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Abstract. Ensemble of networks with bidirectional knowledge distil-
lation does not significantly improve on the performance of ensemble of
networks without bidirectional knowledge distillation. We think that this
is because there is a relationship between the knowledge in knowledge
distillation and the individuality of networks in the ensemble. In this
paper, we propose a knowledge distillation for ensemble by optimizing
the elements of knowledge distillation as hyperparameters. The proposed
method uses graphs to represent diverse knowledge distillations. It au-
tomatically designs the knowledge distillation for the optimal ensemble
by optimizing the graph structure to maximize the ensemble accuracy.
Graph optimization and evaluation experiments using Stanford Dogs,
Stanford Cars, CUB-200-2011, CIFAR-10, and CIFAR-100 show that the
proposed method achieves higher ensemble accuracy than conventional
ensembles.
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1 Introduction

Deep learning models trained under the same conditions, such as network archi-
tecture and dataset, produce variations in accuracy and different errors due to
random factors such as network initial values and mini-batches. Ensemble and
knowledge distillation improve the performance by using multiple networks with
different weight parameters for training and inference.

Ensemble performs inference using multiple trained networks. It performs
inference on the basis of the average of the output of each network for the in-
put samples and thus improves the performance compared with an inference
using a single network. It is also effective against problems such as adversar-
ial attack and out-of-distribution detection due to the nature of using multi-
ple networks [15,6,5,21,26]. It is computationally more expensive than a single
network, so methods for constructing parameter-efficient ensembles have been
proposed[33,34,28,16,26].

Knowledge distillation is a training method where a network shares the
knowledge acquired through training with other networks to reduce parameters
or improve network performance. There are two types of knowledge distillation:
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Fig. 1: Ensemble learning with diverse knowledge distillation by graph represen-
tation. Loss calculation shows knowledge distillation from m1 to m2.

unidirectional [10] and bidirectional [38]. A typical method for unidirectional
knowledge distillation is knowledge distillation (KD) [10]. KD uses probability
distributions as knowledge of the network and trains an untrained network with
shallow layers using a trained network with deep layers. A typical method for
bidirectional knowledge distillation is deep mutual learning (DML) [38]. DML
is a method of mutual distillation using multiple untrained networks. Various
distillation methods have been proposed depending on the combination of the
networks and the type of knowledge [27,20,35,31,25,1,36,30,37,3]. Minami et al.
[22] introduced a graph representation for knowledge distillation to unify the
existing methods.

In this paper, we propose knowledge distillation for ensemble. The critical
factors of the proposed method are knowledge distillation that promotes diversity
among networks and automatic design of the distillation method. We consider
knowledge distillation that separates knowledge between networks, in addition
to conventional knowledge distillation. The direct separation of probability dis-
tributions as knowledge may degrade the performance of the network. Therefore,
we perform diverse knowledge distillation from two types of knowledge: prob-
ability distributions and attention maps. The proposed method represents the
diverse knowledge distillation in a graph [22], as shown in Fig. 1. We define the
combination of loss design of knowledge distillation as a hyperparameter and
automatically design complex knowledge distillation, which is difficult to design
manually by hyperparameter search.

Our contributions are as follows.

– We investigate the relationship between the difference of probability distri-
butions and the effect of ensemble and find a positive correlation.

– We perform knowledge distillation to promote diversity among networks for
ensembles. We design a loss of proximity and loss of separation of knowledge
using probability distribution and attention map and weight the loss values
using gates to achieve diverse knowledge distillation.

– We use graphs to represent diverse knowledge distillation and automatically
design appropriate knowledge distillations by optimizing the graph structure.
The networks of the optimized graph improve the ensemble accuracy, and
each network is a diverse model with a different attention map.
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2 Related work

In this section, we introduce ensemble and knowledge distillation, which are
methods for using multiple networks.

