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Abstract— Car navigation systems are widely used and es-
sential for driving assistance. However, drivers often struggle
to understand voice guidance from these systems, leading to
the need for constant map-checking on a monitor, which can
be dangerous. In contrast, human guidance utilizing visible
objects is clearer to drivers. Human-like Guidance (HℓG) is a
task that realizes such human-like navigation on a system.
In this paper, we propose a novel method for HℓG. Our
approach involves defining human-like navigation templates
and selecting appropriate sentences for each object in an
intersection scene. We also construct a model to estimate the
driver’s gaze and use this information to choose a reference
object for navigation, resulting in a system that provides
clear guidance to the driver. Furthermore, we provide a gaze
information dataset called the Driving Gaze Dataset to build
a driver gaze estimation model. Through experiments using
the CARLA automated driving simulator, we demonstrate
the feasibility of generating navigation instructions that
drivers can intuitively understand. In addition, we confirmed
that our method is able to generate navigation quickly. This
research is expected to mitigate risky driving caused by
navigation systems while driving.

I. INTRODUCTION

Car navigation systems can be categorized into two
types: automated car navigation and human-guided nav-
igation. Automated car navigation systems, which are
commonly used today, utilize GPS and digital maps to
provide guidance through pre-formatted sentences dis-
played on a monitor.However, these instructions can be
difficult to understand intuitively and may lead to misin-
terpretations and distractions for drivers. Human-guided
navigation, on the other hand, relies on information from
the surrounding environment, providing situation-based
and easily understandable guidance. This approach takes
into account landmarks and nearby objects, reducing
the cognitive load on drivers and minimizing the risk of
navigation errors. It is worth noting that human-guided
navigation requires the presence of passengers to provide
guidance.

In this paper, our objective is to realize Human-like
Guidance (HℓG), which aims to replicate human-like
navigation in a system. HℓG enables the system to
independently generate guidance text on the basis of
the situation, resembling human guidance. For example,
the system might generate instructions such as “Follow
the red car ahead and make a right turn at the next
intersection.”
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Turn right at the intersection, where the Dodge Charger police car is located.

Fig. 1. Overview of our proposed Human-like Guidance (HℓG)
method.

Previous research has explored HℓG as a means of
augmenting existing car navigation systems, as demon-
strated in Apple’s patent [1], or as a method utiliz-
ing computer vision, as demonstrated by Bihao et al.
[2]. Apple’s patented approach involves incorporating
information about buildings, such as restaurants, onto
a map, thus generating instructions like “Turn left in
100 meters The restaurant is on the left.” However,
relying solely on map-based information poses the risk of
potential inaccuracies and outdated information, which
could mislead drivers. Bihao et al.’s proposed method
addresses this issue by accurately placing buildings and
other objects detected from in-vehicle camera images
onto an aerial map.

However, if the object selected as a navigation criterion
differs from the object perceived by the driver, the driver
will need to search for the specified object, potentially
increasing their risk. To address this issue, this study
proposes a method for achieving HℓG by incorporating
information on the driver’s gaze during driving. We
show an overview of our proposed method in Figure
1. We pre-define human-like navigation sentences based
on objects and use a classification model to determine
the appropriate sentences corresponding to the objects
observed by the in-vehicle camera. Subsequently, a gaze
estimation network is utilized to gather information
about the driver’s gaze while driving, enabling the
system to select a navigation reference that is easily
understandable for the driver on the basis of the objects
estimated to be the focus of the driver’s attention.

However, determining the precise object to be used as
a navigation reference presents a challenge due to the
rapid changes in the human driver’s line of sight during
driving. Therefore, this study proposes the development



of a gaze dataset during driving, called the Driving Gaze
Dataset (DGD), specifically designed for the HℓG task.
This dataset facilitates more accurate and optimal object
selection within a given scene.

The contributions of this research are as follows:
• We propose a novel baseline method for HℓG, ad-

dressing the real-time and safety concerns associated
with current car navigation systems.

• We introduce a gaze information dataset specifically
designed for HℓG, enabling the utilization of gaze
information in the navigation process.

II. RELATED WORKS

The HℓG task we are working on has, as far as we
can tell, very little prior research, and we are the first to
generate human-like car navigation. In this section, we
describe image captioning and gaze estimation methods.
Therefore, in this section, we describe image captioning
and gaze estimation methods related to our method.

