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Abstract. Data drift is a change in the feature distribution of input
data during machine learning model training and during system opera-
tion. The data drift occurs regardless of the type of data and adversely
affects model performance. The existing methods detects the data drift
by using two-sample test for network output. However, these methods
merely apply two-sample test with the distribution of class probabili-
ties. Even though drifted input images are transformed by noise and/or
geometric transformations, these methods does not consider such trans-
formations. In addition to class probability, we believe that detecting
drift for changes in the local region that the model is actually gazing at
will improve accuracy. In this study, we propose a drift detection method
based on attention branch network (ABN), which enables visualization
of the basis of judgment in image classification. In our method, drift is
detected using the class probabilities output by the attention branch and
perception branch, which constitute the ABN, and the attention map.
The results show that we can improve the detection ratio by introducing
an attention map to drift detection in addition to class probability. We
also observed that the attention map tended to shrink with drift.

Keywords: Drift detection · KS test · Attention branch network · At-
tention map · Maximum mean discrepancy

1 Introduction

Data drift is a change over time in the data distribution during model operation
from the data distribution during model training. Drift occurs under various con-
ditions, such as noise and out-of-focus due to the aging degradation of the cam-
era lens, and misalignment and reversal caused when replacing the camera. Once
such drift occurs, the data distribution becomes different one from that of the
training data, which causes the performance degradation of the machine learn-
ing model [5]. These factors make it particularly important to monitor changes
in data distribution and detect drift during visual inspection and surveillance
camera operations.
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To detect the data drift, we compare the data distribution used for model
training with the data distribution obtained during operation. These distribu-
tions are compared by a two-sample test [8, 9]. Rabanser et al. [9] proposed a
method for detecting data drift. They focused on the feature distribution of in-
put data. Both methods detect drift by performing a two-sample test on the class
probability distribution output by the trained model. However, these methods
merely apply two-sample test with the distribution of class probabilities. Even
though drifted input images are transformed by noise and/or geometric trans-
formations, these methods does not consider such transformations.

In this study, we propose a novel drift detection method. Our method uses the
attention branch network (ABN) [2] in addition to two-sample test. ABN outputs
a couple of classification scores from attention and perception branches. Also,
we can obtain an attention map during the inference process, that highlights on
which the network model focus to make a decision. We leverage this property,
that is, the proposed method detects drift by performing a two-sample test on
the class probability distribution output of attention and perception branches
and on the attention map that highlights a region contributed to model infer-
ence. Considering the several two-sample test results, we detect data drift, which
enables us to accurately detect drift. Moreover, our ABN-based method can an-
alyze the detection results by using the attention map. The experimental results
with image classification datasets show that our method outperforms the exist-
ing drift detection method and provides detailed analysis for detection results
by the attention map.

2 Related Work

2.1 Drift detection

Zhao et al. [12] have categorized drift in machine learning/pattern recognition
communities into the following three types: concept drift, label drift, and data

drift. The concept drift means that the interpretation or concept of input data
change between model training and operation. The label drift is that the label
distribution during model training changes from the label distribution during
operation. It is known that seemingly trivial distribution changes can affect the
model performance [14]. And also, in case that a model outputs a decision under
uncertainty, even a change in the distribution of labels can affect the perfor-
mance of the model [11]. The data drift is a change in the feature distribution of
the input. For instance, noise due to age-related deterioration of camera lenses
and out-of-focus images are ones of data drift, which would affects classification
performance.

For detecting such drifts, we generally compare the data distributions be-
tween training data and test data that appears during system operation, and we
use two-sample test to compare the distributions. Two-sample test determines
if there is a significant difference between two distributions. Lipton et al. [8]
proposed a label drift detection method. They used Kolmogorov-Smirnov (KS)
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test and maximum mean discrepancy (MMD) on the class probability distribu-
tion output by the trained model. Rabanser et al. [9] conducted comprehensive
studies aimed at detecting both label drift and data drift. In their method,
drift is detected by performing dimensionality reduction on each data set and
comparing the distributions with a two-sample test. The results show that the
detection method using the KS test is the most accurate for the class probability
distribution output by ResNet-18 [4].