2.1 Ensemble

Ensemble is one of the oldest machine learning methods. Ensemble in deep learn-
ing is a simple method of averaging probability distributions or logits, which are
the outputs of networks with different weight parameters. It is known that the
ensemble accuracy improves depending on the number of networks and that the
ensemble accuracy ceases to improve after exceeding a certain number of net-
works. Ensemble is also effective against problems such as adversarial attack and
out-of-distribution detection due to it using multiple networks [6,15,5,21,26].

The training and inference cost of ensemble increases with the number of
networks. In knowledge distillation [28,16], a single network can achieve the same
performance as ensemble by training the network to approach the probability
distribution by the ensemble. Batch ensemble[33] and hyperparameter ensemble
[34] prevent increasing the parameters by sharing some of them and reduce the
training and inference costs.

2.2 Knowledge distillation

Knowledge distillation is a training method where a network shares the knowl-
edge acquired through training with other networks to reduce parameters or
improve network performance. There are two types of knowledge distillation:
unidirectional and bidirectional.

Unidirectional knowledge distillation uses a teacher network, which is a trained
network, and a student network, which is an untrained network. The student net-
work trains the outputs of the teacher network as pseudo-labels in addition to
the labels. Hinton et al.[10] proposed KD, which trains the student network with
small parameters using the probability distribution of the teacher network with
large parameters. KD is effective even for teacher and student networks with the
same number of parameters[8]. There is also a two-stage knowledge distillation
using three networks[23].

Bidirectional knowledge distillation trains multiple student networks at the
same time, using the probability distributions of the student networks as pseudo-
labels. The first bidirectional knowledge distillation, DML, was proposed by
Zhang et al. [38]. In DML, the accuracy of the network increases with the number
of networks.

On-the-Fly Native Ensemble (ONE) [16] is knowledge distillation using en-
semble. ONE reduces the number of parameters by using a multi-branch network
and produces a training effect similar to that of DML by using an ensemble of
multi-branches as pseudo-labels.

A variety of knowledge has been proposed, such as probability distributions,
feature maps, attention maps, and relationships between samples [27,20,35,31,25]
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Table 1: Correlation coefficient for
each dataset.

Dataset Correlation coefficient

Stanford Dogs 0.237
Stanford Cars 0.499
CUB-200-2011 0.322
CIFAR-10 0.386
CIFAR-100 0.325 0.70 0.75 0.80 0.85 0.90 0.95
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Fig. 2: Relationship on Stanford Cars.

[1,36,30,37,3]. Minami et al. [22] introduced a graph representation for knowledge
distillation to unify the existing methods. Knowledge distillation is also effective
in a variety of problem settings [4,19,29,26].

3 Investigating the relationship between ensemble and
knowledge distillation

We think that there is a correlation between the differences of probability distri-
butions and ensemble accuracy because of the relationship between bidirectional
distillation and ensemble. In this section, we investigate the relationship between
the difference in probability distributions and ensemble accuracy and verify the
change in ensemble accuracy caused by knowledge distillation on the Stanford
Dogs dataset [12].

3.1 Relationship between bidirectional knowledge distillation and
ensemble

We investigate the relationship between KL-divergence, a loss design of DML[38],
and the accuracy improvement by ensemble of two models. KL-divergence is a
measure of the difference in distribution. However, it is an asymmetric measure,
so the analysis defines the measure of difference as

MutualKL =
1

2
(KL(p1 ∥ p2) +KL(p2 ∥ p1)), (1)

where p1 and p2 are the probability distributions of networks 1 and 2, respec-
tively. The accuracy improvement by ensemble is defined as

∆Accuracy = ACCens −
1

2
(ACC1 +ACC2), (2)

where ACCens is the ensemble accuracy, ACC1 is the accuracy of network 1,
and ACC2 is the accuracy of network 2. The datasets are Stanford Dogs [12],
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Fig. 3: Ensemble accuracy of loss design for various numbers of networks.

