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Abstract— Autonomous driving system controls a vehicle
using path planning. Path planning for automated vehicles
observes a vehicle and the surrounding information and plans
a trajectory on the basis of rule-based approach. However,
the rule-based path planning cannot generate an appropriate
trajectory for complex scenes, such as two vehicles passes each
other at an intersection without traffic lights. Such complex
scene is called deadlock. For avoiding the deadlock, it is very
costly to create rules manually. In this paper, we propose a
multi-agent deep reinforcement learning method to generate
appropriate trajectories at the deadlock scenes. The proposed
method consists of a single feature extractor and actor-critic
branches. Moreover, we introduce a mask-attention mechanism
for visual explanation. By taking a look at the obtained attention
maps, we can confirm the obtained agent and the reason of the
behavior. For evaluating our method, we develop a simulator
environment of autonomous driving that produces a certain
deadlock scene. The experimental results with the developed
environment show that the proposed method can generate
trajectories avoiding deadlocks.

I. INTRODUCTION

Autonomous driving system determines a vehicle tra-
jectory using path planning. Path planning for automated
vehicles observes a vehicle and the surrounding information
and plans a trajectory on the basis of rule-based approach
[1]. However, the rule-based path planning cannot generate
an appropriate trajectory for complex scenes, such as two
vehicles passes each other at an intersection without traffic
lights. Such complex scene is called deadlock. For avoiding
the deadlock, it is very costly to create rules manually. By
solving this problem, we can reduce the cost of manual labor
for developing rules.

One approach to acquire deadlock-avoiding paths is a deep
reinforcement learning. In the deep reinforcement learning
framework, we train an agent to find a policy that maximizes
its value through trial and error. Unlike supervised learning
framework, the agent is not given correct labels in advance,
but rather finds the optimal action on the basis of whether its
actions are judged to be good or bad behaviors. Moreover,
deep reinforcement learning, which combines reinforcement
learning with deep learning, has become a mainstream
method [2]. Deep reinforcement learning has been used in a
variety of tasks, such as robot control [3], Go [4], and playing
a video-game [5], where it is difficult to create training
data. Also, the deep reinforcement learning is applied for
autonomous vehicle control [6], [7].

Among reinforcement learning, multi-agent reinforcement
learning have been proposed. The multi-agent reinforcement
learning deals with multiple agents that interacts in a single
environment. Each agent finds the optimal actions consider-

ing interaction with the other agent actions. By training mul-
tiple agents simultaneously, we can acquire optimal policies
for group behaviors.

In this paper, we introduce multi-agent deep reinforcement
learning method for deadlock problem on an autonomous
driving task. The proposed method consists of a single
feature extractor across all agents and multiple branches for
each agent. The feature extractor extracts common features
from the states of each agent. Each branch consists of actor-
critic, that is, an agent outputs value and policy. By using the
branch structure, we can obtain different policies and avoid
a deadlock problem. Meanwhile, the behaviors of the multi-
agent deep reinforcement learning agents are more complex
and more difficult to understand than that of a single-
agent reinforcement learning. For analysing the trained agent
behaviors, we further introduce a mask-attention mechanism
[8] that visualizes the focused region of an input. For
evaluating the proposed method, we develop an environment
of autonomous driving that produces deadlock scenes. The
experimental results with the developed environment show
that the proposed method can generate trajectories avoiding
deadlocks. And, we analyse the agent behavior using atten-
tion maps.

II. RELATED WORK

A. Deep reinforcement learning and multi-agent reinforce-
ment learning

Over the last decade, many deep reinforcement learning
methods have been proposed [2], [9], [10], [11], [12]. Among
them, asynchronous advantage actor-critic (A3C) [9] is one
of the most popular method. A3C is based on the actor-
critic method [13] that combines a speedup by building
multiple environments and collecting experience in parallel,
asynchronous parameter updates for each model, and a
method for considering rewards a few steps in advance.
The mechanism that collects experiences in parallel is called
a worker; each worker has its own local network and all
workers share a global network. A3C reduced training time
and achieved higher performance on Atari2600 benchmark.

Multi-agent reinforcement learning acquires agent policies
of a group by training multiple agents in an environment
simultaneously [14], [15], [16], [17], [18]. The multi-agent
reinforcement learning can be categorized into two ap-
proaches. The first approach is introducing a mechanism
to communicate with each agent. Each agent can find the
optimal action considering the other agents by sending their
internal states via the communication mechanism. Sainbayar
et al. [14] introduced a communication mechanism. The



introduced mechanism takes states and actions of every
agents as vectors and compute average of these vectors.
Then, the averaged vector is fed into every agents. This
mechanism enables all agents to understand the states of
all agents and to learn optimal behavior considering the
other agents in a multi-agent environment. Jiechuan et al.
[15] uses a graph convolution to take into consideration the
information of other agents. The convolution is performed
considering the importance of other agents only under certain
conditions. This method consider the information excluding
own agent, which facilitates the acquisition of cooperative
actions.

