
Refining Design Spaces in Knowledge Distillation
for Deep Collaborative Learning

Sachi Iwata, Soma Minami, Tsubasa Hirakawa, Takayoshi Yamashita and Hironobu Fujiyoshi
Chubu University

Kasugai, Aichi, Japan
Email: {isachi, minami, hirakawa}@mprg.cs.chubu.ac.jp, {takayoshi, fujiyoshi}@isc.chubu.ac.jp

Abstract—Knowledge distillation is one of the most widely
utilized methods to improve the performance of a model. The
knowledge transfer graph has been proposed for deep collab-
orative learning that enables a rich diversity of bidirectional
knowledge distillation. However, exploring a knowledge transfer
graph is difficult due to the many potential combinations it can
have, so it is not clear how accurate the resultant graphs will
actually be. To address this issue, we propose a method for
designing the search space with step by step and analyze the
trends of graphs to design graphs with high accuracy on the basis
of the acquired results. Experiments on the CIFAR-100 dataset
show that we confirm that the accuracy of the best knowledge
transfer graph in the search space is better than that derived
using the asynchronous successive halving algorithm. We also
demonstrate that the explored knowledge transfer graphs can be
transferred to different datasets.

I. INTRODUCTION

Deep convolutional neural networks are the engine of visual
recognition, and it is crucial that the networks be deep and
have a high performance. We can obtain high-performance
networks by distilling the knowledge learned during the net-
work learning process [1]–[6] and optimizing the architecture
of neural networks [7]–[15].

We can expect to improve the accuracy of network models
by transferring soft-labels among network models. Represen-
tative methods include knowledge distillation (KD) [1] and
deep mutual learning (DML) [2]. KD can improve the network
performance of a student network with a small number of
parameters by distilling knowledge from a teacher network
with a large number of parameters. DML can also improve
the network performance by training multiple networks simul-
taneously and distilling the knowledge from each. Knowledge
distillation between networks has been investigated not only
for the purpose of network compression but also for improving
network performance [2], [3]. In this paper, we refer to
learning methods that deal with knowledge among multiple
networks (e.g., KD and DML) as collaborative learning among
networks.

The knowledge transfer graph (KTG) [3] is a large-scale
representation of knowledge distillation for deep collaborative
learning between networks. In this technique, KD and DML
can be represented by a graph structure to function as a
learning method that encompasses them both. In addition,
the way knowledge is distilled can be controlled by using a
gate function, which reduces the distillation of unnecessary

39

A

BC

A B C

Design space

Fig. 1. Refining knowledge transfer graph design spaces. Left: refining
design spaces. The red edges indicate where the search space is fixed. In
this design, we start with an initial design space A and apply two refinement
steps to yield design space B and then C. In this case, C ⊆ B ⊆ A. Right:
empirical distribution function [16] with design space transition. The error
distributions strictly improve from A to B to C. We can expect to obtain
robust graphs by refining the design space of knowledge transfer graphs in
this way.

knowledge. A KTG provides a unified view of knowledge
transfer and has the potential to represent diverse knowledge
distillation patterns. In the KTG, each node represents a
network, and each edge represents a direction of knowledge
distillation. By automatically optimizing nodes and edges, we
can obtain the best distillation method. However, since the
search space of a typical KTG is huge, it remains unclear
which elements contribute to the creation of a highly accurate
graph.

In this study, we analyze what kinds of nodes and edges are
used in graphs with high recognition accuracy. Our objective is
to obtain an optimal knowledge distillation method by refining
the design space of KTGs based on the trends obtained from
the analysis. The design space refers to the search space that
people design to find the explored KTGs. First, a random
search of KTGs is performed to analyze the trends common
to graphs with high recognition accuracy. Then, the design
space of a specific KTG is manually restricted on the basis
of the identified trends. These steps are repeated until the
design space is sufficiently small (Fig. 1). We compare the
KTG refined with our method to that derived by DML to
determine whether it can obtain a design space with more
graphs and a higher recognition accuracy. We also compare
the accuracy of the explored graphs found by searching the
entire refined design space with the results explored by using
the asynchronous successive halving algorithm (ASHA) [8],
a conventional search method. We then re-train the graphs

40

• Through gate
− Each training sample without any changes.

