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Abstract—Action spotting, which temporally localizes specific
actions in a video, is an important task for understanding
high-level semantic information. In this paper, we formulate
the action spotting task to one of scene sequence recognition
and propose a model with multiple scene encoders to capture
scene changes around the timestamp where an action occurs. We
divide the input into multiple subsets to reduce the influence of
scene context that is temporally distant, and feed every subset
into a scene encoder to learn scene context in every subset.
Because the optimal temporal length for time windows (chunks)
is different for each action, we analyze the influence of chunk
sizes for action spotting. The experimental results on the public
SoccerNet-v2 dataset demonstrate state-of-the-art accuracy. By
using embedding features, our method obtains an Average-mAP
of 75.3%. In addition, we confirm that the performance can be
improved by using optimal chunk sizes for different actions.

I. INTRODUCTION

The production of sports game summaries requires hu-
man and material resources. Automatic or semi-automatic
generation of summary videos will reduce the time from
event to broadcast. To approach this task, several fundamental
technologies of video understanding are required; for exam-
ple, action recognition [12], action detection [3] and action
spotting [2], [8]. Action spotting is the task of localizing an
event anchored to a single timestamp. Different from action
detection and recognition, it is required to find the most
relevant frame where the action occurred.

There are two main challenges in action spotting. The first
challenge is how to adequately use temporal information.
A video clip generally includes sequential images that are
visually similar, but have a different context, such as a
football scene where the football field is typically the image
background as shown in Fig. 1. Therefore, it is important
to consider not only visual information but also underlying
temporal information for action spotting in such videos [8],
[15]. The second challenge is the different durations of dif-
ferent actions. One may consider an action being composed
of different subactions, e.g., a Goal action is often composed
of Running, Shooting and Cheering subactions. A Yellow card
action typically includes a scene of a player falling and a scene
of the referee raising the card.

Fig. 1: Action spotting. A Goal action is shown in (a), which consists
of running, shooting and cheering scenes. The top and bottom of (b)
show an Offside and a Corner action, respectively. We can see the
temporal duration of these actions are different. Note that the action
happens in zero second as the center image of each example. Images
are cited from [4].

In this paper, we propose a novel method based on multiple
scene encoders for action spotting to tackle these challenges1.
For better performance in few-shot learning, we use several
subsets of sequence images as an important cue for action
spotting. Specifically, as shown in Fig. 2, first we extract
image features from sequential images of a video as a chunk.
A chunk is split into multiple subsets, and fed into multiple
transformer encoders, respectively, to recognize scene content
and capture the changes of scenes in an action. Finally, we
classify actions by recognizing the scene sequence. Multiple
encoders help to suppress the influence of different subactions
and improve the recognition of subaction sequences. For
the second challenge of different action duration, we use
different chunk sizes for each action with the aim of using
all action-related frames and reducing redundant data in a
chunk. In our experiments on SoccerNet-v2 [4], the proposed

1We denote input data and its temporal length as chunk and chunk size
respectively, following prior work [4], [8].



method reaches 55.2% Average-mAP using ResNet features,
and 75.3% using embedding features, representing state-of-
the-art performance. In addition, in an ablation study, we
confirm that we improve the performance by using optimal
chunk sizes for each class.

Our main contributions are summarized as follows: (1) We
propose a new action spotting model with multiple scene
encoders based on transformer encoders to learn from scene
context appearing with actions in every subset, respectively,
and recognizing scene sequences. (2) We confirm that the
performance can be improved by using an optimal chunk size
for different actions. (3) We achieve a state-of-the-art average-
mAP of 75.3% for action spotting on the SoccerNet-v2 dataset
and confirm the model design choices in ablation studies.

II. RELATED WORK

In this section, we briefly review prior work of action
spotting and introduce datasets of sports videos.