Stanford Cars [13], Caltech-UCSD Birds-200-2011 (CUB-200-2011) [32], CIFAR-
10 [14], and CIFAR-100 [14]. The network is ResNet [9], and 100 trained networks
are prepared. ResNet-20 is used for CIFAR datasets, and ResNet-18 is used for
other datasets. Ensemble is constructed by selecting two networks out of 100,
and evaluation is performed on all combinations (4,950 pairs).

Table 1 shows the correlation coefficients for each dataset, and Fig. 2 shows
the evaluation results for Stanford Cars. There is a weak positive correlation
between the difference of probability distributions and the improvement of ac-
curacy by ensemble. Therefore, it is expected that the ensemble effect can be
improved by training to have diversity in the probability distributions between
networks.

3.2 Bidirectional knowledge distillation to promote diversity for
ensemble

On the basis of analysis trends, we consider knowledge distillation that separates
knowledge to improve the ensemble accuracy. Therefore, we investigate the effect
on the ensemble by training to bring knowledge closer and training to separate
knowledge. We use two types of knowledge: the probability distribution that
is the final output of the network, and the attention map that represents the
information in the middle layer. The loss design for probability distributions
uses KL-divergence to bring the probability distributions closer together and
cosine similarity to separate the probability distributions. The loss design for
the attention map uses mean square error to bring the attention map closer
together and cosine similarity to separate the attention maps. We use ResNet-
18 [9] as the network and Stanford Dogs [12] as the dataset. The attention map
is created from the output of ResBlock4 using Attention Transfer [37].

Fig. 3 shows the results of the evaluation of each loss design with the number
of networks used in the ensemble from 1 to 4. Here, Independent is the ensemble
accuracy without knowledge distillation. The ensemble accuracy is improved by
training to bring the probability distributions closer together when the number of
networks is small and training to separate the attention maps when the number
of networks is large.
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4 Proposed Method

We propose an ensemble learning method using knowledge distillation. From
the trend in Sec. 3, it is difficult to intentionally design a knowledge distillation
method for each number of networks. Therefore, we propose to automatically de-
sign an effective ensemble learning method. We use the graph representation in
the knowledge transfer graph [22] and optimize the loss design of diverse knowl-
edge distillation as a hyperparameter of the graph by hyperparameter search.
We consider various ensemble learning methods by optimizing the structure of
the graph to maximize ensemble accuracy. We show that using the automatically
designed ensemble learning methods improves the ensemble accuracy and that
each network is prompted to a specific attention strategy by the combination of
the selected knowledge distillations regardless of the dataset.

4.1 Designing for loss of knowledge distillation to promote diversity

We perform knowledge distillation to promote diversity among networks for en-
semble. In this paper, we use probability distributions and attention maps as
knowledge, and design loss of bringing knowledge closer and loss of separating
knowledge. To train as a minimization problem, we use different loss designs for
bringing knowledge closer and separating knowledge. We refer to the destination
of knowledge distillation as the target network t and the source of knowledge as
the source network s.
Loss design for the probability distribution When the probability distri-
bution is brought closer together, KL-divergence is used, and when it is sepa-
rated, cosine similarity is used. The loss function using KL-divergence is defined
as

KL(ps(x) ∥ pt(x)) =

C∑
c=1

pcs(x) log
pcs(x)

pct(x)
, (3)

Lp = KL(ps(x) ∥ pt(x)), (4)

where C is the number of the classes, x is the input sample, ps(x) is the proba-
bility distribution of the source network, and pt(x) is the probability distribution
of the target network. The loss function using cosine similarity is defined as

Lp =
ps(x)

∥ ps(x) ∥2
· pt(x)

∥ pt(x) ∥2
. (5)

Loss design for the attention map The attention map responds strongly
to regions in the input sample that is useful for training. The size of the target
object varies from sample to sample, so the similarity may be high even though
the map responds strongly to different parts of the target object. Therefore, we
crop the attention map. The attention map of the source network is cropped to
a square centered on the position with the highest value, and the attention map
of the target network is cropped to the same position as the source network.
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Fig. 4: (a) Ensemble learning with diverse knowledge distillation by graph rep-
resentation. (b) Loss calculation shows knowledge transfer from m2 to m3. (c)
Calculated loss gradient information is only propagated in m3.