• Cutoff gate
− Cut off any edge.

• Linear gate
− Weighting linearly with time during training.

• Correct gate
− Only let through if the source node is correct.#! #"! !",$

!%,&
!&,%

!&,$

!$,&

!%,$
!$,%

&'

&'

&'

! !",%

! !",&

Target node

Auxiliary node

##
Gate function

Fig. 2. Knowledge transfer graph

obtained by the search on a different dataset to investigate
whether we can obtain a graph with generalization ability.

Our contributions are as follows.
• We explore the design space of KTGs by refining the

design space. By refining the search space step by step,
we can identify a design space where it is easy to explore
a distillation method with high recognition accuracy.

• We analyze the KTGs in the design space to obtain an
overview of the trends. Our findings show that if we have
knowledge of the auxiliary nodes, we can improve the
accuracy without directly using the teacher labels.

• We identify a graph with high recognition accuracy on
another dataset.

II. RELATED WORK

A. Knowledge transfer graph

One type of a combination unidirectional-bidirectional dis-
tillation is the knowledge transfer graph (KTG) method [3].

An example of KTG is shown in Fig. 2, where m refers to
network models, L is a loss function, and ŷ refers to labels.
In a KTG, each network model is represented by a node, and
the direction of the knowledge distillation between nodes is
represented by an edge. The hyper-parameters of the KTG are
the network model and the gate function. There are four types
of gate functions that control loss functions: through gate,
which outputs the input as it is without any change, cutoff gate,
which sets the output to zero with respect to the input, linear
gate, which increases the output as it learns, and correct gate,
which passes the value only if the inference result is correct
during learning. The target node is the one whose accuracy is
to be improved, and the nodes that support the target node are
the auxiliary nodes. However, for a KTG with three nodes,
the number of hyper-parameter combinations (i.e., for both
nodes and edges) is 1,179,648, which makes it computationally
infeasible to perform the entire search in a realistic amount of
time.

In this study, we propose a stepwise refinement of the design
space to identify trends in KTGs and obtain graphs with a high
recognition accuracy.

B. Hyper-parameter optimization

The main hyper-parameter optimization methods include
a technique to suggest the next search point based on the

previous search results and a technique to explore the search
space.

For exploring the architecture of a network, many dif-
ferent hyper-parameter optimization methods have been pro-
posed. Network architecture search methods include the tree-
structured Parzen estimator approach (TPE) [9], which is a
Bayesian optimization method, and NAS [7] and ENAS [10],
which use reinforcement learning. DARTS [11] maps a dis-
crete parameter space into a continuous space for optimization.
BANANAS [12] and GraphBO [13] represent the network
structure as a graph for optimization. There is also a sim-
ple but powerful method called random search [14] that is
utilized by the successive halving algorithm (SHA) [15] and
the asynchronous successive halving algorithm (ASHA) [8],
both of which increase the efficiency of the search by active
branch trimming. SHA uses the hyper-parameters proposed by
random search to train a model for a certain period of time,
and then repeats the process of training the model further,
keeping the top n% of good trials. ASHA is executed in
parallel asynchronously and to efficiently search for hyper-
parameters with high accuracy. It achieves equal or better
accuracy compared to more complex methods such as TPE,
NAS, ENAS, and DARTS [17].

However, as the above search methods do not take into
account the trends of the entire search space when performing
optimization, they do not always arrive at a global optimization
result. In other words, it is not always possible to obtain gener-
alized features (e.g., residual and skip structures) in networks
with high accuracy. Designing network design spaces [18] has
been proposed as a method to discover generalized features by
optimizing the search space while investigating its trends using
the empirical distribution function [16]. However, this method
requires a huge number of searches to refine the design space
after searching.

Our solution to this problem is to focus on the trends of the
search space. And we refining the design space step by step.
This enables us to explore the KTG with fewer searches than
when searching the initial search space.