A. Action spotting

In video understanding, there are many fundamental tasks,
such as video classification [13], action recognition [12] and
action detection [3]. Video classification is the task of predict-
ing the label of a video. Action recognition aims to recognize
specific actions in videos. Action detection aims to locate
temporal regions of particular actions in real-world videos.
Action spotting is the task of temporally localizing a specific
action anchored with a single timestamp [1], [24]. Action
spotting in sports videos is challenging because of rapid scene
changes in videos and the various duration of actions. Several
approaches have been proposed for action spotting, especially
in soccer videos. A regression and masking approach with
RMS-Net was introduced in [20]. In this method, frames only
after an action occurs (post-action) are considered, without
using pre-action frames. CALF [2] introduces a context-aware
loss function, which weights frames in different temporal
segments according to the distance from the ground truth
timestamp, such as ‘far before’, ‘just before’ and ‘just after’
an action occurs. NetVLAD++ [8] uses two NetVLAD [19]
modules to handle the context before and after an action,
respectively. They disentangle the context from past and future
frames and learn specific vocabularies of semantics for each
subsets to avoiding blending such vocabulary in time. Inspired
by this work, we propose a model based on multiple encoders
to handle the temporal relationship in a video. The multiple
encoder structure is effective at reducing scene-context interac-
tions and recognizing scene sequences. Moreover, in contrast
to prior work, we explore the use of different chunk sizes for
different action classes.

B. Datasets of sports videos

Large-scale public datasets are available for different sports,
such as GolfDB [16] and MLB-Youtube [18]. A dataset con-
taining 222 sports broadcast videos was released in [26]. Soc-
cerNet [7] is a public dataset of soccer videos including three
types of actions (goal, card and substitution). SoccerDB[11]

merged a subset of 270 games from SoccerNet with 76 soc-
cer games. SoccerNet-v2[4] extended SoccerNet [7] with 17
actions and over 300,000 annotations. We use the SoccerNet-
v2 dataset [4] to evaluate the performance of different action
spotting models.

III. METHOD

We propose a novel method for action spotting using multi-
ple encoders as shown in Fig. 2. We use multiple encoders that
learn semantic information in temporal subsets to recognize
scene sequences. To consider the different duration of actions,
we use optimal chunk sizes during inference.

A. Video encoding

We extract feature vectors from the videos subsampled at 2
fps. Let us denote the frame of an input video at the time index
t = 1, 2, . . . , T by xt ∈ RH×W×C , where T is the number of
frames in a chunk, H and W are height and width, and C is
the number of image channels. We compute a d-dimensional
feature vector per frame as ft ∈ R1×d. The feature vectors of
an input video are fed to our action spotting model, which is
explained next.

B. Model

We propose a model with multiple scene encoders to capture
scene changes.

1) Multiple encoder structure: We formulate action spot-
ting to the task of recognizing scene sequences. To recognize
scene sequences, we propose the multiple encoders structure,
as presented on Fig. 2. We partition the set of input feature
vectors into multiple subsets and use an encoder for each
subset.

2) Scene Encoder: To accommodate different features,
which may have different dimensions, we use an MLP layer
to map features to a fixed length, denoted E, in every en-
coder. We inject temporal information by adding a positional
encoding to each feature vector to help model the temporal
relationship between frames. The positional encoding is rep-
resented as a sinusoidal function proposed in [23].

To learn latent features from the temporal relationship
among frames, we use a multi-head self-attention mecha-
nism [23]. We denote the number of scene encoders, the
number of stacked encoder layers and the number of heads
in multi-head attention as N , L and H , respectively. The
attention calculated by the query matrix Qn = ϕn

q ({ft}
T
N
t=1),

the key matrix Kn = ϕn
k ({ft}

T
N
t=1) and the value matrix

V n = ϕn
v ({ft}

T
N
t=1), where ϕq , ϕk and ϕv are MLP layers

and n is the index of the encoder.
The attention of the hth attention head in the nth encoder

is calculated by

headnh = Attentionpn(Q
n,Kn, V n), (1)

On = ϕn
o ([head

n
h]

H
h=1), (2)

where ϕn
o is an MLP layer, and the Attention function is

the scaled dot-product attention in [23]. We denote the output



Fig. 2: Proposed Network Architecture. We split the extracted feature vector into multiple subsets of similar duration, feed them into
multiple scene encoders respectively. Each scene encoder is designed based on the transformer’s encoder shown on the right. Images of a
football game are cited from [4].

of nth encoder as On. We consider that query, key, value
matrices are three different representations of the same frames.
In Attention, the dot-product of Q and K represents the
correlation of every two frames. Two similar frames have a
strong correlation, because their features are similar. The result
is used as the weight on V to help the model focus on similar
frames. Since the frames in a scene are generally similar, using
self-attention could help to find scenes in a subset by finding
similar images.