Cropping is performed at multiple sizes, and the average of the similarities at
each size is used as the similarity of the attention map. When the attention
map is brought closer together, the mean square error is used, and when it is
separated, cosine similarity is used. The loss function using mean squared error
is defined as

Lmap =
1

K

K∑
k=1

(
Qk

s(x)

∥ Qk
s(x) ∥2

− Qk
t (x)

∥ Qk
t (x) ∥2

)2, (6)

where K is the number of crops, Qs is the attention map of the source network
and Qt is the attention map of the target network. The loss function using cosine
similarity is defined as

Lmap =
1

K

K∑
k=1

Qk
s(x)

∥ Qk
s(x) ∥2

· Qk
t (x)

∥ Qk
t (x) ∥2

. (7)

Introducing Gate We control knowledge distillation by weighting the above
loss values of the probability distribution and the attention map using gates. In
this paper, we consider four types of gates: through, cutoff, linear, and correct.
The through gate passes through the loss value of each input sample as it is and
is defined as

GThough
s,t (a) = a. (8)

The cutoff gate does not execute loss calculation and is defined as

GCutoff
s,t (a) = 0. (9)
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The linear gate changes the weights linearly with training time and is defined as

GLinear
s,t (a) =

k

kend
a, (10)

where k is the number of the current iterations and kend is the total number of
iterations at the end of the training. The correct gate passes only the samples
that the source network answered correctly and is defined as

GCorrect
s,t (a) =

{
a ys = ŷ
0 ys ̸= ŷ

, (11)

where ys is the output of the source network and ŷ is a label.

4.2 Graph representation and optimization of graph structures

A diverse knowledge distillation by the losses in Sec. 4.1 is represented by a
graph [22], and an appropriate knowledge distillation is automatically designed
by optimizing the graph structure.
Graph representation for ensemble We use a graph representation [22]
in a knowledge transfer graph to automatically design knowledge distillation.
The ensemble learning using knowledge distillation by the graph representation
is shown in Fig. 4. The graph consists of nodes and edges. Nodes define the
network node that represents the network and the ensemble node that performs
ensemble. Edges represent loss calculation. Edges between network nodes rep-
resent knowledge distillation. Edges between the network node and the label
represent cross-entropy loss using the output of the node and the label.

The ensemble node performs ensemble by using the outputs of all the network
nodes. The process in an ensemble node is defined as

lens =
1

M

M∑
m=1

lm(x). (12)

where M is the number of network nodes, lm is the logits of the network node,
and x is the input sample.
Knowledge distillation between nodes Edges between network nodes per-
form knowledge distillation between nodes. Fig. 4b and 4c show the process of
loss processing at the edge from node m2 to node m3. First, the edge computes
the loss of knowledge distillation of the probability distribution and attention
map as shown in Fig. 4b. The loss calculation of knowledge distillation at the
edge is defined as

L
′

s,t = Lp(x) + Lmap(x). (13)

The final loss of knowledge distillation is then applied to the gate. The loss of
knowledge distillation applied to the gate is defined as

Ls,t =
1

N

N∑
n=1

Gs,t(L
′

s,t(xn)), (14)
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Fig. 5: Hyperparameters in graph structures for ensemble.

where N is the number of the input sample, and Gs,t(·) is one of the four types
of gate. The gradient of the loss of knowledge distillation changes the network
that propagates the gradient depending on the edge direction. Fig. 4c shows the
gradient flow at the edge from node m2 to node m3. In this case, knowledge
distillation from node m2 to node m3 is performed by cutting the computational
graph of node m2 to propagate the gradient only to node m3.