The above drift detection methods merely consider the distribution of classi-
fication outputs. In contrast, our method also uses attention maps obtained from
attention branch network (ABN) [2]. This enables us to detect drift considering
the local data changes and to analyze the drifted data in details.

2.2 Visual explanation

Towards the realization of explainable artificial intelligence (XAI), visual ex-
planation have been widely studied in the computer vision community. Visual
explanation outputs an attention map that highlights on which a network model
focuses to decide classification result. By visually inspect the obtained attention
map, we can understand the reason for the model’s decision making and can
analyze the trained models.

One of major visual explanation method is class activation mapping (CAM)
[13]. CAM can use the response values of the convolutional layer to create an
attention map where the network contributed highly to recognition. This atten-
tion map is called the class activation map. CAM uses the average of the feature
maps in each channel output by global average pooling (GAP) as weights and
generates a class activation map from the weighted sum of each feature map.
Gradient-weighted CAM [10] provides an attention map by computing gradient
information from weights of each channels. Therefore, there are no restrictions on
the model structure and the model can be generalized. However, these methods
require processing such as replacing the fully connected layer with a convolution
layer, which can cause performance degradation in image classification.

The above mentioned CAM has a problem of lower classification performance
due to the restriction of network architecture. Attention branch network (ABN)
[2] resolve this problem. ABN consists of feature extractor that extract a fea-
ture map from an input image, attention branch to generate attention map, and
perception branch that outputs final classification results from weighted feature
map by using attentin mechanism. ABN applies the attention map generated
from the visual explanation model to the attention mechanism, and simultane-
ously improves the performance of the visual explanation model and visualizes
the gazing area using the attention map. The attention mechanism is a method
to improve the generalization performance of a network by emphasizing features
in specific regions.
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3 Preliminaries on Data Drift Detection

Given two samples x ∈ {x1, x2, . . . , xn} ∼ P and x
′ ∈ {x′

1, x
′
2, . . . , x

′
m} ∼ Q,

where n and m are the number of samples in x and x
′, respectively. In data drift

detection, x is a dataset used for training a machine learning model, and x
′ is an

unseen test dataset. The data drift detection task aims to decide whether P (x)
is equal to Q(x′), that is, whether two samples x and x

′ arise from the same
population probability density function. For example, in case of P (x) = Q(x′),
we can assume that the data drift does not happen. Meanwhile, if P (x) 6= Q(x′),
we can assume that the data drift would happen because those samples arise from
the different population probability density functions. To detect data drift by
using the above approach, we apply two-sample tests.

Rabanser et al. [9] have conducted comprehensive study on the effectiveness
of two-sample tests for data drift detection. They used Kolmogorov-Smirnov
(KS) test and maximum mean discrepancy (MMD) in their studies. Hence, we
adopt those tests in our approach. Especially, we use KS test for the proposed
method. Herein, we introduce KS test and MMD.

3.1 Kolmogorov-Smirnov test

The KS test determines whether there is a significant difference by using the
maximum difference of the cumulative distributions obtained by accumulating
the two distributions as the statistical test quantity. The test statistic D is
defined as follows:

D = sup
z

|Fx(z)− Fx
′(z)| , (1)

where Fx(z) and Fx
′(z) mean the cumulative density function obtained from

the sample x and x
′ whose values are less than or equal to a certain value z,

respectively. Therefore, Fx(z) used for KS test can be defined as

Fx(z) =
1

n

n
∑

i=1

f(xi; z), (2)

where

f(xi; z) =

{

1 (xi ≤ z)

0 (xi > z)
. (3)

3.2 Maximum mean discrepancy

MMD estimates the distance between distributions using a kernel function to
determine if there is a significant difference between two distributions. Assuming
that p and q are based on the mean embeddings µp and µq of the distributions
in a reproducing kernel Hilbert space H, the MMD is formulated as