We use scene encoders to extract scene features in each
subset. We merge the outputs of the multiple encoders, which
presents the scene features in the subsets, and average them
temporally. We use a sigmoid layer and a dropout layer to
avoid overfitting. Finally, we use an MLP ϕr layer and a
sigmoid layer to classify an action as:

C = [O1;O2; ...;On], (3)

m =
1

T

T∑
t

ct, (4)

y = σ(ϕr(dropout(σ(m)))), (5)

where [;] is a concatenation operator, and ct is the presentation
vector of the tth frame output by encoders.

C. Training
During training, we divide features into multiple non-

overlapping chunks. We train the proposed model to predict
the actions in chunks. Since multiple actions can occur within
a chunk, we formulate it as a multi-label action classification
task.

D. Inference
There are two types of inference processes, using a fixed

chunk size for all actions and using a optimal chunk sizes for

Fig. 3: Inference. Model A and B are trained with the chunk size of
15 and 20 seconds, respectively.

each class. When using a fixed chunk size, we select the chunk
label corresponding to the classification result of its center
frame. We obtain the prediction result for the entire video via
sliding chunks, frame by frame, to predict classification results
of all frames. The inference process of using optimal chunk
sizes is shown in Figure 3. We input features with different
chunk size to the trained model and obtain the classification
result. We take the result using a specific chunk size as the
classification result of corresponding actions. For example, we



use the 20-second chunk result as the classification result of
penalty action. Similarly, we slide chunks frame by frame to
obtain the results of every frame. We select appropriate chunk
sizes using the validation dataset.

We use Non-Maximum Suppression(NMS) similar to [7],
[2], [4], [8] for reducing positive action spotting results with
low confidence. The NMS threshold is 0 and the NMS window
size is 60 frames (30 seconds).

IV. EXPERIMENTS

In this section, we compare our model with several existing
methods on the SoccerNet-v2 dataset [4]. We then analyze
the influence of chunk size in action spotting to confirm
the effectiveness of chunk size optimization. Moreover, we
conduct an ablation study to confirm the design choices of our
method. Finally, we evaluate our method on the first version
of SoccerNet [7] to show the generalization capability of our
method.

A. Experimental setting

1) Evaluation protocols: We use SoccerNet-v2 [4] to train
and evaluate our method. SoccerNet-v2 contains 765 hours
of videos of 500 soccer games, with 300,000 annotated times-
tamps and 17 action classes, such as goal, ball out of play, and
yellow card. SoccerNet-v2 is divided into training, validation
and test sets as 300, 100 and 100 games, respectively [4].
We measure performance using the Average-mAP value. If the
temporal offset between prediction and its closest ground truth
is less than a given tolerance ∆, the prediction is regarded as
positive. The average precision (AP) for the prediction per
class within the threshold ∆, averaged over action classes
to calculate the mAP. The Average-AP is the average of AP
values calculated over 12 error tolerance values ∆ (from 5s
to 60s, the step size is 5s) respectively for each class. The
Average-mAP is the average of 17 Average-AP.

2) Implementation details: We use a ResNet-152 [10] pre-
trained on ImageNet [5] as the feature extractor. The frame
features are extracted at 2 fps videos with a resolution of
224×224. The feature extractor outputs a 2,048-dimensional
vector for every frame. The number of scene encoders in the
proposed model is set to two. The features are remapped to a
256 dimension vector per frame. Every scene encoder contains
8 heads and 2 encoder layers. We use the Adam optimizer [14],
the binary-cross entropy loss function, and a starting learning
rate of 0.002. We set the dropout rate to 0.1, the batch size to
128 and the chunk size to 15 seconds on training and validation
datasets. We stop the training once the mAP on the validation
dataset stops decreasing for 6 continuous epochs. The model
achieving the best performance on the validation dataset is
used as the model for evaluation on the test set.

B. Results

1) Comparison with state-of-the-art methods: Table I
shows the results of our methods and several state-of-the-
art methods (NetVLAD [19], AudioVid [22], CALF [2] and
NetVLAD++[8]). As seen in Table I, our method achieves

an Average-mAP of 55.2% on the test dataset. The Average-
mAP is an absolute 1.8% higher compared to NetVLAD++.
This improvement is consistently seen for 12 of the 17 action
classes, especially for classes with few examples (Red Card
and Yellow→Red). This indicates the advantage of modeling
the temporal relationship in every subset, especially for actions
with few samples. The proposed method adequately utilizes
the temporal relationship thanks to the multiple encoder struc-
ture. Performance has low correlation with the number of
samples as seen from Table I. In several actions where there
are distinctive patterns of frame changes such as corner and
goal, we achieve good performance even with few samples.
On the other hand, on actions with less distinctive patterns
such as Indirect free-kick, the performance is lower. For better
recognition of temporal patterns, it is important to consider
optimal chunk size because we can include as many as action-
related frames in the model and decrease the number of
unrelated frames in samples (see next subsection).

