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ABSTRACT

The trade-off between accuracy and speed for an object detec-
tion model is important. When we implement an object detec-
tion model in embedded devices, a lightweight model can ac-
celerate the detection speed. Meanwhile, the detection accu-
racy will be decreased. In this paper, we propose a knowledge
distillation method for a lightweight object detection model.
The proposed method introduces an improved feature map
novel non-maximum suppression (FM-NMS) method. The
improved FM-NMS uses different focus size with respect to
each object class, which can suppress false positives and im-
prove detection accuracy. In our experiments, we use one-
stage object detection methods, YOLOv4 as a teacher model
and YOLOv4-tiny as a student model, and we apply the pro-
posed method to them. The experimental results demonstrate
that the proposed method improves the detection accuracy of
the student model while maintaining the lightweight model
size.

Index Terms— Object detection, Knowledge distillation,
Feature map non-maximum suppression

1. INTRODUCTION

Object detection [1, 2, 3, 4, 5, 6, 7] is widely investigated
and used for some application fields, such as autonomous
driving [8, 9] and robotics [10, 11]. The existing meth-
ods have achieved higher detection accuracy while the net-
work structures of such methods becomes more complex
and larger-scale. The large-scale model faced a problem
for implementing detection models into an embedding de-
vice. Therefore, the trade-off between detection accuracy and
processing speed is an important factor.

For building a lightweight detection model, some ap-
proaches have been proposed such as quantization of model
parameters [12, 13], pruning [14, 15], and knowledge distil-
lation [16]. Among them, knowledge distillation (KD) [16] is
an efficient approach for reducing model size and maintain-
ing accuracy. KD uses two networks, one is teacher model
and the other is student model, and train the student model
with hard target and soft target. By using soft target as an
additional loss function, the student model can achieve higher
accuracy.

The KD for object detection model have also been pro-
posed [17, 18]. Mehta et al. [18] proposed feature map
non-maximum suppression (FM-NMS), which applies non-
maximum suppression (NMS) for feature maps. They in-
troduced the FM-NMS for knowledge distillation of object
detection. However, object scales in an image are different
over object class while the conventional FM-NMS uses the
same focus size of NMS across every object classes. This
causes the failure detection results of small objects.

To overcome this problem, in this paper, we introduce a
novel FM-NMS for KD of object detection model. The pro-
posed FM-NMS uses different focus size of NMS with respect
to each object class, which can detect objects considering ap-
propriate object size. Moreover, by using the different focus
size, we can remove redundant focus size on NMS. Therefore,
we can reduce the computational cost on the NMS process.
By introducing the proposed method into a one-stage detec-
tion method [6, 19], we can achieve higher detection accuracy

The contribution of this paper are as follows:

* This paper introduces a novel NMS. The proposed
NMS uses different focus size for each object class.
This achieves more accurate object detection.

* The proposed method provides faster processing speed
due to the redundant detection frame is processed by
FM-NMS, which saves the time of normal NMS pro-
cessing. The experimental results show that our method
is faster than YOLOv4-tiny.

2. RELATED WORK

Object detection is a widely investigated problem in the com-
puter vision and image processing communities. Over the
last decade, due to the development of deep neural network
techniques, a lot of approaches have been proposed [1, 2, 3,
4, 6, 7]. The object detection methods can be categorized
into a couple of approaches: two-stage and one-stage. Two-
stage approach [1, 2, 3] consists of object proposal and clas-
sifier. The object proposal predicts candidates of object re-
gions from an input image. Then, each proposal are input
to classifier, and object class of each proposal are classified.
The other is one-stage, which consists of a single network and
predicts objects in an end-to-end manner [4, 6, 19]. You Only



Look Once (YOLO) [4, 6, 19, 7] is one of the one-stage de-
tection method. YOLO predicts confidence score and class
probabilities, simultaneously. By using these values, the fi-
nal detection results are predicted. The one-stage method is
faster than two-stage method because the region proposal in
the two-stage method becomes the bottle neck of the compu-
tational efficiency. In this paper, we use one-stage model in
our experiments.

Knowledge distillation (KD) [16] is a method for train-
ing a small network while maintaining the accuracy. KD uses
two networks: teacher model that is pre-trained larger net-
work and student model that is smaller network than teacher
model. KD trains the student model by using hard target that
is calculated from correct label of a dataset and soft target that
is calculated from the output of the teacher model. The soft
target increases the accuracy of the student model.