MMD(H, p, q) = ‖µp − µq‖
2
H
. (4)
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Fig. 1: Overview of the proposed drift detection method

Then, we can calculate an unbiased estimate of the squared MMD statistic as
follows:

MMD2 =
1

n(n− 1)

n
∑

i=1

n
∑

j 6=i

k(xi, xj)

+
1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

k(x′
i, x

′
j)

−
2

nm

n
∑

i=1

m
∑

j=1

k(xi, x
′
j),

(5)

where k(x, x′) is a kernel function. In this study, we use the Gaussian kernel by
following Rabanser et al. [9], which is defined as

k(x, x′) = exp

(

−
1

σ
‖x− x′‖2

)

, (6)

where σ is a positive constant and we set σ as the median distance between
the aggregate samples of p and q. Finally, we can obtain p-value by applying a
permutation test for the kernel matrix.

4 Proposed Method

In this section, we introduce the details of the proposed data drift detection
method. Figure 1 shows the overview of the proposed method. We first train the
ABN with training data. Here, note that the ABN does not simulate drift on
the training data. Then, we detect data drift. The specified number of samples
is obtained from the data without drift and from the operational data and input
into the trained ABN. For each data set, the class probability distribution of the
attention branch and perception branch is calculated. The feature distribution
of the attention map is calculated. The calculated distribution is temporarily
stored for drift detection. Finally, we calculate p-values by KS test and decide if
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the input is drifted or not. Hereafter, we introduce the details of the proposed
method. Especially, we explain the way to conduct KS test in our ABN-based
model.

The proposed method utilizes the attention branch network (ABN) [2]. In
ABN, the attention map obtained from the attention branch is input to the
attention mechanism, and inference is performed by highlighting features in spe-
cific regions. Therefore, the change in the attention map due to drift should
enhance the features in response to changes in the input image and improves the
accuracy of drift detection.

4.1 KS test for class probability distribution

The proposed method detects drift from three outputs, focusing on the different
feature spaces of the layers that make up the ABN. The first is the class prob-
ability distribution output from softmax for the GAP of the attention branch,
and the second is the class probability distribution output from the perception
branch.

The cumulative distribution is expressed as the sum of these frequencies
divided by the number of samples. Here, we assume that we handle C class
classification problem. The output from a classification model for an input xi

is C-dimensional class probability (classification score) si = (si,1, . . . , si,C)
⊤.

Because ABN has two output layers, attention and perception branches, we
define the class probability outputs for each branch s

AB
i and s

PB
i as

s
AB
i =

(

sAB
i,1 , . . . , sAB

i,C

)⊤
, (7)

s
PB
i =

(

sPB
i,1 , . . . , sPB

i,C

)⊤
. (8)

The proposed method detects a data drift by using the class probability distri-
bution obtained from both attention and perception branches. Specifically, we
apply KS test for each category’s class probability and for each branch sAB

i,c and

sPB
i,c . In case of class c of attention branch, we denote s

AB
c = {sAB

1,c , . . . , s
AB
n,c }

and s
′AB
c = {s′AB

1,c , . . . , s′AB
m,c } as sets of class probability of sample x and x

′,

respectively. The test statistic DAB
c can be formulated as

DAB
c = sup

z

∣

∣F
s
AB
c

(z)− F
s
′AB
c

(z)
∣

∣ , (9)

where

F
s
AB
c

(z) =
1

n

n
∑

i=1

f(sAB
i,c ; z). (10)

Likewise, with respect to class c of perception branch, we define as follows:

DPB
c = sup

z

∣

∣F
s
PB
c

(z)− F
s
′PB
c

(z)
∣

∣ , (11)

where

F
s
PB
c

(z) =
1

n

n
∑

i=1

f(sPB
i,c ; z). (12)
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Finally, we apply the KS test for the class probability of each class on
(DAB

c , D′AB
c ), and we decide the minimum value of them as pAB , which is for-

mulated as
pAB = min

c∈C

{

KS(DAB
c , D′AB

c )
}

, (13)