2) Visualization of confidence score: For the further analy-
sis of our results, we visualize the confidence scores of several
classes, as shown in Figure 4.

Figures 4 (a) and (d) show examples of the confidence score
of Corner action on a temporal axis. As seen in these figures,
the confidence score is high for frames where several people
are shown in a close-up view. We assume that these frames are
helpful to localize corner actions. Such frames ordinarily last
for around 10 seconds; therefore, an appropriate chunk size of
Corner action would be 10 seconds, as shown in Table II.

The confidence of the Direct free-kick action is high for
frames where players gather in front of a goal. As shown in
Figure 4 (b), the confidence score increases in frames where
players gather in front of the goal. On the other hand, in
Figure 4 (e), such frames appear for only a few seconds.
Consequently, the confidence becomes low.

In the Yellow card action, we often observe scenes of a
player falling and a referee appearing. In contrast, no referee
appears in Figure 4 (c), however the yellow card information
is displayed on the screen. The confidence score is low in
this case. In another case, we observe a high confidence score
in Figure 4 (f) as the scene of a falling player followed by
a referee scene. 10 − 20 seconds is an appropriate range of
chunk size for yellow card actions. Because the scenes where
a player falls often happen 3 − 10 seconds before a Yellow
card action, there is often a replay scene where a player falls,
increasing the appropriate chunk size for yellow cards to over
10 seconds.

3) Optimization of chunk size: To find an appropriate chunk
size for each action, first we train our model with different
chunk sizes, ranging from 10 to 40 seconds (5s as step size).
Then, we select the best chunk size that achieves the best
performance on the validation dataset. The optimal chunk sizes
are shown in Table III. From this table, we confirm that each
action requires its own chunk size. Thanks to this optimization,
we can see several performance improvements. For example,
the average-AP of Offside is improved by 3.6% using the
chunk size of 20 seconds. The average-AP of Shot-off target



TABLE I: State-of-the-art comparison. The ResNet is a pretrained ResNet-152 and PCA is principal component analysis. Ours(1) uses
15 seconds as chunk size. Ours(2) uses a optimal chunk size for each action. Number of data is the number of samples in every class.
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AudioVid ResNet+PCA 39.9 54.3 50.0 55.5 22.7 46.7 26.5 21.4 66.0 54.0 52.9 35.2 24.3 46.7 69.7 52.1 0.0 0.0
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NetVLAD++ ResNet+PCA 50.7 67.7 59.6 70.2 70.3 35.3 37.1 38.3 56.0 68.2 65.3 62.4 43.4 55.2 78.9 50.0 1.5 1.7
NetVLAD++ ResNet 53.4 79.3 62.1 71.6 68.7 39.3 39.3 41.0 57.0 70.3 69.0 64.2 44.4 57.8 79.7 56.7 4.0 3.7
Ours(1) ResNet 54.7 75.8 60.8 72.0 70.6 38.6 41.8 40.2 60.6 71.3 70.3 63.5 49.2 59.9 81.6 53.4 8.0 11.5
Ours(2) ResNet 55.2 68.7 60.8 72.0 70.6 42.2 41.8 42.2 60.6 73.1 72.3 63.4 49.2 59.9 83.6 53.9 15.9 7.2

Number of data 173 2566 1703 2839 2098 5820 5256 7896 31810 18918 11674 10521 2200 4836 2047 55 46

(a) Corner (b) Direct-free Kick (c) Yellow Card

(d) Corner (e) Direct-free Kick (f) Yellow Card

Fig. 4: Confidence score examples. Ground truth labeled frames of different actions are shown in frames from [4] within red boxes. The
blue line represents the change of the confidence scores in the time series axis. The confidence scores of shown frames are indicated by
circles in the graphs above.

TABLE II: Evaluation results for different chunk sizes. ResNet-
152 is used as the feature extractor. The Average-AP on the validation
dataset changes with chunk size on three actions (direct free-kick,
corner and yellow card).