III. PROPOSED METHOD

Since the search space for KTGs is huge, the common
tendency of graphs with high accuracy is not yet clear.
Therefore, instead of searching for the optimal KTG in a
particular setting, we explore the entire population of KTGs.
This enables us to acquire trends in the entire design space,
which will help us to improve the recognition accuracy of
the KTG. Our goal is to design a better KTG for visual
recognition. To this end, we analyze the hyper-parameters
common to highly accurate graphs and propose a method to
refine the design space step by step. Fig. 3 shows the flow
of the proposed method. The initial design space is the space
at the beginning of the search, and by repeating the search, a
design space with many more accurate graphs can be found.
There are three reasons for repeating the process of refining
the design space step by step, as shown below.

Analysis based on EDF

Step 1

Step 2

Select by AUC
B CA

Random search
in design space A

Step 3

B CA X

Step 4

n < D

n ≥ D

A B C

Refinement of
design space B

Full exploration of
design space X

Fig. 3. Refining the design space. After a random search of design space A, the EDF results are plotted under four conditions. After that, the design space
is refined on the basis of knowledge of others. Finally, we explore the entire design space X.

• To simplify the structure of the design space by exploring
and analyzing it.

• To improve or at least maintain the design space quality
by refining it step by step.

• To maintain KTG diversity by optimizing the design
space.

In this method, since the design space is refined step by
step, the number of searches becomes large. However, it is
possible to grasp the trend of the entire design space. We can
learn which elements are important for the way in knowledge
distillation.

A. Tool for evaluating the design space

We use the empirical distribution function (EDF) introduced
by Radosavovic et. al. [16] as a tool for evaluating the design
space. The EDF, which is commonly used to evaluate the
design spaces for KTG, is a measure of the percentage of
KTGs with error rates lower than a given value of e. The
EDF of n graphs with errors {ei} is given by

F (e) =
1

n

n∑
i=1

1[ei < e], (1)

where F (e) is given as the fraction of KTGs with a validation
error lower than e. In deep learning, accuracy may vary
depending on the number of trials. EDF can be evaluated for
accuracy across the entire design space, not just the highest
value. We evaluate the design space with EDF by plotting it
on a graph and judging by the area under the curve. In doing
so, it is possible to quantitatively evaluate whether the design
space is good and explore automation. Simply put, the more
KTGs in the design space that have a low error rate, the better
the design space. When refining the design space, the EDF is
plotted on a graph and judges a large area to be a good design
space by the area under the curve. A sufficient number of
searches is required to determine whether the design space is
good or bad when using this index. Therefore, we reduce the

exploring time of KTGs by learning for half the number of
epochs in which we evaluate it.

B. Flow of exploring KTGs

The proposed method refines the design space by focusing
on hyper-parameters common to graphs with a high recogni-
tion accuracy.

The flow is shown in Fig. 3. First, we refine a hyper-
parameter search to find which KTG is better in design space
A. Second, we analyze the design space based on EDF to
discover which hyper-parameters have higher effectiveness.
We assume that the area under the curve is the best design
space, and select that. Third, we use the next design space as
the design space refined with the selected hyper-parameters.
Then, the design space is used as the next design space to
be explored, and the design space is refined. This process
is repeated until the number of combinations is sufficiently
reduced to obtain design space X. In this method, we ex-
plore design space is refined step by step. In other words,
the exploration gradually refines the hyper-parameters (i.e.,
auxiliary nodes and gate functions in KTGs). Consequently,
we can avoid falling into a local optimum solution. Finally,
we search for a better graph by exploring the entire refined
design space. Then, we obtain the best graph in that design
space. Algorithm 1 shows how to refine the design space and
explore the KTGs. In order to analyze which hyper-parameters
would have the best impact on the target node, the following
conditions are set in Step 2.

• Auxiliary node
• Edge from label to auxiliary node
• Edge from label to target node
• Edge from auxiliary node to target node

IV. EXPERIMENTS

We performed experiments to compare a graph without
diversity (i.e., DML) by using a through gate function with the
design space X restricted by the proposed method. We also

Algorithm 1 Refining design space
Require: Number of combinations in design space of

KTGs n, lower limit hyper-parameters that refine the design
space D, dataset M .
Manually set up a design space A.
while n > D do

Randomly search in n and train them on M (Step 1).
Analyze AUC based on EDFs under four conditions (Step
2).
Select hyper-parameters that are common to graphs with
high accuracy and manually refine the design space (Step
3).
n = number of combinations in refined design space

end while
Full exploration of design space X (Step 4).

examined whether a generalizable graph could be obtained
by the proposed method by training the explored graph using
another dataset.

