method is higher than that with random, which confirms 
the effectiveness of our method.  
 

 
Figure 5. Ratio of Performance Improvement for Each Material Modified.  

 
Operation Recommendation:  We then identified the types of operations that 
should be used to improve student performance. By modifying the number of 
operations by a factor of 1.5 for our method, or for a randomly recommended 
operation, we can compare the changes in grade predictions. Figure 6 shows the 
ratio of performance improvement for the sample that successfully predicted grade 
before modification when our method was used to recommend operations to be 
learned. The vertical axis is the percentage of predicted grades that improved after 
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re-input, and the horizontal axis is the number of operations that were modified using 
our method or randomly. 
 

 
Figure 6. Ratio of Performance Improvement for Each Operation Modified.  

 
The operations recommended with our method were more accurate than 

those randomly recommended. From these results, the performance of students with 
low grades improved significantly with our method. 
 
4. Discussion 
 
Our results showed that the suggested learning actions improved student 
performance. However, our method is highly dependent on the quality and quantity 
of the learning data and may not work well when the number of students is small or 
when there are not enough learning logs (our method may be very accurate in the 
presence of a large number of learning logs).  Figure 7 shows the top-5 most 
frequently recommended operations and their average scores. Many basic 
operations (e.g., NEXT, PREV, OPEN) are recommended, and operations such as 
“ADD     ” are not included. While the basic operations are performed man  
times and are understandably effective for estimating student learning density, most 
realistic teachers would recommend leaving notes and bookmarking important 
passages. Training on a larger dataset is necessary to achieve the same 
performance as a teacher using a DNN. Therefore, a larger dataset would be 
needed to construct a DNN comparable with a teacher. Since suggesting learning 
actions using too small a dataset may invade the privacy of certain highest-
performing students, one should be careful when deploying a pipeline such as that 
shown in Figure 1. 
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Figure 7. Top-5 Recommended Operations and Their Scores. 

 
5. Conclusion 
 
We showed that considering the impact of inputs on grade prediction can recommend the 
learning actions needed to improve grades. Learning actions are recommended on a per-
material or per-operation basis, allowing the DNN to provide detailed feedback to the 
students. In particular, the operation recommendations confirmed a higher improved ratio of 
grades than the learning material recommendations. Recommending learning actions to 
students is a necessary component for neural networks to directly assist teachers and 
encourage the introduction of AI into the educational environment. In future work, we plan to 
use data augmentations suitable for event logs to recommend learning actions that are more 
in line with our intuition. 
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