A. Image captioning
One of the research topic which is related with our

study is image captioning in the field of vision and
language. Image captioning generates a descriptive text
for a given image. Image captioning mainly uses a model
that consists of two steps: i) a feature extraction step
from an input image and ii) generating a description
from the extracted features.

Image captioning have been studied before the advent
of deep learning. A classical method typically estimates
word labels for the whole image or each object region
through image identification as the first step. Then, we
can generate a caption by fitting the words obtained from
the estimated labels to a prepared perforated template
in it [3].

Since the deep learning era, the most of methods
tend to use CNNs to extract image features and RNNs
to generate an explanatory sentence [4], [5]� After the
probability of a highly accurate object detection method,
a method combining feature extraction by CNN and
object detection has been proposed� Neural Baby Talk
(NBT) [6] introduced a CNN-based object detection
method. NBT has developed the method [3] using
template captions with holes in the past, and has also
proposed a method to automatically generate template
captions with holes in the image corresponding to the
image.

After the appearance of Transformer [7], various meth-
ods of using Transformer for caption generation have
been proposed. Simao et al. achieved highly accurate
caption generation using Transformer, which considers
the positional relationship for each object detected by
object detection [8]. GRIT [9] achieves high accuracy
and high speed at the same time by building a network
that integrates Grid features and Region features using
only Transformer.

In our study, it is important to generate human-
like navigation with reference to objects on the input
scene. However, learning specialized sentences such as
HellG using natural language generative models such
as RNNs and Transformer is difficult due to the large
datasets required and workload. Furthermore, since the
instructions for car navigation are only needed in limited
situations, such as at intersections, it is possible to limit
the number of instruction sentences to a few types,
eliminating the need to use a natural language generation
model. Therefore, we define a human-like car navigation
template and perform sentence generation by solving the
decision of the template as a classification task. In our
method, appropriate navigation templates for objects in
the input image are used as ground truth data and
trained. The appropriate templates change depending
on the type and location of the object. Apart from the
aforementioned image captioning methods, our approach
classifies templates for all objects at the intersection.

B. Gaze prediction

Gaze estimation is the task of predicting where a
human will look given an image or video. The task
of algorithmically reproducing gaze estimation is called
visual saliency prediction. Many visual saliency predic-
tion methods have been proposed and developed using
CNN and deep learning. Ensemble of Deep Networks
(eDN) proposed by Vig et al. is the first model that uses
CNN [10]. After that, models such as AlexNet [11] and
VGGNet [12] were successfully used as feature extrac-
tors to perform saliency prediction, and this became a
common form of saliency prediction [13], [14]. One of the
representative methods for visual saliency prediction is
the Dilated Inception Network (DINet) [15]. In DINet,
the Dilated Residual Network (DRN) [16] is used as the
encoder, and after capturing multi-scale features with
Dilated Inception Modules (DIM), the decoder generates
a saliency map.

DRN is a network that introduces dilated convolutions
to ResNet-50 [17]. DRN is a pre-trained network often
used for visual saliency prediction.

DIM introduces a dilated convolution process to the
Inception module proposed in GoogLeNet [18]. By re-
placing each convolutional process in the Inception mod-
ule with a dilated convolution process with a different
dilation rate, it is possible to achieve the same or better
accuracy than existing methods with a small number of
parameters and short training time.

In the realization of HℓG, it is necessary to select
a navigation reference object that is easy for drivers
to understand, but there is no clear definition of a
navigation reference object. Therefore, this study uses a
gaze estimation model to estimate the driver’s gaze and
to select objects as navigation references on the basis of
the model’s estimated gaze.



(a) With instructions (b) Without instructions

Fig. 2. Gaze data examples of scene before left turn. For the
ease of clarity, we show the position of gaze data as a red circle.
This example shows that a participants gazes at gas station after
receiving instructions.

III. DRIVING GAZE DATASET
Several datasets have been developed to collect human

gaze information during car driving [19], [20]. When
driving, it is essential to visually attend to various
aspects of the road, resulting in rapid changes in human
gaze. However, for the purpose of selecting the most
suitable object for navigation in the context of HℓG
utilizing gaze information, rapidly changing gaze data
is not be ideal. Hence, we developed an optimal dataset,
called the Driving Gaze Dataset (DGD), specifically
designed for HℓG using gaze information. The DGD
consists of three types of data: driving video data, gaze
information data, and scene annotation data. Hereafter,
we provide a detailed descriptions on the DGD.