A. Experimental setting

Dataset: We used the CIFAR-10, CIFAR-100 [19], Tiny-
ImageNet [20], and CINIC [21] datasets, which are commonly
used for object recognition. CIFAR-10 and CIFAR-100 re-
spectively consist of 60,000 and 50,000 images for training
and 10,000 images for testing, and contain 32×32 images and
labels of 10 and 100 classes. When exploring graphs, 40,000
of the 50,000 datasets for train set are used for training, and
10,000 for testing are randomly assigned. When evaluating the
graphs obtained by the search, 50,000 datasets for training and
10,000 datasets for testing are used. The training data images
are subjected to data augmentation using 4-pixel padding
(reflection), random cropping, and random flipping. The im-
ages of the validation data do not receive data augmentation.
Tiny-ImageNet consists of 100,000 training data and 10,000
validation data sampled from the ImageNet [22] dataset. Tiny-
ImageNet consists of 64×64 images and 200 classes of teacher
labels. The settings for data augmentation are the same as
those for the CIFAR datasets. CINIC-10 consists of 270,000
images (60,000 from the original CIFAR-10 data and the
remaining from ImageNet), 90,000 images for training and
90,000 images for testing, and contain 32×32 images and
labels of 10 classes. The settings for data augmentation are
the same as those for the CIFAR datasets.

Models: We used ResNet32 [24] and WRN28-2 [25]. Ta-
ble I lists the average accuracy and standard deviation achieved
when each model was trained with supervised labels only on
CIFAR-100 for five times the experiment. As we can see,
WRN28-2 had the higher accuracy. When training with Tiny-
ImageNet, the stride of the first convolution layer should be
set to 1 because of the large image size.

Implementation details: For the optimization algorithm,
we used SGD and Nesterov momentum in all experiments. The
initial learning rate was 0.1, the momentum was 0.9, and the
batch size was 64. The scheduler for the learning rate utilized

TABLE I
ACCURACY OF VANILLA MODELS

Model Accuracy
ResNet32 71.59 ± 0.27
WRN28-2 75.73 ± 0.46

cosine decay [23]. We set the lower limit of hyper-parameters
that refine the design space D to 500. We trained for 100
epochs when searching design spaces A to C. We trained for
200 epochs when evaluating the graphs by the search using
CIFAR-10 and CIFAR-100. We trained for 80 epochs when
evaluating the graphs by the search using Tiny-Image Net. The
gate functions used were through gate, cutoff gate, and linear
gate. The target node was ResNet32, and the auxiliary nodes
were ResNet32 and WRN28-2. Design spaces A to C were
searched 2,500 times each, and design space X had five full
searches. The computations were performed using 30 Quadro
P5000 servers.

Since KTGs optimize nodes and edges to make the accuracy
of the target node high, it is not always possible to obtain
a graph with high accuracy. One example of recognition
accuracy degradation is when the teacher labels are not used to
train the target node. In this experiment, graphs with extremely
low recognition accuracy of the target node were not used in
the analysis.

B. Exploring KTG design spaces

We refine the design space to obtain design space X, which
is the design space of KTGs with high accuracy.

Design space A: First, we explored design space A,
which has no restrictions on the hyper-parameters used for
exploration. Table II shows the AUC for the auxiliary node,
including the given value and the percentage of graphs whose
error rate is below the given value. n is the number of graphs
acquired by the search. We can see here that, by using two
WRN28-2s as auxiliary nodes, it was possible to obtain many
graphs with high recognition accuracy. This suggests that
the model with high recognition accuracy is expressive and
contributes to the improvement of the recognition accuracy of
the target node.

Design space B: Next, we explored design space B, which
is the space that includes the WRN28-2 (auxiliary node) found
to be most effective in the search of design space A. Table II
shows the AUC of the edge from the label to the auxiliary
node. We can see here that using a through gate from the
label to the auxiliary node resulted in a large number of highly
accurate graphs.