The p value is the probability that the test statistic obtained from the KS is
greater than or equal to that obtained from the KS under the assumption that the
populations of the two distributions are the same. To perform multiple testing
where the KS test is repeated for the number of classes and the p value is
calculated, a Bonferroni correction [1] is performed for the significance level α
used to determine the drift. For the class probability distribution output by the
perception branch, pPB is also calculated as

pPB = min
c∈C

{

KS(DPB
c , D′PB

c )
}

. (14)

4.2 KS test for attention maps

In the proposed method, we also use an attention map highlighting the gazing
region of the model for drift detection. By exploiting the attention map to drift
detection, it is possible to capture the characteristics of changes in the actual
gazing region of the model. Here, let ai ∈ R

W×H be an attention map obtained
from xi, which is expressed as

ai =







ai,(1,1) · · · ai,(W,1)

...
. . .

...
ai,(1,H) · · · ai,(W,H)






. (15)

Because drift detection using an attention map requires a KS test for each pixel
(w, h), the test statistics DAM

w,h of the attention map is calculated by

DAM
w,h = sup

z

∣

∣

∣F
a

AM
w,h

(z)− F
a

′AM
w,h

(z)
∣

∣

∣ , (16)

where a
AM
w,h = {aAM

1,(w,h), . . . , a
AM
n,(w,h)} and a

′AM
w,h = {a′AM

1,(w,h), . . . , a
′AM
m,(w,h)}. The

feature distribution F
a

AM
w,h

(z) is defined as follows:

F
a

AM
w,h

(z) =
1

n

n
∑

i=1

f
(

aAM
i,(w,h); z

)

. (17)

The D′AM
w,h is also calculated in the same manner as DAM

w,h .

Next, we apply KS test for (DAM
w,h , D

′AM
w,h ) in the attention map and we find

the minimum value pAM , which is defined as

pAM = min
w,h

{

KS(DAM
w,h , D

′AM
w,h )

}

. (18)

As with drift detection using the class probability distribution, the significance
level α is adjusted by the Bonferroni correction depending on the number of
times the KS test is performed.
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4.3 Drift detection from multiple p-values

As mentioned in above sections, we can obtain multiple p-values from the clas-
sification output of ABN’ branches pAB and pPB and from attention map pAM

by applying KS test for them. For detecting data drift, we integrate the results.
Given a set of p-values (pAB , pAM , pPB), we take the minimum of them pmin

which is defined as

pmin = min (pAB , pAM , pPB) . (19)

The pmin is the one determined to have the largest difference between the dis-
tribution of the training data and the operational data when the KS test is per-
formed on the three outputs. This enables the three outputs to be used jointly
to detect drift.

Finally, if pmin < α, we conclude that drift has occurred, where α is the
threshold value equivalent to Rabanser et al.’s method [9], and the Bonferroni
correction is made on the basis of to the number of times the KS test is per-
formed. This value is the significance level of 5% commonly used in two-sample
tests.

5 Experiment

To investigate the effectiveness of the proposed method, we evaluate the proposed
method. Especially, we evaluate the following aspects: (i) detection accuracy of
data drift and (ii) qualitative analysis for obtained attention maps for each
drifted data.

5.1 Datasets

We use MNIST [7] and CIFAR-10 [6] datasets in our experiments. The MNIST
dataset consists of gray-scale handwritten images. MNIST dataset is originally
divided into 60,000 training images and 10,000 test images. Among them, we fur-
ther split the original training set into 50,000 training set and 10,000 validation
set. Also, CIFAR-10 dataset consists of 10 object color images, which contains
50,000 training images and 10,000 test images. In our experiments, we split the
original training set into 40,000 training set and 10,000 validation set and use
them.

We use the training dataset of each dataset to train ABN in our method.
The validation data is defined as the data during training, since it has the same
data distribution as the training data. Test data shall be used as operational
data after drift simulation.