The second approach is designing rewards considering the
entire learning process of multi-agent reinforcement learn-
ing apart from the environmental rewards. This additional
rewards can train agents while taking other agents into con-
sideration. Natarajan et al. [16] used inverse reinforcement
learning to find reward design taking interaction between
agents in an environment into consideration. They achieved
the collision avoidance between agents using the obtained
reward. Natasha et al. [17] introduced a novel reward called
social influence that represents the influence of an action
for the other agents and three specific models. The first
model is basic influence. The basic influence trains two
agents: influencer that learns behaviors to affect others by
social influence and influencee that learns behavior from
environmental reward. The second model is influential com-
munication, which introduces a communication mechanism
and learns behaviors by social influence. The third model
is modeling other agents that introduce a mechanism for
predicting other agent’s action and learn the prediction
mechanism by social influence. Their method achieved the
emergence of cooperative actions.

Our method is categorized into the first approach, i.e.,
sharing information between each agent. Unlike the above
mentioned approach, the proposed method predicts every
agent actions in a single network. The feature extractor
extracts common features across all agents, which enables
to consider the states of other agents.

B. Visual explanation in reinforcement learning

For understanding and analysing the decision-making of
a reinforcement learning agent, visual explanation methods
have been developed [8], [18]. Visual explanation generates
an attention map that highlights region where an agent
focused in taking an action. Itaya et al. [8] proposed mask-
attention A3C (Mask A3C) that introduces an attention
mechanism to asynchronous advantage actor-critic (A3C)
[2]. A mask-attention mechanism is incorporated in the
output for policy and in the output of state value in A3C.
This mechanism masks the feature map of the middle layer
by using the attention map. By using the mask-attention
mechanism, the attention map can be obtained during the
prediction step.

In this paper, we introduce the mask-attention mechanism.
By visualizing attention maps, we further analyse the ob-
tained agent behaviors in addition to quantitative evaluations.

III. PROPOSED METHOD

In autonomous driving, deadlock problem occurs because
different agents seeks their own rewards. When multiple
independent network are given for each agent, there is no
mechanism to influence the learning of other agents and
each agent takes an action only considering their own state.
Consequently, taking actions avoiding the deadlock problem
is delayed.

To solve the deadlock problem, we propose a multi-agent
reinforcement learning method that learns every agents’
policy simultaneously in a single network. Figure 1 shows
the network structure of the proposed method. The proposed
method consists of a feature extractor and multiple branch
structure. The feature extractor extracts common feature from
the input states of every agents. Then, extracted feature is fed
into multiple branches. Each branch is corresponding to each
agent and outputs the agent’s action. Moreover, we introduce
a mask-attention mechanism for the actor-critic branches,
which enables us to understand the reason of the agent’s
decision-making. Hereafter, we introduce the details of the
proposed method.

A. Feature extractor

As shown in Fig. 1, the proposed method first extracts a
common feature for every agents. Here, given n agents in
an environment, we denote agents as ¢ € {1,...,n} and
the state and action of an agent at time step ¢ as s and al,
respectively. The proposed method concatenates the states
of every agents as S; = [sf,...,s?]. Then, we extract the
common feature z; from S; as x; = f(Sy;6), where 6; is
the parameter of the feature extractor.

The common feature x; represents states of every agents.
This enables each agent consider every states of the other
agents.

B. Actor-Critic Branch

The common feature z; is used for multi-branch struc-
ture. Each branch consists of actor-critic network, which is
assigned for each agent. The actor-critic branch is composed
of policy and state value outputs. Moreover, we add a
mask-attention mechanism (details are described in Sec. III-
C). Unlike the feature extractor, the actor-critic branch is
independent and outputs the actions of the assigned agent.

The policy output in an actor-critic branch takes the
common feature z; as an input and predicts a policy. The
output is a probability distribution, and the policy branch
selects an action in the current state according to the prob-
ability distribution. We define the policy of an agent ¢ as
m(aj|xe; 0}), where 0) is the parameter for policy output.
The value output also takes x; as an input and predicts a
state value. The output is the expected value of the reward
in a state, and it represents the value of being in a certain
state. We define the state value of an agent i as V(z%;6?),
where ¢ is the parameter for value output. By using the
common feature x; as input for actor-critic, each agent can
take an action to avoid deadlock considering the other agents’
behaviors.
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Fig. 1. The proposed network structure.
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Fig. 2. Examples of the developed environment (scenes).