Design space C: Next, we explored design space C, which
is the space with the most effective through gate (label to
auxiliary node) identified after searching design space B.
Table II shows the AUC for the edges from auxiliary node
to target node. We can see here that use of a through gate or
linear gate from the auxiliary node to the target node resulted
in the acquisition of many graphs with high recognition
accuracy. This suggests that the knowledge of each auxiliary

TABLE II
AUC OF DESIGN SPACES

Item of analysis Node or gate Design spaces A → B Design spaces B → C Design spaces C → X
ResNet32 & ResNet32 68.80 – –

Auxiliary node ResNet32 & WRN28-2 69.75 – –
WRN28-2 & WRN28-2 70.74 – –

Edge from label to auxiliary node

Through & Through 70.70 71.69 –
Cutoff & Cutoff 69.35 69.62 –
Linear & Linear 70.10 70.94 –

Through & Linear 70.64 71.44 –
Through & Cutoff 69.58 70.81 –
Linear & Cutoff 68.58 68.84 –

Edge from label to target node

Through & Through 69.86 70.86 72.07
Cutoff & Cutoff 69.61 69.62 69.61
Linear & Linear 70.52 71.28 72.12

Through & Linear 69.98 70.80 72.11
Through & Cutoff 69.66 70.74 71.52
Linear & Cutoff 69.67 69.76 71.23

Through 70.70 71.15 71.38
Edge from auxiliary node to target node Cutoff 67.67 68.63 71.47

Linear 70.56 71.08 71.73

TABLE III
SUMMARY OF DESIGN SPACES.

Design space Restriction Combinations
A None 39,366
B +m2 = m3 = WRN28 2 9,842
C +Lŷ,2 = Lŷ,3 = Through gate 1,094
X +L2,1 = L3,1 = Linear gate 121

0 20 40 60 80 100
Trial

26.5

27.0

27.5

28.0

28.5

29.0

29.5

30.0

B
es

t E
rr

or
 r

at
e

[%
]

A (Original design space)
X (3 times refining design space)

Fig. 4. Minimum test error rate in random search of design spaces A
and X. The mean and standard deviation of three iterations of random search
are plotted.

node learned through training with labels can improve the
recognition accuracy of the target node.

Design space X: Design space X is the space using a linear
gate (from auxiliary node to target node) identified as the most
effective after searching design space C. Table III summarizes
the design spaces refined by the proposed method. The number
of combinations of design space X obtained by design space
refinement was 61/19683 the number of combinations in the
initial design space (design space A). Compared to the full
search of design space A, the number of full searches in design
space X can be greatly reduced.

TABLE IV
AUC IN DESIGN SPACE X.

Gate function AUC
Through 72.36
Cutoff 73.10
Linear 72.88

C. Effects of refining the design space

We performed 200 random searches for each of the two
design spaces (with and without design space reduction) to
determine which one acquired the most accurate graph faster.
The results are shown in Fig. 4, where the horizontal axis
shows the number of searches and the vertical axis shows the
minimum error rate at the time of searching. We can see here
that design space X could find graphs with a higher error rate
faster. This result demonstrates that the design space acquired
by the proposed method (design space X) is more likely to
acquire highly accurate graphs compared to the design space
in the initial stage of the search (design space A).

D. Analysis of design space X

We investigated the trends of the KTGs acquired in the final
design space X. The results are shown in Table IV, where the
AUCs for each type of edge from the teacher labels to the
target node in the full search of design space X are depicted.
As we can see, the accuracy tended to be higher when the
cutoff gate was selected, indicating that using the knowledge
from the teacher labels directly reduces the accuracy. This
means that knowledge from the teacher labels is not necessary
when distilling knowledge from auxiliary nodes that have been
well trained using the label.