5.2 Drift simulation

Because MNIST and CIFAR-10 dataset does not contain drifted samples. To
make drifted samples and to use our evaluation, we simulate the following four
data drifts.
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Gaussian blur Gaussian blurring is the process of blurring an image using a
Gaussian function. In this experiment, three levels of blur intensity are used,
and the percentage of simulation applied to the test data for each intensity
is set to {10%, 50%, 100%}.

Gaussian noise Gaussian noise is a process of adding noise by changing the
luminance of each pixel in an image on the basis of a normal distribution. In
this experiment, three levels of noise intensity are used, and the percentage
of simulation applied to the test data for each intensity is set to {10%, 50%,
100%}.

Geometric transformation Geometric transformations combine rotation, hor-
izontal and vertical translation, shear, scaling, and horizontal and vertical
flipping on an image. In this experiment, there are three levels of strength
for each element of the geometric transformation, and the percentage of
simulation applied to the test data for each intensity is set to {10%, 50%,
100%}.

Class imbalance Class imbalance involves reducing the number of samples in
one particular class. In our experiments, we have three levels of reduction of
the number of samples for a particular class: {10%, 50%, 100%}.

5.3 Comparative method & evaluation metrics

We adopt a drift detection method proposed by Rabanser et al. [9] as a com-
parative method. Meanwhile, ABN of our method is based on the ResNet-14
architecture for CIFAR dataset. To train the both networks, we used SGD opti-
mizer and train networks in 200 epochs whose mini-batch size is 128.

To evaluate the number of samples required for drift detection in steps, we
change the number of samples used for drift detection as {10, 20, 50, 100, 200, 500, 1, 000, 10, 000}.
These samples includes the above mentioned four types of simulated drift data.
We take average the detection rate for all drift simulations. In the experiment,
the process involves obtaining a specified number of samples from the training
and operational data and inputting them into ABN.

5.4 Comparison of drift detection rates

First, the drift mean detection rates of Rabanser et al.’s method and the proposed
method on the MNIST dataset are compared as shown Fig. 2(a). As we can see,
the proposed method generally improves the average detection rate compared to
the conventional method. Next, a comparison of the drift mean detection rate on
the CIFAR-10 dataset is shown in Fig. 2(b), which indicate an improvement in
the average detection rate. Moreover, the improvement is greater for detection
on the CIFAR-10 dataset compared to detection on the MNIST dataset. These
results, demonstrate the effectiveness of the proposed method for in detecting
drift.

Also, we compare the detection rate for each drift simulation method for the
CIFAR-10 data set for further analysis on the average detection rate, which had
a large improvement rate. To facilitate the evaluation of the detection rate, the
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(a) MNIST

(b) CIFAR10

Fig. 2: Comparison of average detection rate of drift on (a) MNIST and (b)
CIFAR-10 datasets.

number of samples used for drift detection is 100 and 1,000. The results of the
experiment shown in Tab. 1 indicate that Gaussian noise is the drift simulation
method that contributes the most to improving the average detection rate. The
detection rate for 1,000 Gaussian blur images was improved by 26.6 pt., which
is the next highest improvement rate after Gaussian noise.

5.5 Comparison of p-value adoption rates

Next, to verify the effectiveness of the proposed method against the detection
rate in each drift simulation method, we investigate the contribution of each p

value, (pAB , pAM , pPB), calculated in the proposed method. The contribution
is the ratio of the number of times each p value is selected for successful drift
detection, divided by the number of times all p values are selected. The results
of the experiment shown in Table 2 indicate that the overall contribution of pPB

is high. However, in Gaussian blurring, pAB is utilized about 48 %, the high-
est among the three, while pAM is utilized 12.6 %. It can be seen that PAM is
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Table 1: Comparison of each drift detection rate (CIFAR-10)