The loss calculation is performed for each edge, and the final loss of the
network node is defined as

Lt = Ghard,t(Lhard) +

M∑
s=1,s ̸=t

Ls,t, (15)

where Ghard,t is the gate, and Lhard is cross-entropy loss using the output of the
network node and the label ŷ.

Hyperparameter search Fig. 5 shows the hyperparameters of the graph
structure. The hyperparameters of the graph are the loss design of the edges
between the network nodes and the gate of each edge. There are six loss designs:
bring the probability distribution closer to that of the other edge (Eq.4), separate
the probability distribution (Eq.5), bring the attention map closer to that of
the other edge (Eq.6), separate the attention map (Eq.7), bring the probability
distribution and attention map closer to those of the other edge at the same
time (Eqs.4 and 6), and separate the probability distribution and attention map
at the same time (Eqs.5 and 7). The network to be used as the network node is
fixed to that determined before optimization.

The optimization of the graph structure uses random search and the asyn-
chronous successive halving algorithm (ASHA) [18]. The combination of hyper-
parameters is determined randomly, and the graph evaluates the ensemble node
at 1, 2, 4, 8 · · · 2k epochs. If the accuracy of the ensemble node is less than the
median accuracy at the same epoch in the past, the training is terminated and
the next graph is trained.
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Fig. 6: Graph optimized on Stanford Dogs. Red node represents ensemble node,
gray node represents network node, and “Label” represents supervised labels.
At each edge, selected loss design and gate are shown, exclusive of cutoff gate.
Accuracy in parentheses is the result of one of five trials.

5 Experiments

We evaluate the proposed method. In Sec. 5.2, we visualize the optimized graph
structure. In Sec. 5.3, we compare the proposed method with the conventional
method. In Sec. 5.4, we evaluate the generalizability of the graph structure on
various datasets. In Sec. 5.5, we evaluate the performance of knowledge distilla-
tion from the optimized ensemble graph into a single network.

5.1 Experimental setting

Datasets We used Stanford Dogs [12], Stanford Cars [13], Caltech-UCSD Birds-
200-2011 (CUB-200-2011) [32], CIFAR-10 [14], and CIFAR-100 [14]. Stanford
Dogs, Stanford Cars, and CUB-200-2011 belong to the fine-grained object clas-
sification task. CIFAR-10 and CIFAR-100 belong to the general object classifi-
cation task. When optimizing the graphs, we used part of the training data for
training and the rest for evaluation. We used 40,000 images for CIFAR and half
of the training data for other datasets. For the comparative evaluation discussed
in Sec.5.3 and 5.4, the original training data and testing data were used.
Networks We used ResNet [9] and attention branch network (ABN) [7] based
on ResNet. When training the CIFAR dataset, we used ResNet-20 and ABN
based on ResNet-20. When training the other dataset, we used ResNet-18 and
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(a) Independent (b) Ours

Fig. 7: Attention map of ABN in individually training and the optimized graph
with five nodes (Fig. 6d). Bottom of map shows prediction results and entropy
of probability distribution.

ABN based on ResNet-18. The attention map of ResNet is created from the
output of ResBlock4 by Attention Transfer [37]. ABN creates an attention map
on the basis of the class activation map [39] and weights the attention map to
the feature map by using the attention mechanism.
Implementation details The training conditions were the same for all experi-
ments. The optimization algorithms were stochastic gradient descent (SGD) and
momentum. The initial learning rate was 0.1, momentum was 0.9, coefficient of
weight decay was 0.0001, batch size was 16, and number of epochs was 300. The
learning rate was decayed by a factor of 10 at 150 and 225 epochs. The attention
map of ResNet is cropped to 3 × 3, 5 × 5, and 7 × 7 for loss calculation. The
attention map of ABN is cropped to 3×3, 7×7, and 11×11 for loss calculation.
In the optimization of the graph, we tried 6,000 combinations of hyperparam-
eters. We used PyTorch [24] as a framework for deep learning and Optuna [2]
as a framework for hyperparameter search. For the optimization of a graph, we
used 90 Quadro P5000 servers. Each result represents the mean and standard
deviation of five trials.

