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Abstract

Object detection, segmentation, position estimation, and
identification of white lines on roads are essential compo-
nents of computer vision for recognizing surrounding ve-
hicles and pedestrians. These tasks are focused on differ-
entiating objects and driving scenes with the help of cam-
eras and LiDAR sensors. However, to enhance the capa-
bility of autonomous driving, it is essential to address the
possibility of future risks and object variations, which have
not been adequately explored. Specifically, identifying the
zones where pedestrians and vehicles may suddenly appear
is of paramount importance for ensuring driving safety and
preventing traffic accidents. In this paper, we propose a
novel task that aims to estimate the potential risk regions
that can cause traffic accidents. Our focus is on assessing
the risk regions from images taken by an in-vehicle camera
installed at the front of the vehicle. We define a risk region
as an area where pedestrians or vehicles may appear, and
we annotate the Cityscapes dataset with risk region annota-
tions. Additionally, we propose an end-to-end network and
evaluation metrics for estimating the baseline risk regions.
Our results demonstrate that our approach performs excep-
tionally well in estimating potential risk regions in various
scenarios. This research is expected to facilitate the estab-
lishment of safety tasks in the driving environment and en-
able autonomous driving systems to identify potential risk
regions and drive safely.

1. Introduction
Autonomous driving-environment recognition com-

prises multiple components, among which the recognition
of objects and scenes around the vehicle is paramount im-
portance. Thanks to advancements in hardware such as
cameras and LiDAR, computer vision has made significant
progress, leading to the development of highly precise algo-
rithms for various perception tasks on images and videos.

Object detection of pedestrians and vehicles from images
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Figure 1. On left side is input image, and on right side is output
result of proposed method. Red areas represent higher risk, while
blue areas represent lower risk. Notably, proposed method accu-
rately estimates risk regions around stationary vehicles.

taken from an onboard camera mounted at the front of a ve-
hicle [1, 5, 18, 25] can accurately and quickly infer objects
of various scales in a scene. Meanwhile, pixel-level seman-
tic segmentation of a scene [4, 19, 27] can also accurately
and quickly infer objects of various scales while remaining
robust across different domains. Furthermore, it is capable
of achieving excellent accuracy in bird’s-eye view segmen-
tation and 3D object detection using images from multiple
cameras, rather than just a monocular camera [19, 27].

The availability of large datasets annotated with high ac-
curacy has been a key factor supporting the tasks mentioned
above. Various real datasets that compile a wealth of in-
formation from images to point clouds are now available
[2,10,21,26]. However, due to the high cost associated with
performing accurate annotations on a huge dataset, semi-
supervised learning [20] and unsupervised learning [6, 8]
have been proposed. Additionally, datasets created using



a simulator environment [12, 16, 17], provide a variety of
road environments while significantly reducing annotation
costs. These contributions have played a significant role in
advancing environmental awareness in autonomous driving.

There is still considerable room for improvement in rec-
ognizing the interrelationships between future traffic acci-
dents, object variations, and their interactions in the realm
of autonomous driving. Specifically, preventing and mit-
igating traffic accidents caused by pedestrians or vehicles
that suddenly emerge from the shadows of side roads or sta-
tionary objects would enable drivers to transition from open
roads, such as highways, to more complex driving environ-
ments like urban regions, thereby providing a safer driv-
ing environment. This is because most drivers can empiri-
cally identify potential risk regions and consciously or un-
consciously adjust their vehicle speed or change course to
ensure safety. In high-speed driving environments like free-
ways, the possibility of pedestrians or other vehicles sud-
denly appearing is extremely low, but there are many ve-
hicles in close proximity that are traveling at high speeds.
Therefore, the primary focus of drivers is on perceiving the
surrounding vehicles. Conversely, in urban regions, where
speeds are low and there are many intersections and ob-
stacles, drivers pay more attention to gathering informa-
tion about their surroundings by slowing down their vehicle
speed. While safety is maintained through the mutual per-
ception of many drivers and pedestrians, there is a limit to
the amount of information that a single driver can acquire,
and in complex scenes, potential risks can be overlooked,
leading to accidents.