E. Comparison with conventional search methods

We compared the recognition accuracy of the optimal graph
obtained by searching using ASHA and by searching the entire
design space X. ASHA is a method that terminates learning
and moves on to the next search if less than 50 percent of the

1. ResNet32 (73.83%)

2. ResNet32 (74.76%)

Linear

3. WRN28_2 (77.31%)

Through

Linear

Linear

Through

Linear

Label

Through

Label

Through

Label

Through

(a) ASHA (Design space A)

1. ResNet32 (74.58%)

2. WRN28_2 (78.02%)

Linear

3. WRN28_2 (78.15%)

Linear

Linear

Linear

Linear

Through

Label

Through

Label

Through

(b) Ours (Design space X)

Fig. 5. KTGs explored on CIFAR-100. Red nodes indicate target nodes and numbers in parentheses indicate the recognition accuracy of each node. “Label”
indicates the teacher labels. Edges not shown are where the cutoff gate was selected.

TABLE V
ACCURACY OF KTGS

Method of exploration Fixed (Through) Explored
ASHA (Design space A) 73.66± 0.35 73.96± 0.16
Ours (Design space X) 74.06± 0.26 74.52± 0.19

graphs acquired up to epoch 1, 2, 4, · · · , 2n are recognized.
Table V shows the average accuracy and standard deviation
of the best graph obtained by the search using ASHA and
by the full search of design space X, trained five times each.
“Fixed (Through)” means that all edges of the explored graph
are set to through gate and the graph has lost its diversity.
“Explored” refers to the best graph obtained by each search.
Compared with the results of the search using ASHA, our
proposed method that searches the entire design space obtained
graphs with the higher accuracy.

Fig. 5(a) shows the explored KTGs obtained by searching
design space A using ASHA. From the acquired graphs,
we can confirm that graphs that suppress the strength of
knowledge distillation in the early stage of learning have high
recognition accuracy. Fig. 5(b) shows the explored KTGs ob-
tained using the proposed method. From the acquired graphs,
we can confirm that graphs that learn auxiliary nodes in the
initial stage of learning and gradually distill the knowledge to
the target nodes have a higher recognition accuracy.

F. Graph translatability

We investigated the generalization ability of the proposed
method with graphs on different datasets. An untrained net-
work model was used for each of the network models. The
graphs explored using CIFAR-100 were used to investigate
the change in accuracy after retraining on CIFAR-10, Tiny-
ImageNet, and CINIC-10. Table VI lists the results, where
“Fixed (Through gate)” denotes a graph whose nodes are
WRN28-2 and whose edges have lost their diversity. “Ex-
plored” indicates the graph structure obtained by the proposed
method. We can see that the graph explored on CIFAR-
100 was valid on CIFAR-10 and CINIC-10, while on Tiny-

TABLE VI
EVALUATION USING DIFFERENT DATA SETS.

Dataset Fixed
(Through)

Explored
(Searched by CIFAR-100)

CIFAR-100 74.06± 0.26 74.52± 0.19
CIFAR-10 93.93± 0.21 94.22± 0.07

Tiny ImageNet 55.76± 0.30 54.54± 0.30
CINIC-10 85.26± 0.15 85.50± 0.30

ImageNet, the graphs without edge diversity were more ac-
curate than those explored by CIFAR-100. CIFAR-10 and
CINIC-10 are 10-class datasets consisting of vehicles and ani-
mals, respectively, while in contrast, Tiny-ImageNet is a 200-
class dataset that includes many classes other than vehicles and
animals. Therefore, our findings here show that it is possible
to obtain a graph with good generalization performance if the
graph is transferred between datasets with similar distributions.

V. CONCLUSION

In this paper, we proposed a method to refine the design
space of KTGs step by step so that we can obtain a de-
sign space containing more accurate graphs than DML. Our
findings show that the proposed method can obtain a design
space X containing graphs with high recognition accuracy in a
smaller number of searches compared to the full search of the
design space A. Our analysis of the search process showed
that there is no need to distill knowledge directly from the
teacher labels if the knowledge comes from a model with high
expressive power that was learned using the teacher labels. In
addition, the graphs obtained were more accurate than those
explored by ASHA.

Since our proposed method uses EDFs, the total number of
searches is huge. Therefore, one of our future tasks is to find
better graphs with fewer searches.

ACKNOWLEDGMENTS

This paper is based on results obtained from a project,
JPNP18002, commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).