A. Driving video data
Obtaining driving video data containing a wide range

of real-world scenes can be challenging due to the asso-
ciated workload. To address this, we utilized CARLA, a
development simulator for automated driving, to gener-
ate data from the driver’s perspective [21].

We created a dataset consisting of 20 videos, each
approximately 3 minutes long, captured at 60 frames
per second (fps). Furthermore, we collected data in a
manner that ensured every frame of the driving video
data was associated with gaze information data and scene
annotation data. The gaze information data was collected
by recording the driver’s gaze while viewing the driving
video data. The scene annotation data was annotated
with a class label assigned to each frame that represents
the driving scene.

B. Gaze information data
Gaze data was collected using the Tobii-Pro X3-120

eye-tracking device, which recorded eye movements while
participants viewed videos generated by the CARLA
simulator. Within the scene leading up to the intersec-
tion, participants were instructed to direct their gaze
towards objects that could serve as navigation references,
including vehicles making turns ahead, pedestrians at
the intersection, and prominent buildings. An illustrative
example comparing data collected with and without
navigation instructions is depicted in Figure 2. To
account for individual variations in gaze patterns, data

TABLE I
Scene annotation definitions

Scene Label Number of frames
Following

traffic lane 0 Always
Straight 1 240 frames from stop line

Turn right 2 Until vehicle is in
vertical position from stop line

Turn left 3 Until vehicle is in
vertical position from stop line

Stop 4 From vehicle stop to start
Accidents 5 From lane entry to frame out

Before rigth turn 6 300 frames before stop line
Before left turn 7 300 frames before stop line

was collected from a total of eight subjects as part of
this study.

C. Scene annotation data
We classified various potential driving scenarios, such

as driving straight, making a right turn, making a
left turn, etc., into eight distinct categories. Table I
shows scene categories for the DGD we defined. This
dataset provides the gaze estimation model with crucial
information regarding the specific driving situation and
the intended travel direction within the input scene.

IV. PROPOSED METHOD
As mentioned, our objective is to achieve HℓG, that

is, human-like navigation that relies on scene objects
as references. However, existing natural language pro-
cessing algorithms and datasets do not provide human-
like navigation specifically tailored to complex scenarios
like intersections. Furthermore, there is no definitive
definition of what constitutes an ideal reference for
human-like navigation. To address these challenges, we
propose a novel approach for HℓG that uses a method
that classifies navigation templates for each object using
image classification techniques and selects the most
suitable object through gaze estimation.

An overview of the proposed method is depicted in Fig-
ure 3. This approach involves multi-class classification,
utilizing images cropped by a bounding box (BBox) of all
objects within the input scene, along with the distance
between the object and the intersection. Additionally,
the same scene is inputted into the gaze estimation
model trained with the DGD to estimate the driver’s
gaze. The model then selects an object as the reference
for navigation on the basis of the gaze estimation and
generates navigation sentences corresponding to the class
to which the object belongs.

A. Navigation template selection as classification
In this study, we generate navigation sentences that

incorporate specific target objects, such as “Turn left
at the intersection, where the Dodge Charger police
car is located.” This navigation sentence consists of
two components: i) a navigation part indicating the
driving direction of the vehicle in the first half and ii)
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Fig. 3. Overview our proposed method

TABLE II
Navigation class definitions

Object Distance from
intersection (d) Navigation template Class

Car 20 >= d at the intersection,
following the 0

20 <d at the intersection,
where the ∼is located 1

Human 20 >= d at the intersection,
where you see the ∼is nearby 2

20 <d at the intersection,
where you see the ∼is located 3

Others None at the intersection,
where the ∼is located 4

a reference part that identifies a target object in the
latter half of the sentence. Moreover, the structure of the
navigation sentence should be varied depending on the
location of the target object because human changes the
instruction depending on the object location adaptively.
For example, if the target car is near an intersection, the
sentence should be “Turn left at the intersection, where
the car is located.” If the target car is a bit farther from
the intersection, the sentence should be “Turn left at the
intersection, following the car.” Therefore, we generate
navigation sentences on the basis of a target object and
the distance between the object and the intersection.

To accomplish this, we solve a classification task, as
illustrated in the lower section of Figure 3. We use several
pre-defined navigation templates, as shown in Table
II. By classifying an object image with accompanying
distance information, we determine the most appropriate
navigation template.