For training the proposed network, we define the loss
functions for policy and value outputs, respectively. The loss
function for policy output of i-th agent L; is defined by

BH (), (1)

where A(s, a) is the advantage function that considers a few
steps in advance. Here, we introduce an entropy H () as an
regularization term, which helps to avoid falling into local
minima. (3 is a scale parameter for H (7). The loss function
for value output L is defined by

Ll = —log (m(als;0})) A(s,a) —

p

i i i i.piy)2
Ly = (r+9V(zi11;0,) = V(2;6,)) 2
C. Mask-attention mechanism

The mask-attention mechanism is a method for visual
explanation of deep reinforcement learning. It generates
an attention map and use and use it for masking feature
map in an intermediate feature map. By learning with this
mechanism, the attention map can be acquired during the
prediction step.

In this study, we introduce the mask-attention mechanism
for policy output to provide a visual explanation of agent’s
action as shown in Fig. 1. Mask-attention is obtained from
the feature map by using 1x 1 convolution and sigmoid func-
tion. The obtained attention map is then used for attention

Scene 3 Scene 4
TABLE I
REWARD RULES
Reward
Scenes 1, 3,4  Scene 2

Goal +10 +10
Collision -10 -10
Following distance penalty -3 -3
Sub goal +2
Lane departure -10
Forward +0.5
Keep left lane +1.5
Speed penalty -0.5

mechanism with feature map F(z!) as
F'(x}) = F(xy) - M(xy), 3)

where M (z!) is the mask-attention. By visualizing the at-
tention map, we can confirm the attention area of the policy.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the pro-
posed method. In our experiment, we developed autonomous
driving environments in which deadlocks happen. In this
paper, we call these environments as scenes. We tried to
determine whether the proposed method could acquire avoid-
ance actions against deadlocks that happen in each scene.



TABLE I
EPISODE REWARDS OBTAINED FOR EACH SCENE (AVERAGE OVER 100 EPISODES)

Scene 1 Scene 2 Scene 3 Scene 4
Agent 1 Agent2 | Agent 1 Agent2 | Agent1 Agent2 | Agent1 Agent?2
A3C [2] 324.7 275.3 76.1 84.8 195.0 140.8 134.8 137.1
Ours 961.5 580.2 997.0 994.4 785.0 585.3 773.4 589.6

A. Environment

We prepared four scenes in which deadlocks happen.
Figure 2 shows the developed scenes and Table I shows
the reward design for each scenes. All environments are
developed so that the agent drives correctly in the driving
lane and that an episode fails if it collides with other vehicles.
The maximum speed was 3 m/s, the minimum speed was -
1 m/s, the maximum curvature was 0.25, and the minimum
curvature was -0.25. In the following, we describe the details
of each scene.

1) Scene 1: Scene 1 is a single lane road with bad
visibility and a parked vehicle on the road. Two vehicles are
placed on a one-lane curved road, and the scene simulates
an environment with illegally parked vehicles.

2) Scene 2: Scene 2 contains an obstacle in the lane and
the driver has to avoid the oncoming vehicle. Two vehicles
are placed to create an environment with obstacles. The
obstacles are placed randomly at intervals that do not allow
more than two vehicles to pass.

3) Scene 3: Scene 3 is one of merging onto a main road.
Multiple vehicles are placed in the scene, and one of the
vehicles is merging. One vehicle on the merging side and
one vehicle on the merging side are controlled. The other
vehicles run at a constant speed.

4) Scene 4: Scene 4 contains a narrow exit and entrance.
Two vehicles are placed on a narrow road, wide enough for
no more than two vehicles to pass each other.

B. Training settings

The numbers of training times are 2.0 x 107 steps for
scene 1, 2.0 x 107 steps for scene 2, 5.0 x 107 steps for
scene 3, and 2.0 x 10° steps for scene 4. In all environments,
the episode ended when the agent collided with an off-road
object, an obstacle, or other vehicle, or when 1.0 X 10° steps
had elapsed.

The proposed method was evaluated in the following two
aspects:

o Comparison by episode reward, and

o Visualization of action and attention maps of trained

models.

In the comparison with episodic rewards, we compare
the proposed method with the A3C reinforcement learning
method.

C. Comparison by episode reward

Table II shows the average cumulative reward for each
scene with 100 episodes of evaluation. We can see that the
agent using the proposed method obtained the highest reward
in all scenes and there is a difference of more than 300 points

compared with A3C. This results show that the proposed
method successfully increases the reward by avoiding the
deadlock. On the other hand, A3C could not avoid the
deadlock situation and fell into a local minima, which results
in a lower reward. These results confirm the effectiveness of
the proposed method.