5.2 Visualization of optimized graphs

Fig. 6 shows the graphs of two to five nodes optimized on Stanford Dogs. With
two nodes, we obtained a graph that is an extension of DML. With three nodes,
we obtained a graph that combines the conventional knowledge distillation meth-
ods of KD and TA. With four and five nodes, we obtained graphs with a mixture
of loss designs that are brought closer together and loss designs that are sepa-
rated.

Fig. 7b shows the attention map of ABN with the five nodes. Each node
has a different focus of attention. Looking at the average entropy, nodes 1 and
5, which focus on a single point on the dog’s head, have low entropy. Nodes 2,
3, and 4, which focus on the whole image or background, have higher entropy
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Table 2: Comparison of the accuracy on Stanford Dogs [%].

Method
No. of ResNet-18 ABN
nodes Node Ensemble Node Ensemble

Independent 2 65.31 ± 0.16 68.19 ± 0.20 68.13 ± 0.16 70.90 ± 0.19
DML 2 67.55 ± 0.27 68.86 ± 0.25 69.91 ± 0.46 71.45 ± 0.52

ONE(B×2) 1 67.96 ± 0.41 68.53 ± 0.39 69.38 ± 0.38 69.81 ± 0.33
Ours 2 71.38 ± 0.08 72.41 ± 0.20 72.77 ± 0.23 73.86 ± 0.26

Independent 3 65.08 ± 0.23 68.64 ± 0.38 68.04 ± 0.28 71.41 ± 0.34
DML 3 68.66 ± 0.34 69.95 ± 0.39 70.50 ± 0.26 72.08 ± 0.42

ONE(B×3) 1 68.49 ± 0.60 68.94 ± 0.56 69.96 ± 0.47 70.44 ± 0.44
Ours 3 69.58 ± 0.15 71.87 ± 0.33 70.95 ± 0.16 73.41 ± 0.30

Independent 4 65.29 ± 0.35 69.27 ± 0.49 68.30 ± 0.27 72.06 ± 0.53
DML 4 68.83 ± 0.44 69.95 ± 0.58 71.50 ± 0.31 72.87 ± 0.29

ONE(B×4) 1 68.48 ± 0.32 68.85 ± 0.37 70.16 ± 0.47 70.54 ± 0.54
Ours 4 70.34 ± 0.12 72.71 ± 0.13 71.46 ± 0.22 74.16 ± 0.22

Independent 5 65.00 ± 0.24 69.47 ± 0.13 68.24 ± 0.26 72.32 ± 0.18
DML 5 68.77 ± 0.17 69.94 ± 0.20 71.15 ± 0.28 72.50 ± 0.16

ONE(B×5) 1 68.51 ± 0.18 68.95 ± 0.24 70.59 ± 0.28 70.89 ± 0.14
Ours 5 52.28 ± 0.87 71.35 ± 0.48 70.23 ± 0.33 74.14 ± 0.50

than nodes 1 and 5. This means that inferences are made on the basis of the
importance of different locations and the state of attention affects probability
distribution.

Fig. 7a shows the attention map in the ensemble method using individually
trained networks. Compared with the optimized graph, the average entropy of
the ensemble method using individually trained networks is lower. This is be-
cause the attention regions are almost the same among the networks even though
they are trained individually.

5.3 Comparison with conventional methods

Table 2 shows the average and ensemble accuracy of the nodes of the proposed
and conventional methods on Stanford Dogs. “Ours” is the result of the opti-
mized graph, “Independent” is the result of the individually trained network,
“DML” is the result of the network with DML [38], and “ONE” is the result
of the multi-branch network with ONE [16]. “ONE(B×2)” is the result of the
two-branch network. The ensemble accuracy of “Ours” was higher than those of
“Independent,” “DML,” and “ONE.” Comparing “Independent” and “DML,”
we can see that the improvement in ensemble accuracy was smaller than the
improvement in node accuracy. With “Ours,” compared with “DML,” ensemble
accuracy also improved as network accuracy improved. Therefore, we can say
that “Ours” obtained the graph that generates more diversity by training.