Specifically, given BBox information, we extract object
images from in-vehicle camera images. Subsequently,
we feed these cropped object images, along with the
distance information between the target object and
the intersection, into a classification model. The model
outputs classification probabilities for various navigation
templates, and we select the template with the highest
score. By adding the driving direction of the vehicle
and the object information provided by CARLA to
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Fig. 4. Class ratio of input data

the selected templates, navigation is completed. This
classification process is repeated for each candidate
object in the scene, resulting in navigation assigned to
individual objects.

B. Selecting optimal target object by gaze estimation
As mentioned previously, we generate navigation tem-

plates for various target objects, and we select the most
suitable one to generate a human-like navigation sen-
tence. To aid in this selection process, we leverage human
gaze information. To replicate human gaze behavior
during driving, we use DINet, a lightweight and com-
putationally efficient gaze estimation model introduced
in [15]. DINet takes an RGB image as input and produces
a heatmap representing the estimated gaze location.
During training, we calculate the loss by comparing
the output heatmap with the ground truth gaze data.
For the loss function, we adopt the linear normalization
function proposed by Sheng et al. [15]. This function
normalizes both the estimated gaze and the ground truth
gaze, treating them as probability distributions. This
normalization allows for the consideration of pixel-level
relationships during the calculation.

During the reference object selection process, we utilize
the DINet model trained with the DGD. However, since
the DGD collects data randomly by autonomous driving,



(a) Right turn scene

(b) Straight scene

Fig. 5. Example scene at same intersection

there is a problem in the distribution of low-importance
scenes (e.g., stops and straight driving) versus high-
importance scenes (e.g., turns and scenes preceding
turns) is almost equal (see Figure 4). To address this,
we categorize the input data into three categories based
on annotation labels: Straight (label: 0/1), Stop (label:
4/5), and Turn (label: 2/3/6/7). We adjust the data ratio
to achieve a balanced distribution of 1:1:8, ensuring that
the training process captures gaze behavior suitable for
HℓG in crucial navigation scenes, such as intersections.

The object with the highest heatmap value within its
bounding box (BBox) is selected as the optimal reference
object on the basis of the heatmap output from DINet.
This enables the system to choose the most appropriate
object as a navigation reference in intersection scenes
where multiple objects are present.

V. EXPERIMENTS
In this section, we conduct experiments in terms of the

i) accuracy in navigation template classification for each
target object and ii) the efficacy of selecting the best
object by gaze estimation. Again, the purpose of this
paper is to validate the efficacy of the baseline method,
which is a new approach to HℓG. Therefore, we deal with
a less difficult task. There are two verification methods
as follows:

1) We conduct experiments on classifying objects
using several image classification models, using as
input an image of an object cropped to the size of
the BBox and the distance of the object from the
intersection.

2) We qualitatively compare the navigation with the
object selected using the results of gaze estimation
and the navigation with the object selected with
the highest class probability in the scene.

A. Datasets
In our experiments, we utilized the proposed DGD

introduced in SectionIII, along with another dataset
collected using CARLA (referred to as the CARLA

TABLE III
Classification result

Model Parameters Inference time (ms) Accuracy
ResNet-18 12,250,469 67.2 0.9817
VGG-16 138,985,285 71.0 0.9862

DenseNet 8,532,869 69.5 0.9863
MobileNet-v3 6,040,075 68.5 0.9902
DeiT-small-16 22,589,317 72.0 0.9928
MobileViT-v2 8,022,886 71.7 0.9860

dataset). The DGD is used for training the gaze esti-
mation model, while the CARLA dataset is utilized as
the training data for the image classification model and
as the evaluation data for the overall method in our
experiments. Herein, we provide a brief overview of the
CARLA dataset.

We generate intersection scenes using the CARLA
simulator, creating four distinct scenes, each featuring a
single intersection. (1. large intersection with two lanes in
each direction, 2. T-intersection, 3. narrow intersection
with no signal, 4. intersection with few buildings around)
Within each intersection scene, we vary the vehicle’s
direction and the surrounding environment to generate
diverse data samples. An example of the dataset is
illustrated in Figure 5. Furthermore, since obtaining the
coordinates of intersections and objects in 3D space
directly from in-vehicle camera images is challenging,
we leverage the functionality of CARLA to retrieve the
coordinates of objects and intersections, enabling us to
calculate the distances accurately.