The KD is also applied for object detection. Chen et al.
[17] proposed a method of simultaneous knowledge distilla-
tion for the feature-extraction layer, classification loss, and
regression loss using Faster R-CNN [3] as a detection model.
However, a two-stage object detection model is more time-
consuming than the one-stage object-detection model, mak-
ing it difficult to implement in embedded terminals. Mehta et
al. [18] proposed the feature map non-maximum suppression
(FM-NMS). The FM-NMS applies the NMS process to fea-
ture maps. The FM-NMS searches for the maximum points
in 3x3 neighboring grid cells of the feature map output from
the teacher model. They conducted KD using the output of
FM-NMS process as a soft target to improve the accuracy of
a one-stage object detector, YOLOv2 [5], and achieved better
detection accuracy. However, the FM-NMS does not take into
account the suitable focus size for each class. In this paper,
we propose a novel FM-NMS that consider different focus
size depending on each object class.

3. PROPOSED METHOD

In this paper, we propose a KD method with a novel FM-
NMS process. The conventional FM-NMS is carried out with
the same focus size for all classes. However, because the ap-
propriate focus size is different over each object class. The
proposed FM-NMS uses the different focuses, which results
in improving detection accuracy and reducing computational
cost.

Figure 2 shows the overview of the proposed method.
In the proposed method, we first input an image to the pre-
trained teacher model and student model. Then, we apply the
proposed FM-NMS process for the teacher model output, and
use the output value as a soft target. With the soft target and
correct label, we calculate soft target and hard target losses,
respectively. Finally, we update the parameter of the student
model by using the soft and hard target loss.

Hereafter, we describe the details of the proposed method.

Step 1. Determine the focus size of each class Step 2.Extract the grid cell with the highest scores
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Step 3. Feature map extracted in Step 2 is used as the soft target
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Fig. 1. The process flow of the proposed FM-NMS for each
class.

3.1. FM-NMS Process for Each Class

The proposed FM-NMS uses different focus size depending
on object classes. We show the process flow of the proposed
FM-NMS in Fig. 1. In this method, larger object class uses
larger focus size while smaller object class uses smaller focus
size. The process is consists of the following three steps. In
Step 1, we determine the focus size of each class in accor-
dance with the actual data set to be used. The focus size of a
class with a large object size is set to be large, while the focus
size of a class with a small object size is set to be small. In
Step 2, among the focus sizes determined in Step 1, the grid
cells corresponding to the points with the highest scores in the
class corresponding to this focus size are extracted. In Step 3,
the feature map extracted in Step 2 is used as the soft target,
and the loss of the confidence output, classification output,
and regression output of the student model is calculated, re-
spectively.

3.2. Distillation Loss

In this paper, we assume that we use YOLOv4 [6] as a
baseline model. Figure 3 shows the network architecture of
YOLOv4. The smallest size of the feature map output by
YOLOv4 is 19x19. In this feature map size, if each grid
cell contains five bounding box, we get 19 x 19 x 5 = 1805
detection results. Because not only the target object but also
the background information is contained in the grid cells, the
loss value should take background fields into account. We
therefore use the confidence output of the teacher model as
KD. The confidence output of the background is smaller than
that of the target object. We can suppress the effect of the
background from the distilled knowledge by using it as the
coefficient of the losses for the classification and regression
outputs of the teacher and the student models, respectively.

The loss function used for the proposed method L is de-
fined as follows:

L=1Ly(s,T)+ aLs(s,t), (1)
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Fig. 3. Network structure of YOLOV4.

where s is the student model output, ¢ is teacher model output,
and T is correct label. «v is a coefficient for the soft target loss
Lg(s,t). The hard target loss Ly, is calculated from the output
of the student model and correct label, which is defined by

Lh - Lconf(sy T) + Lcls (57 T) + Lreg(sy T) (2)

Here, Leonys(s,T) is the confidence loss. Lg(s,T) is the
classification loss. Ly¢4(s,T') is the bounding box regression
loss. Every losses are calcluated by mean squared error. The
soft target loss L is defined as follows:

L :Lconfkd(S’ t)
+ ctLClSkd (S7t) (3)
+ CtLTegkd(Sv t)v

where Leony,,(s,t) is the confidence loss of the student and
teacher models. L, ,(s,t) is the classification loss of the
student and teacher models. And, Lycg,,(s,t) is the bound-
ing box regression loss of the student and the teacher models.
Note that, these losses are calcluated by using mean squared
error. ¢; is the confidence output of the teacher model. Here
we use ¢; as the coefficient for L, ,(s,t) and Lyeg,,(s,1).

By using this coefficient, we can suppress the effect of the
background from the distilled knowledge.