D. Visualization of attention map for policy

We show attention maps obtained from the proposed
method in each scene. In the following results, the red vehicle
is agent 1, and the blue vehicle is agent 2.

1) Scene 1: Figure 3 shows the actions of the agents
in scene 1. From Fig. 3, agent 2 waited from t+1 to t+3
until agent 1 passed by and then started moving. This shows
that agent 2 can acquire the action of avoiding deadlock by
considering the other agent, which is to wait for agent 1 to
pass by. Figure 4 shows attention maps of each agent at t+3.
We can confirm that agent 1 was looking at the road around
and ahead, while agent 2 was looking at itself and the other
vehicle. This is probably because agent 1 learned to be an
agent that does not care about the other agents and goes on
the road ahead, while agent 2 learned to be an agent that
looks at the other agents as well as itself and drives safely.
These results confirm that the proposed method can be used
to acquire an agent that avoids collisions by deadlock in
consideration of the opponent.

2) Scene 2: Figure 5 shows the actions of the agents in
Scene 2. Here, agent 1 stopped from t+1 to t+3, and agent 2
started moving after passing the obstacle. Agent 1 acquired
the action of waiting for agent 2 to pass by to avoid the
deadlock. Figure 6 shows attention maps of each agent at t+2.
We can confirm that agent 1 was looking at the other vehicle
and the obstacle, while agent 2 was looking at the road ahead
and not at the other vehicle. This is because agent 1 learned
to look at the opponent and act in accordance with the other
agent, while agent 2 learned to go on its way without caring
about the other agent. These results show that the proposed
method can be used to acquire an agent that avoids collisions
by deadlock in consideration of the opponent.

3) Scene 3: Figure 7 shows the actions of the agents in
scene 3. Here, agent 2 moved to a different lane between t+1
and t+3, and agent 1 was able to merge into the empty lane.
Agent 2 acquired the action of giving way for agent 1 to
merge in order to avoid deadlock. Figure 8 shows attention
maps of each agent at t+1. We can confirm that agent 1 was
looking at the other vehicle and the vehicle ahead, while
agent 2 was looking at the space between the other vehicle
and the vehicle ahead. This is because agent 1 learned to
look at other vehicles and tried to merge safely, and agent 2
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Fig. 3. Example of agents’ trajectories in scene 1. The arrow shows the
direction of movement of the vehicle.
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Fig. 4. Attention maps at deadlock in scene 1. Left side is the input image
and the right side is the corresponding attention map.

learned to look at the distance from the merging vehicle and
give way. These results confirm that the proposed method
can be used to acquire an agent that avoids collisions by
deadlock in consideration of the opponent.

4) Scene 4: Figure 9 shows the actions of the agents in
scene 4. Here, agent 1 used backing and stopping from t+1
to t+3 to wait for agent 2 to come out of the narrow path,
and then started moving after agent 2 passed by. Agent 1
acquired the action of waiting for agent 2 to pass by in order
to avoid deadlock. Figure 10 shows attention maps of each
agent at t+2. We can confirm that agent 1 was looking at
the other vehicle and agent 2 was looking at the end of the
exiting road. This is because agent 1 learned to watch the
other agent and act in accordance with the other agent, while
agent 2 learned to go on its way without caring about the
other agent. These results confirm that the proposed method
can be used to acquire an agent that avoids collisions by
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Fig. 5. Example of agents’ trajectories in scene 2. The arrow shows the

direction of movement of the vehicle.
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Fig. 6. Attention maps at deadlock in scene 2. Left side is the input image
and the right side is the corresponding attention map.

deadlock in consideration of the opponent.

V. CONCLUSIONS

In this paper, we proposed a multi-agent reinforcement
learning method to avoid deadlocks by considering the view
of other agents. The proposed method extracts a common
feature from every agents’ states and use multiple branches
for taking actions for each agent. Our experimental results
with the developed environments show that our method
enabled agents to avoid deadlocks more easily than agents
incorporating normal reinforcement learning. In addition,
the visualization of the actions and attention maps of the
trained model in an autonomous driving environment showed
that the model acquired actions to avoid deadlocks in con-
sideration of the opponent. These results indicate that the
proposed method can be used to automatically obtain an
optimal path in a deadlock situation. Our future work will
include automatic acquisition of optimal paths in more varied
environments and the implementation of a model that takes
the other person into consideration and performs cooperative
actions.
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Example of agents’ trajectories in scene 3. The arrow shows the

direction of movement of the vehicle.
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Fig. 8. Attention maps at deadlock in scene3. Left side is the input image
and the right side is the corresponding attention map.
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