Chunk Size 10 15 20 25 30
Direct free-kick 52.7 57.4 52.8 49.7 46.4
Corner 83.0 81.1 77.8 74.6 69.6
Yellow card 54.9 54.7 55.7 52.3 52.6

is also improved by 2% with the chunk size of 10 seconds.
The Average-AP of few-shot actions, such as Red card and
Yellow→Red card, varies considerably with chunk size, and
the lack of samples makes it challenging to select an optimal
value. On the other hand, actions containing many samples
have similar optimal chunk sizes in test and validation datasets.
We observe an improvement of 0.5% Average-mAP in total.

C. Ablation study

1) Evaluation of number of encoders: To analyze the
influence of the number of encoders, we train our model with
different numbers of encoders, from one to five. For each
number of encoders, we tune the hyper-parameters, including
chunk size, to obtain the best performance for each model.
Note that we use a fixed chunk size for all models in this
experiment, and the best performance is obtained for 15-

second chunks. We observe that models with multiple encoders
achieve better results than the single-encoder model, as shown
in Table IV. Interestingly, the performance of models with
more than two encoders is decreasing as the number of
frames in each chunk is reduced when covering the same
time window. The model with two encoders achieves the best
performance on SoccerNet-v2, modeling pre-action and post-
action windows with a duration of 7.5 seconds each.

2) Comparison of feature extractors: We evaluate the
proposed method using three feature extractors (ResNet,
ResNet+PCA and Embedding feature extractor [27]). The
results are shown in Table V. The embedding feature extrac-
tor [27] consists of TPN [25], GTA [9], VTN [17], irCSN [21],
I3D-Slow [6]. The average mAP increases to 75.3% by using
embedding features. To extract scene context in videos, it is
required to correctly acquire important information in frames.
Therefore, the selection of a feature extractor has a significant
effect on action spotting accuracy.

D. Evaluation on SoccerNet-v1

SoccerNet-v1 [7] contains the same soccer videos as
SoccerNet-v2, but only includes three action classes and 6,637
annotations. We train and evaluate the proposed model on the
SoccerNet-v1 dataset [7] and compare with related work. The



TABLE III: Evaluation of chunk size optimization. In Fixed size, every class uses a 15 second chunk size. Results with and without chunk
size optimization are shown in Fixed and Optimized. The optimized chunk size of action classes is shown in the row Chunk Size. For most
action classes, we observe a performance improvement by chunk size optimization.
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Fixed 75.8 60.8 72.0 70.6 38.6 41.8 40.2 60.6 71.3 70.3 63.5 49.2 59.9 81.6 53.4 8.0 11.5 54.7
Optimized 68.7 60.8 72.0 70.6 42.2 41.8 42.2 60.6 73.1 72.3 63.4 49.2 59.9 83.6 53.9 15.9 7.2 55.2

Chunk Size (sec) 20 15 15 15 20 15 10 15 10 10 10 15 15 10 20 30 20

TABLE IV: Comparison of different number of encoders. We
evaluate the average-mAP for encoders’ number from 1 to 5, using
ResNet-152. The highest value is obtained by a model using two
encoders. Chunk Size shows the best fixed chunk size for each model.

Num of Encoder 1 2 3 4 5
Average-mAP(%) 52.1 54.7 53.5 52.9 52.2
Chunk Size(s) 15 15 15 15 15

TABLE V: Comparison of different feature extractors. We eval-
uate the performance of the proposed method using three feature
extractors. Length shows the feature vector length of each feature
extractors.

Feature Extractor ResNet+PCA ResNet Embedding
Average-mAP(%) 52.9 54.7 75.3
Length 512 2048 8576

proposed method obtains a 66.8% average-mAP, exceeding
CALF [2] by 4.3%, as shown in Table VI. When using ResNet
and PCA as the feature extractor, the proposed method exceeds
CALF [2] by 2%.

V. CONCLUSION

In this paper, we propose a new model with multiple
encoders for the task of action spotting. We employ multiple
scene transformer encoders to learn from the temporal relation-
ship in subsets. In experiments, we show that the proposed
model reaches 55.2% average-mAP, increasing the state-of-
the-art by 1.8%. When using embedding features, the proposed
model obtains an average-mAP. of 75.3%. Furthermore, we
confirm that the optimization of the chunk size for each action
is effective for action spotting.
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