To provide a novel technology for autonomous driving
that can perceive and evade potential risks in the surround-
ing environment, we annotated the Cityscapes dataset [10]
to include risk regions. Our ultimate goal is to mitigate the
number of traffic accidents and the damage they cause by
alerting drivers to potential risk regions, regulating vehicle
speed, and altering course accordingly. Currently, many al-
gorithms, such as those for object detection and segmenta-
tion, can infer only the explicit states of pedestrians, ve-
hicles, and other objects that appear in a scene. This is
due to the fact that annotations for states in a scene can be
established with uniform regulations. However, numerous
risk regions tend to appear across object boundaries, mak-
ing them incompatible with algorithms that require precise
annotation, such as for object detection and segmentation.

In this paper, we propose a framework that facilitates
end-to-end estimation of both risk values and risk regions
Figure 1 from input images, alongside a proposed task for
estimating potential risk regions through the provision of
annotation data. Our experiments are carried out on vari-
ous risky regions present in a scene, marked by single-point
annotation. To summarize, our contributions are as follows:

• We formulate the problem as estimating the probability

distributions of risk regions and propose a framework
that allows for dense area estimation.

• We create an additional annotation indicating potential
risk regions for the Cityscapes dataset. Our annotation
represents a risk region as a single-point annotation.

• We propose two novel evaluation metrics that assess
the position and priority of risk regions.

2. Related Work
In this section, we present a comprehensive review of

the literature on risk analysis during vehicle operation,
scene analysis during traffic accidents, and vehicle perime-
ter recognition using object detection and semantic segmen-
tation.
Risk Analysis. In various regions, analyses have been con-
ducted on the causes of traffic accidents involving pedestri-
ans and　vehicles, as well as the environmental information
of accident scenes. For instance, Zhen et al. [9] focused
on the severity of traffic accidents on highways in South-
ern California, while Zhiyuan et al. [22] concentrated on
the severity of traffic accidents in North Carolina over a pe-
riod of approximately five years. The analysis was centered
on the severity of traffic accidents, which was found to be
influenced by various factors, including the location of oc-
currence, weather conditions, time of day, pedestrian age
and vehicle type, and traffic volume. Notably, weather con-
ditions and the location of traffic accidents were found to
be particularly influential, underscoring the importance of
environmental recognition around vehicles in the computer
vision field. Additionally, a hybrid network that leveraged
a wide range of domain data from large-scale traffic data,
accident information, and weather information was devel-
oped. Using a learned model, sensitivity analysis was per-
formed to investigate the causes of traffic accidents with
high contribution rates, and the findings were consistent
with the analysis of Zhen et al. [9]. However, since these
studies utilize environmental information that is already
manifest, they cannot be directly applied to the task of es-
timating potential risk regions, which is the focus of our
study.
Object Detection. Recent studies on object detection [1, 3]
have achieved high accuracy and speed, while also demon-
strating robustness against occlusion and weather changes,
which is crucial for autonomous driving technology. How-
ever, safety support systems for vehicle operations that rely
solely on object detection are limited to detecting only the
objects that appear in camera footage, which differs from
the primary goal of this research, which is to prevent acci-
dents by alerting drivers to estimated risk regions. Further-
more, it should be noted that object detection necessitates
precise annotation of bounding boxes, which can be a costly
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Figure 2. Examples of labels used in our framework. (a) shows input image. (b) shows single-point annotation at pixel level with respect
to center of risk region. (c) is ground truth obtained by enlarging annotation based on single point and applying gaussian filter.

and time-consuming process, especially when it comes to
annotating risk regions.
Semantic Segmentation. Semantic segmentation faces a
fundamental problem analogous to object detection, in that
it monitors object regions at the pixel level. However, risk
regions that span across different objects lack well-defined
boundaries, which poses a challenge for semantic segmen-
tation in risk region tasks. Kozuka et al. [14] propose a
method for determining risk and safe regions by leveraging
prior knowledge of semantic segmentation. However, risk
regions such as shaded regions around stationary vehicles
and side roads are classified into a single vehicle or road
class in segmentation. Moreover, risk regions that straddle
different objects are treated as safe regions, potentially re-
ducing the amount of information about sparse risk regions.

3. Annotation for Risk Region Estimation
The availability of openly accessible datasets with an-

notations for risk regions is crucial for achieving the task
of estimating potential risk regions. However, due to the
abstract and varying nature of risk regions, accurately an-
notating a large dataset can be very costly, and it is difficult
to provide a uniform and precise annotation [14]. Build-
ing on previous research, we focused on estimating risk re-
gions from images captured by in-vehicle cameras mounted
in front of a vehicle. We defined a risk region as a region
where pedestrians and vehicles may suddenly appear and
annotated the center of the risk region with a single point in
the Cityscapes dataset [10]. An example is shown in Fig-
ure 2 (b). Note that although the annotation size is large for
visibility, the annotations are made for a single pixel.