B. Navigation template classification per object
First, we evaluated the accuracy of the navigation

template classification task. As a classification model,
we verify both CNN and Vision Transformer (ViT) [22]
that have been pre-trained on ImageNet [23]. In our
experiments, we performed a 5-class classification task.
All cropped images, obtained using BBox, were resized to
224×224 pixels and utilized as input images for the clas-
sification models. For the CNN-based models, we used
well-known architectures such as ResNet-18 [17], VGG-
16 [12], DenseNet [24], and a more lightweight model,
MobileNet-v3 [25], suitable for real-world implementa-
tion. Similarly, for the ViT-based models, we utilized
representative architectures such as DeiT [26] and a
smaller model, MobileViT-v2 [27], which is optimized
for real-world implementation, akin to the CNN-based
models.

Table III shows the results of the classifications for
each model. Inference time in Table III indicates the
inference speed per a single input. We measure the
inference speed 5 times and take the average for each
model. The results show that each models achieved a
higher classification accuracy. It was confirmed that class
classification was possible on the basis of only the input
object images and features consisting of the absolute
distance from the intersection.



(a) Right turn scene (1) (b) Left turn scene
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Fig. 6. Examples of output results.Objects bounded in red are selected with class probability. Objects bounded in blue are selected
with predicted gaze.

C. Selecting reference object by gaze estimation

Next, we evaluated the accuracy of gaze estimation.
To verify the effectiveness of selecting objects using gaze
estimation, we qualitatively compared the navigation
sentences generated by the object with the highest class
probability in class classification with those generated
by the object selected using gaze estimation. For gaze
estimation, we utilized DINet, which was pre-trained
with DGD, by inputting the same image data used for
class classification. Regarding the classification results,
we considered the outputs of ResNet-18, which offers the
fastest computation speed and is suitable for real-world
implementation. Experimental results confirm that our
method can generate navigation in an average of 0.077
seconds per frame.

Figure 6 illustrates input intersection scene images
and the resulting navigation statements. In the example
shown in Figure 6(a), the object selected on the basis
of class probabilities was a motorcycle located far from
the driver. Conversely, the object selected using gaze
estimation was a vehicle positioned in front of the driver.
Similarly, in the example depicted in Figure 6(b), the
object chosen from class probabilities was a vehicle
behind a guardrail, whereas the object identified through
gaze estimation was a vehicle in the oncoming lane at

the intersection. These results demonstrate that gaze
estimation enables the selection of objects that are easily
understandable to drivers.

In the example presented in Figure 6(c), the object
selected on the basis of class probabilities was a vehicle
in the oncoming lane. However, as the classification is
limited to five classes, it can be observed that this
instruction was incorrect for following oncoming vehi-
cles. In contrast, the object chosen via gaze estimation
was a vehicle in the traveling direction. The output
provided the correct instruction to proceed straight at
the intersection where there was a vehicle in front.
Similarly, in the example showcased in Figure 6(d),
the object selected on the basis of class probabilities
was a vehicle in the traveling direction. As the system
generated navigation sentences for all objects in the input
scene, it becomes apparent that the instructions were
incorrect for following a car in the orthogonal lane.
Conversely, the object selected using gaze estimation
was the vehicle in front of the driver’s own vehicle,
resulting in a navigation instruction based on an object
within the intersection, which confirms its correctness.
These outcomes demonstrate that gaze estimation helps
avoid the selection of objects that produce inaccurate
instructions.



VI. CONCLUSION and DISCUSSION

In this paper, we proposed a novel approach to
achieving Human-like Guidance (HℓG) in car navigation
systems. Our approach combines class classification and
gaze estimation to select objects as references for naviga-
tion. We introduced a dataset of gaze information (DGD)
specifically designed for HℓG, which was proven to be
optimal for our method. The experimental results show
that our approach achieved high accuracy in terms of
a navigation template classification task by using object
image patch and distance information. In a gaze estima-
tion experiment, we qualitatively compared navigation
sentences generated by objects selected from the driver’s
estimated gaze with those selected on the basis of class
probabilities. The results showed that utilizing a gaze
estimation model trained with DGD allows us to select
objects that are easily visible to the driver and avoid the
selection of objects that provide incorrect instructions.

Our method successfully achieved HℓG in a simple
intersection scene. However, we recognize its potential
for further development. By expanding the number of
classes, defining additional templates, and enhancing
the performance of the gaze estimation model, we can
extend our method to handle more complex intersection
scenes and produce human-like navigation instructions.
Furthermore, this time we use the names of specific
objects, but they could be simpler. This advancement
has the potential to address existing challenges in car
navigation systems and contribute to the advancement
of HℓG as a whole.
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