Fig. 8 shows the comparison results with ABN and different base networks.
The vertical axis is accuracy, and the horizontal axis is the total number of
parameters. In Stanford Dogs, the accuracy of the single network and “Indepen-
dent” varied with the number of parameters. “Ours” shows that ensemble with
high parameter efficiency can be constructed by mutual learning with diversity
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Fig. 8: Relationship between number of parameters and accuracy in Stanford
Dogs. Green shows single network, blue shows “Independent,” and light blue
shows “Ours.”

Table 3: Ensemble accuracy of reused two-node graphs optimized on another
dataset [%].

Method
Training Optimizing

Ensemble
Graph Graph

Independent CUB-200-2011 - 65.26
Ours CUB-200-2011 Stanford Dogs 72.06
Ours CUB-200-2011 CUB-200-2011 69.81

Independent Stanford Cars - 88.49
Ours Stanford Cars Stanford Dogs 89.76
Ours Stanford Cars Stanford Cars 89.44

Independent CIFAR-100 - 73.16
Ours CIFAR-100 Stanford Dogs 72.19
Ours CIFAR-100 CIFAR-100 74.18

Independent CIFAR-10 - 93.99
Ours CIFAR-10 Stanford Dogs 93.87
Ours CIFAR-10 CIFAR-100 94.37
Ours CIFAR-10 CIFAR-10 94.15

without changing the network structure. When the number of networks is in-
creased, ensemble accuracy reaches a ceiling of around 73%. This shows that the
proposed method achieved an accuracy that exceeds the limit of a conventional
method.

5.4 Generalizability of graphs

We evaluate the optimized graph in Stanford Dogs on a variety of datasets. Table
3 shows the ensemble accuracy of the two-node graph. On the dataset of the fine-
grained object classification, the graph optimized by Stanford Dogs has better
accuracy than Independent. On CIFAR-10, the graph optimized by CIFAR-100
has better accuracy than Independent. We believe that there is generalizability
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Table 4: Accuracy of single network by knowledge distillation [%].
Method Teacher Studet

DML 67.97 69.68
KTG 71.71 72.71
SLA - 69.36

FRSKD - 71.42
Ours 72.60 72.94

in the graph structure when the problem set is the same, and that optimization
has resulted in a graph structure that corresponds to the problem set.

5.5 Knowledge Distillation from ensemble learning

We evaluate the performance of knowledge distillation from the optimized en-
semble graph into a single network. We use ResNet-18 as a student network
and DML [38] KTG [22] as a teacher network for knowledge distillation on the
Stanford Dogs dataset. We also compare with the state of the art of knowl-
edge distillation, such as SLA [17] and FRSKD [11], which are self-distillation
methods. The table 4 shows the accuracy of teachers and students trained with
each method. “Ours” means knowledge distillation using the ensemble of two
networks trained by the graph of Fig. 6a as a teacher. From the tabale 4, we
see that the accuracy of the student network by “Ours” is higher than that of
the conventional methods. This is because the ensemble of two networks trained
by the graph has diversity for representing dark knowledge to make suitable
knowledge transfer.

6 Conclusion and Future Work

This paper proposed a knowledge distillation for ensemble. We investigated loss
design for ensemble to promote diversity among the networks and automatically
designed knowledge distillation for ensemble by graph representation. Experi-
mental results on five different datasets showed that the proposed method in-
creased the accuracy. The optimization of the graph structure was evaluated on
6,000 randomly determined pairs using the asynchronous successive halving al-
gorithm (ASHA). The number of combinations of graph structures increases in
proportion to the number of nodes. Therefore, increasing the number of combi-
nations to be evaluated may result in a better graph structure. Our future work
will include introducing Bayesian optimization and fine-tuning graph structures.
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