3.1. Annotation Cost

As listed in Table 1, we allocated annotators with prior
driving experience in each city to annotate the train, val, and
test sets in the Cityscapes dataset. We ensured that each
image had at least one risk region selected for annotation.
In contrast to [14], we also annotated one point per image

Data Images Workers
Train 2975 5
Val 500 3
Test 1525 4

Table 1. Annotation for Cityscapes. Images refers to number of
images, while Workers indicates number of annotators.

in the test set and did not create pairwise labels using the
predicted segmentation masks and prior knowledge. The
annotation process for the entire dataset took 3385 minutes
or approximately 41 seconds per image.

4. Risk Estimation

Our objective is to estimate multiple potential risk re-
gions from input images, with the output being a pixel-
wise relative risk value z, as illustrated in Figure 1. How-
ever, since most potentially risky regions span across object
boundaries and do not appear on a uniform object, pixel-
level identification using supervised segmentation and ob-
ject detection with bounding boxes is challenging due to
the high cost of annotation. To overcome this challenge,
we propose a framework inspired by the saliency prediction
task [11, 13, 28] that can densely estimate multiple risk re-
gions from input images in an end-to-end fashion.

4.1. Risk Estimation Network

To accomplish the task of estimating potential risk re-
gions, we adopt a network architecture [7] with an encoder-
decoder structure, which is inspired by the most relevant
work on risk region estimation [15]. The entire network is
depicted in Figure 3. The Inception module’s [23] concept
is to serve as a multi-scale feature extractor with various
receptive fields. Therefore, the module is comprised of a
combination of multiple convolutional layers with different
kernel sizes, enabling it to obtain various receptive fields.
The network comprises an encoder with a series of modules



and downsampling and a decoder with comparable mod-
ules, upsampling, and a residual connection for integrating
high-resolution features.

4.2. Loss Function

Exponentially Weighted MSE Loss. Compared with the
general saliency prediction task, the risk regions present
in vehicle camera images possess a specific characteristic
where the ground truth is distributed in the center of the
image, specific to the vehicle driving scene. Furthermore,
the ground truth is sparsely distributed in proportion to the
image region, with many zero regions. To address these
challenges, we introduce the exponentially weighted mean
squared error (MSE) loss [24]. This loss function is ex-
ponentially weighted on the basis of the magnitude of the
predictions, which is effective in addressing the tendency to
predict 0 as a result of sparse ground truths compared with
conventional MSE. The exponentially weighted MSE loss
is defined as

LEw−MSE =
1

N

∑
i=1

exp(−zi)(Ii − zi)
2, (1)

where I ∈ R(1×h×w) is the ground truth, z ∈ R(1×h×w) is
the model output, and N is the number of pixels.
Total Variation Distance. In the risk region estimation,
using loss functions that are designed for pixel-by-pixel re-
gression and classification makes it difficult to utilize global
information around a risk region, as pixel-by-pixel predic-
tion does not account for the relationships between pix-
els. This limitation is especially critical for risk regions
that span the boundaries of different objects. However, by
treating a risk region as a probability distribution of risk
regions in an image, it is possible to introduce a loss func-
tion that measures the distance between probability distri-
butions, thus addressing the aforementioned problem. This
is the most innovative aspect of our method, which differs
significantly from the approach in [14], which classifies risk
and safe regions. To transform the predicted risk regions
and ground truth into a probability distribution, we employ
linear normalization, which preserves the initial propor-
tions, unlike softmax normalization, which de-emphasizes
the maximum value of elements for arrays within [0, 1]. As
a result, it is possible to effectively monitor the error be-
tween the estimated most at-risk region and the correspond-
ing ground truth. The use of linear normalization for proba-
bility distribution distance loss has been shown to be supe-
rior through experimental evaluation [28]. The total varia-
tion is defined as

LTv−Dist =
∑
i

|f(zi)− f(Ii)|. (2)

The definition of zi and Ii by linear normalization is as fol-

lows.

f(zi) =
xz
i∑N

i=1 x
z
i

, f(Ii) =
xI
i∑N

i=1 x
I
i

, (3)

where x := {xi}Ni=1 is the set of unnormalized values for
either the estimated risk probability xz or ground truth xI .
Relative Risk Loss. The objective of our training is to esti-
mate multiple risk regions in a scene while ensuring that
there are enough safe regions that contradict the risk re-
gions. To this end, we propose the use of relative risk loss,
which comprises exponentially weighted MSE loss and to-
tal variation distance. The risk region estimation network is
optimized using the proposed relative risk loss. The relative
risk loss is defined as

Lrisk = λLEw−MSE + LTv−Dist, (4)

where λ is a temperature parameter that limits the contri-
bution of exponentially weighted MSE to the overall loss
function as a hyperparameter.