4. EXPERIMENTS

In this section, we evaluate the proposed method in terms of
detection accuracy and computational efficiency of the pro-
posed method.

4.1. Experimental Settings

We use PASCAL VOC 2007 and 2012 datasets [20]. The
PASCAL VOC dataset contains 20 object classes and 16,551
samples for training, 4,952 for testing.

As a baseline model, we use YOLOv4 [6] as teacher
model and YOLOv4-tiny [19] as student model. The compar-
ative methods are as follows:

YOLOv4 and YOLOv4-tiny These models are trained with
only hard target. Especially, YOLOvV4 is used as a base-
line for the larger detection model and as the teacher
model for soft target.

Mehta et al. [18] We use YOLOv4 and YOLOv4-tiny as
teacher and student models, respectively. We train the
student model by their method.

Ours The proposed method. We set « in Eq. (1) as 1.0.

As an evaluation metric of the object detection, we use mean
average precision (mAP).

In the proposed FM-NMS, we decide the focus size of
each class from the average area of each class. FM-NMS was
performed with a size of 2 x2 for the classes with small areas,
i.e., bottle, pottedplant, chair, TV monitor, sheep, and boat.
Also, we use 4 x4 focus size for the larger area object classes,



Table 1. mAPs in Pascal VOC dataset

AP
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YOLOv4 8641942 91.8 85.6 79.0 80.5 91.7 95.8 91.2 74.1 91.3 78.7 89.9 92.5 92.0 89.8 62.6 86.5 82.1 91.9 87.4
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i.e., train, aeroplane, bus, motorbike, diningtable, and horse.
For the other classes, we set the focus size as 3x 3.

4.2. Quantitative Results

We show the mAP for each method in Tab. 1. The proposed
method achieved the highest mAP excluding YOLOv4. Com-
paring YOLOv4-tiny trained with only hard target, the use of
the soft target loss increases the detection accuracy. More-
over, our method outperforms the method of Mehta et al. [18].
This result indicates the proposed FM-NMS is efficient for
improving accuracy.

Focusing on each class, the proposed method improves
the APs for potteplant, chair, boat, car, person, bird, horse,
bus, diningtable, motorbike, train, dog, and sofa. Meanwhile,
the APs for the other classes are lower than that of the method
proposed by Mehta et al. [18]. The proposed FM-NMS uses
the different focus sizes over different classes. Therefore, the
appropriate focus size is important to improve the detection
accuracy, which includes one of our future works.

4.3. Qualitative Results

Figure 4 shows examples of the detection results of each
method. The YOLOv4-tiny failed to detect some objects.
Although our method uses the same network architecture, we
can detect objects successfully. Meanwhile, our method can
detect objects as with the results of YOLOv4. Therefore, the
soft target affects on the detection accuracy and suppress the
effect of background regions.

4.4. Processing Speed

We evaluate the processing speed of the proposed method. We
compare the processing speed with YOLOv4-tiny. All of this
experiment is conducted with Intel Xeon Gold 5122 CPU and
Quadro RTX 8000 GPU. Each method is implemented using
PyTorch framework.

Table 2 shows the processing speed of each method. Note
that we exclude the time for image pre-processing and visu-
alization of detection results from the measurement time. Al-
though these network structures are the same and the infer-
ence time are not change, the proposed method is faster than

(a) YOLOv4 (b) YOLOvV4-tiny (c) Ours

Fig. 4. Examples of detection results.

Table 2. Processing speed

Method \ Processing speed (fps)
YOLOv4-tiny 234
Ours 49.0

YOLOv4-tiny. This reason is that the proposed FM-NMS se-
lects focus size that is efficient for each class. By removing
redundant focus size, we can reduce the time of FM-NMS
while maintaining detection accuracy. From these results, the
proposed FM-NMS is efficient in terms of both accuracy and
computational efficiency.

5. CONCLUSION

In this paper, we propose a novel FM-NMS and used for
KD of object detection model. The proposed FM-NMS uses
different focus size depending on object classes, which en-
ables to detect object considering appropriate object size.
Moreover, by removing redundant focus size, we can reduce
the computational costs on the FM-NMS process. The ex-
perimental results show that the proposed method achieved
higher mAP on Pascal VOC dataset. Also, we show that the
proposed FM-NMS reduces the processing time comparing
YOLOV4-tiny. Our future work includes applying KD for the
intermediate layer features, deciding optimal focus size of the
proposed FM-NMS, and extensive experiment to show the
effectiveness of the proposed method.
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