REFERENCES

[1] G. Hinton, O. Vinyals, and J. Dean, Distilling the Knowledge in a Neural
Network, in Neural Information Processing Systems Deep Learning
Workshop, 2014.

[2] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, Deep Mutual Learn-
ing, in IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4320-4328.

[3] S. Minami, T. Hirakawa, T. Yamashita, and H. Fujiyoshi, Knowledge
Transfer Graph for Deep Collaborative Learning, in Asian Conference
on Computer Vision, 2020.

[4] X. Lan, X. Zhu, and S. Gong, Knowledge Distillation by On-the-Fly
Native Ensemble, in Neural Information Processing Systems, 2018,
volume 38.

[5] D. Chen, M. Jian-Ping, C. Wang,Y. Feng and C. Chen, Online Knowl-
edge Distillation with Diverse Peers, in Association for the Advancement
of Artificial Intelligence, 2020, pp. 3430-3437.

[6] R. Masumura, M. Ihori, A. Takashima, T. Tanaka, T. Ashihara, End-to-
End Automatic Speech Recognition with Deep Mutual Learning, in Asia-
Pacific Signal and Information Processing Association Annual Summit
and Conference, 2020.

[7] B. Zoph and Quoc V. Le, Neural Architecture Search with Reinforce-
ment Learning, in International Conference on Learning Representa-
tions, 2017.

[8] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht,
and A. Talwalkar, A System for Massively Parallel Hyperparameter
Tuning, in Proceedings of Machine Learning and Systems, 2020, pp.
230-246.

[9] J. S. Bergstra, R. Bardenetm, Y. Bengio and B. Kégl, Algorithms
for hyper-parameter optimization, in Advances in Neural Information
Processing Systems, 2011, pp. 2546–2554.

[10] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, Efficient Neural
Architecture Search via Parameters Sharing, in International Conference
on Machine Learning, 2018, pp. 4095-4104.

[11] H. Liu, K. Simonyan, and Y. Yang, DARTS: Differentiable Architecture
Search, in International Conference on Learning Representations, 2019.

[12] C. White, W. Neiswanger, and Y. Savani, BANANAS: Bayesian Op-
timization with Neural Architectures for Neural Architecture Search,
in Association for the Advancement of Artificial Intelligence, 2021, pp.
10293-10301.

[13] L. Ma, J. Cui, B. Yang, Deep Neural Architecture Search with Deep
Graph Bayesian Optimization, in International Conference on Web
Intelligence, 2019.

[14] J. Bergstra and Y. Bengio, Random search for hyper-parameter opti-
mization, Journal of Machine Learning Research, 2012.

[15] Z. Karnin and T. Koren and O. Somekh, Almost optimal exploration in
multi-armed bandits, in International Conference on Machine Learning,
2013.

[16] I. Radosavovic, J. Johnson, S. Xie, W. Lo, and P. Dollár, On Network
Design Spaces for Visual Recognition, in International Conference on
Computer Vision, 2019.

[17] L. Li and T. Ameet, Random search and reproducibility for neural
architecture search, in International Conference on Machine Learning,
2019.

[18] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He and P. Dollár,
Designing Network Design Spaces, in IEEE Conference on Computer
Vision and Pattern Recognition, 2020, pp.10428-10436.

[19] A. Krizhevsky and G. Hinton, Learning multiple layers of features from
tiny images, Citeseer, 2009.

[20] Tiny ImageNet Visual Recognition Challenge, https://tiny-imagenet.
herokuapp.com/

[21] L. N. Darlow, E.J. Crowley, A. Antoniou, and A. J. Storkey, CINIC-
10 is not ImageNet or CIFAR-10, Report EDI-INF-ANC-1802, arXiv:
1810.03505, 2018.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-
Fei, ImageNet Large Scale Visual Recognition Challenge, International
Journal of Computer Vision, 2015.

[23] I. Loshchilov and F. Hutter, SGDR: Stochastic Gradient Descent with
Warm Restarts, in International Conference on Learning Representa-
tions, 2017.

[24] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for
image recognition, in IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 770-778.

[25] S. Zagoruyko and N. Komodakis, Wide Residual Networks, in British
Machine Vision Conference, 2016, pp. 87.1-87.12.