4.3. Label Preprocessing

The information provided by single-point annotation on
the pixel level for risk regions is limited compared with the
information available from the entire image region. Risk re-
gions typically straddle the boundaries of different objects.
If we also consider the distance information in an image,
we can see that risk areas that are farther apart are rela-
tively smaller, and those that are closer together are rela-
tively larger. Therefore, incorporating depth information to
expand risk regions can enhance the amount of information
in the ground truth. To achieve this, we employ the distance
bias in outdoor images discussed in Section 3 of Chen et
al. [7]. According to their study, classifying lower points
in an image as closer to the depth yields a recall of 85.8%,
while classifying points closer to the center of an image as
having more depth yields a recall of 71.4%. In Cityscapes,
the high points in an image usually represent empty regions,
while the low points indicate the front of the vehicle. We
use this a priori knowledge to obtain relative distance infor-
mation by taking the absolute value of the distance on the
x-axis and the value on the y-axis with respect to the center
and highest pixel in an image and then expanding the an-
notation at the pixel level. As the risk level is not the same
within an enlarged risk region, we use a gaussian filter to
represent the continuously changing risk region.

5. Experiments
In this section, we verify the ability of our new frame-

work to estimate potential risk regions for unknown images.
We also compare our framework with the most relevant
method, [15]. To conduct a unified comparison experiment,
we employ the encoder-decoder structure [7] as the network
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Figure 3. Overview of our network. Blocks with same color are composed of common Inception module. Symbols indicate element-wise
addition. In case of pre-training for semantic segmentation tasks, final layer head is replaced.

for risk region estimation. The network replaces the final
layer with a head for the semantic segmentation task and is
pre-trained on Cityscapes train set. The head is replaced for
region-at-risk estimation. Except for the head in the final
layer, the network utilizes the pre-trained weights and fine-
tunes the weights for the entire network during training.
Our Baseline. To expand the annotation of a single image,
we utilized depth information to enlarge multiple single-
point annotations into a continuously changing risk region.
It was then transformed using a gaussian filter to create the
ground truth. The network was optimized using the impor-
tant equation Eq. (4) from Sec. 4.2.
Comparative Method. We adopted the method proposed
in [15] as a comparative approach, which utilizes a differ-
ential pair consisting of pixels in the risk region indicated by
single-point annotation and pixels randomly selected from
the image. Additionally, an equal pair was created by utiliz-
ing two pixels randomly selected from the safe region gen-
erated using the segmentation results and prior information.
When generating safe regions, we designated the semantic
segmentation class (e.g., person, rider, car, truck, bus, train,
motorcycle, and bicycle) to risk region classes, with 60 pair
labels produced per image. The optimization of the network
was carried out using the loss function [15].

5.1. Evaluation Metrics

We aimed to conduct a quantitative evaluation of the po-
tential risk region estimation results of our framework. We
evaluated our proposed method from two different perspec-
tives: capability to estimate risk regions in a scene, and abil-
ity to assess the relative risk value. For this purpose, we
utilized two commonly used evaluation metrics, namely the
area under the curve (AUC) and the correlation coefficient
(CC), which have been used in previous studies [15, 28].
AUC: The performance of binary classification for esti-
mated risk regions was evaluated using AUC. A binary map
was created using a positive set representing the ground

truth risk regions and a negative set. By varying the thresh-
old from 0 to 1, the estimated results can be converted into
risk regions and backgrounds, and a receiver operating char-
acteristic (ROC) curve can be generated. The AUC was cal-
culated using the ROC curve.
CC: The linear correlation coefficient (CC) is a statistical
metric that quantifies the linear correlation between two
stochastic variables. To evaluate the performance, the pre-
dicted risk region z and ground truth I are considered as
two random variables, and CC is defined as

CC =
cov(z, I)

σ(z)× σ(I)
, (5)

where cov(−,−) is the covariance, and σ(−) is the standard
deviation.