# of samples to detect drift

Drift type Method 100 1000

Gaussian blur Rabanser et al. 53.3% 57.8%
Proposed 60.0% 84.4%

Gaussian noise Rabanser et al. 24.4% 26.7%
Proposed 53.3% 68.9%

Geometric transformation Rabanser et al. 46.7% 73.3%
Proposed 66.7% 86.7%

Class imbalance Rabanser et al. 62.2% 77.8%
Proposed 73.3% 82.2%

Table 2: Contribution of each p value (CIFAR-10)

Drift type pAB pAM pPB

Gaussian blur 47.9% 12.6% 39.5%
Gaussian noise 34.9% 8.9% 56.2%
Geometric transformation 41.6% 2.6% 55.8%
Class imbalance 46.7% 2.2% 51.1%

employed about 9 % in the Gaussian noise. This indicates that the method of
integrating the three outputs is effective for drift detection. The attention map
obtained from the ABN can be used for drift detection, and under certain con-
ditions it is more effective than the method using the model class probabilities,
contributing to an improvement in the average detection rate of drift.

5.6 Qualitative evaluation on attention map

Next, we determine the change in the attention map for the image that simulates
the drift. Figure 3 shows the attention map for an image with no simulated drift
and the attention map obtained for an input image with Gaussian blurring and
Gaussian noise added. As seen in the figure, the gazing area tends to shrink when
simulating the drift caused by Gaussian blurring and Gaussian noise. Even in
cases where it is difficult to distinguish the change in the input image before
and after the addition of Gaussian noise, as shown in Figure 3(c), it is possible
to understand the change from the gazing region of the model by acquiring
an attention map. Because the proposed method uses the ABN, which uses an
attention map for performing inference, obtaining these changes should improve
the accuracy of drift detection.
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(a) No simulated drift (b) Gaussian blur (c) Gaussian noise

Fig. 3: Attention map changes due to drift

5.7 Difference of two-sample tests for attention maps

We then compare the two-sample test methods for the attention map. As in-
vestigated by Rabanser et al. [9], the two-sample test used for drift detection
includes the KS test as well as MMD [3]. Rabanser et al. showed that the KS
test is the optimal test method when performing a two-sample test on the class
probabilities output of the model. However, no experiments have been conducted
on the attention map. Therefore, the two-sample test for (DAM

w,h , D
′AM
w,h ) in Fig.

1 is changed from the KS test to MMD for our experiment. The drift simulation
method and significance level are not changed, but the number of samples used
to detect drift is limited to 1000, when using MMD, as in Rabanser et al.’s ex-
periment. As an evaluation index, we use the change in p-values relative to the
training data that showed a change in the experiment.

Fig. 4(a) shows the transition of p values when the KS test is used for the
attention map, and Fig. 4(b) shows the transition of p values when the MMD is
used for the attention map. The black line on the graph indicates the significance
level. Because the experiment visualizes the evolution of p values for data with
no simulated drift, a line graph and its surrounding range below the significance
level indicates a false positive. As Fig. 4(a) and Fig. 4(a) show, there are no false
positives when the KS test is used, whereas in Fig. 4(b), there are false positives
when the MMD is used. It can also be seen that the results are less stable when
using MMD. These results indicate that the KS test is a viable option when
conducting a two-sample test on the attention map.
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(a) KS test used for attention map (b) MMD used for attention map

Fig. 4: Comparison of two-sample test methods used for attention map

6 Conclusion

In this paper, we proposed a data drift detection method based on the ABN and
Kolmogorov-Smirnov test. The proposed method detects drift by integrating the
class probability distributions output by the attention and perception branches,
which construct the ABN, and the results of the KS test using the attention
map. Experiments verified that the proposed method improves the average de-
tection rate of drift compared to the conventional method. The drift detection
results were analyzed by obtaining an attention map for the drift data. We also
investigated the extent to which each output contributes to drift detection and
demonstrated the effectiveness of using both the class probability distribution
and the attention map to detect drift. Our future work includes further analysis
of drift detection results, additional drift simulation methods, and the introduc-
tion of two-sample tests appropriate for each distribution to increase accuracy.
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