5.2. Potential Risk Estimation

We list the result of quantitative evaluation of potential
risk region estimation in Tables 2 and 3. It is evident that the
proposed method achieved superior accuracy in both AUC
and CC for all Cityscapes sets as compared with the com-
parative method. Notably, the improvement in the CC met-
ric score that our method the adroitness to incorporate the
prioritization of risk regions juxtaposed with the compara-
tive technique. This can be attributed to the incorporation
of our loss function, which addresses the ground truth of
sparse risk regions and enhances the overall performance.
The fine-tuning column depicts the outcomes of learning
from scratch and utilizing the pre-trained weights from the
segmentation task. The performance improved for both
Cityscapes val and test sets by using the pre-trained model.
These findings suggest that incorporating semantic segmen-
tation knowledge as a pre-training task can be effective in
our method.

Table 4 presents experimental results that compare the
effect of λ in the loss function. As indicated in the table,
the best performance was attained with λ = 0.5.



Method Fine Tuning AUC CC

Point Supervision　 [15]
0.545 0.111

✓ 0.511 0.102

Ours 0.540 0.158
✓ 0.562 0.218

Table 2. Ablation analysis with Cityscapes val set．

Method Fine Tuning AUC CC

Point Supervision　 [15]
0.544 0.105

✓ 0.512 0.109

Ours 0.542 0.183
✓ 0.564 0.216

Table 3. Ablation analysis with Cityscapes test set．

λ 0.1 0.3 0.5 0.7 0.9
AUC 0.517 0.520 0.564 0.549 0.554

CC 0.089 0.120 0.216 0.184 0.142

Table 4. Analysis of temperature parameter λ on Cityscapes test.

5.3. Model Visualization

We evaluated the effectiveness of our proposed method
by visualizing the results of potential risk region estima-
tion separately for our method and a comparative method.
The visualization results of the risk region estimation for
Cityscapes test are shown in Figure 4. From first to fourth
rows indicate the input images, the ground truth, the esti-
mation results of [15], and those of our proposed method,
respectively.

In the first line, our method estimated the risk region not
only between the vehicles stopped on the right side of the
road but also for oncoming vehicles. These results imply
that the risk level around the near vehicles is higher than
around the far vehicles. In the second line, our method en-
abled us to estimate a widespread risk region between sev-
eral stopped vehicles on the right side. Furthermore, the
degree of the risk region was higher for vehicles in the near
distance than in the far ones. On the other hand, the com-
parative method was difficult to estimate the risk region for
faraway and stopped vehicles.

Next, we discuss the third line in Figure 4 including
pedestrians. In this case, our method estimated region
around the vehicle but also the pedestrians as risk regions.
Our method has a higher risk for pedestrians in the near dis-
tance, while the comparative method has a higher risk for
pedestrians in the far distance in the center of the image. In
the fourth line, where a vehicle is overtaking from behind,
we can estimate that the vehicle about to overtake is in the
risk region. In the fifth line, is an intersection scene. Our
method estimated the risk region by considering the pos-

Point supervisionInput GT Ours

Figure 4. Qualitative comparison using our method and Compara-
tive method [15]. Images are from Cityscapes test set.

sibility of vehicles jumping out of the road leading to the
outside of the camera’s view. On the other hand, the com-
parative method tended to estimate objects (e.g., vehicles
and pedestrians) in the image as the risk region, and failed
to estimate the risk region considering the possibility of ve-
hicles jumping out from outside FOV.

For these reasons, our method was capable of estimating
risk regions that capture the context of the entire scene.

6. Conclusion and Discussion
Most recent research on environmental awareness has

concentrated on object detection and segmentation to im-
prove the capability of recognizing apparent objects. In
contrast, this study focuses on estimating potential risk re-
gions that are in conflict with revealed objects. A dataset
with additional single-point annotation contributes to the es-
tablishment of a novel potential risk-region estimation task
in computer vision. We take risk estimation as a probability
distribution prediction task and use a linear normalization-
based loss function. With the proposed loss function, our
model outperforms the previous method.

Our baseline method has the potential to improve perfor-
mance, we expect further improvement by using larger net-
works or time series data. Overall, we hope that our work
serves as a preliminary step towards reducing the number of
traffic accidents and the resulting damages caused by pos-
sible future changes in risks and objects, and that it will
contribute to the development of a potential risk-region pre-
diction task in computer vision.
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