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Abstract— We propose a 6D pose estimation method for an
object from a single RGB image for a robotic grasping task.
Many approaches estimate pose parameters from images taken
from other viewpoints and use deep learning to achieve high
accuracy. However, most of these methods are not robust to
changes in object texture, and there is a possibility that the
correct pose cannot be estimated by only one-time inference.
Our aims are to reduce the number of failure cases and
improve the accuracy by a novel architecture using the iterative
backpropagation of a pose decoder network and pose estimation
on intermediate representation. The error between random
and target pose parameters are backpropagated to a neural
network and the gradient for approaching the target pose is
obtained. The pose parameter is updated using the obtained
gradient, the error is calculated again, and backpropagation
is re-performed. Repeating this process, we estimate a more
accurate pose. Experiments using our own dataset show that
estimation accuracy is improved and the number of failure cases
is reduced. Furthermore, estimation by coarse-to-fine iterative
processing is more accurate and faster. We also experiment
with grasping using a UR5 robot and show that the robot can
grasp objects without depth information when using the pose
estimated by the proposed method.

I. INTRODUCTION

The rapid progress of vision technology has contributed
significantly to solving a number of robotics tasks, including
the grasping detection of an object. Many methods have
been proposed for grasping objects by robots. For example,
detecting direct grasping from an RGB image captured by
a camera and converting it to a world coordinate system
[1], [2], [3], [4], and estimating an object’s pose and linking
its graspable points [5], [6], [7]. If we wanted the robot to
simply grasp the object, we would adopt the former method.
However, robots that stock products in a grocery or conve-
nience store not only grasp objects but also scan barcodes on
products and check expiry or best-before dates. For example,
the “Future Convenience Store Challenge (FCSC) [8]”, one
of the competitions at the World Robot Summit held in
Tokyo in 2018, had a “stocking and disposing task.” This
task required checking the expiry date of a product on the
display shelf, discarding expired products, and restocking
non-expired products. In this case, as the robot would need
to check the surface on which the barcode and expiry date
is shown, a method that estimates the pose of the object is
suitable.
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Fig. 1. Pose estimation flow of our approach. The detail of the coarse-
to-fine iterative update (dashed blue and red arrows) is shown in Fig. 5. The
model details of the pose decoder network are shown in Fig. 3.

The aim of an object pose estimation task is calculating
a matrix R representing the three-dimensional rotation of
an object with the camera coordinates as the origin, and
a translation t. Many methods of estimating an object’s
pose have been proposed, and these can be divided broadly
into two types: model-based and appearance-based methods.
A model-based method matches a 3D CAD model with
a point cloud obtained from a sensor. For accurate pose
estimation, this process is performed repeatedly. However,
this does not work if the acquired point cloud has much
noise or lacks a number of keypoints. On the other hand,
an appearance-based method learns images captured from
multiple viewpoints for the pose estimation. Thanks to the
advancements of deep learning, there are many appearance-
based methods, but changes in the texture of an object and
lighting affect the pose estimation. Also, since it is not
possible to perform iterative processing like model-based
approaches, the estimated pose is not very reliable.

We propose a 6D pose estimation method by iterative
processing that introduces intermediate representation for
pose estimation. Because this method uses only RGB images
as input, it is robust against a lack of point clouds and
changes in appearance, which simplifies the system. The
first step of pose estimation is replacing the target object
image with an intermediate representation image. It absorbs
changes in texture and lighting, so changes in appearance and
texture do not affect pose estimation (see Sec. III-A). Next,
random values are given to the well-trained pose decoder
network as initial pose parameters. We calculate the error
between the intermediate representation image generated by
inputting these initial pose parameters and that of the target



object, and this error is backpropagated to the pose decoder
network (see Sec. III-B). In this way, we acquire the update
amount value of the random values and the pose parameters
of the target object (i.e., the desired pose parameters). After
that, each pose parameter is updated using this value. By
repeating this process, it finally estimates accurate pose
parameters. Furthermore, in the initial stage of the matching,
iterative processing is performed with a coarse-resolution
image, and when obtaining a certain accuracy, the iterative
processing is performed with a high-resolution image. This
coarse-to-fine processing improves the estimation accuracy.
This method is based on an object’s appearance but does not
use multi-view images, so it is a challenging task.

The results of an evaluation using our dataset show that
our method achieves a higher performance than conventional
methods. We also show that coarse-to-fine processing esti-
mates a pose with fewer updates.

A brief summary of our contributions is as follows:
• Our proposed approach estimates a pose more accu-

rately by repeatedly backpropagating the estimation er-
ror to a generator network. This approach is an entirely
novel idea that was not found in conventional pose
estimation methods.

• The intermediate representation absorbs changes in tex-
ture and lighting, so changes in appearance and texture
do not affect pose estimation.

• During pose estimation, the network performs coarse-
to-fine processing to avoid slowdowns.

• Our approach has the potential to be adapted to var-
ious objects by changing and combining intermediate
expressions.

• Robotic grasping experiments show that the robot can
grasp the objects without depth information.

II. RELATED WORK

We introduce the methods of object pose estimation that
have been proposed, and they are roughly classified into two
types: model-based and appearance-based.

A. Model-based Pose Estimation

Before the appearance of deep learning, many model-
based pose estimation methods were proposed. These meth-
ods basically match a 3D CAD model with a point cloud
obtained from a sensor. Iterative Closest Point (ICP) [9] is a
well-known method, and many derived algorithms have been
proposed. The estimation flow of ICP is the corresponding
point search, pose estimation, and registration. After search-
ing for multiple corresponding points from two point clouds
to be registered, a rotation matrix R and a translation matrix
t are estimated from the corresponding points. Then, the
registration is performed using the estimated parameters.
This action is repeated multiple times to increase the es-
timate accuracy. To reduce the effect of backgrounds and
disturbance, SegICP [10] detects the target object using
semantic segmentation and performs ICP. Drost et al. [11]
match a pair of points with normal information and features.
Brachmann et al. [12] estimate probability maps for objects

to be detected and obtain robustness against illumination
changes by using a random forest. Hodaň et al. [13] use
detection and hashing to efficiently extract point clouds of
objects. Manhardt et al. [14] proposed a method of iterative
refinement using a 3D CAD model instead of a point cloud.

The problem with a model-based method is that if the
acquired point cloud has noise or is lacking sufficient points,
it cannot search the corresponding points nor estimate pose.
Therefore, it is difficult to apply it to translucent objects,
ones with specular reflection, and black ones.

B. Appearance-based Pose Estimation

Since the appearance of the convolutional neural network
(CNN), the number of appearance-based pose estimation
methods using deep learning have increased. Most of them
estimate poses by learning images taken from multiple
viewpoints and point cloud.

Render for CNNs [15] is a method to directly estimate the
object class and camera viewpoint for a single image using a
CNN. Multi-view multi-class CNN [16] uses multiple RGB-
D images as input for pose estimation. SSD-6D [7] estimates
6D poses using a model based on Single Shot Multibox
Detector (SSD) [17], a breakthrough algorithm for object
detection. SSD-6D estimates the class and pose of the object
at the same time from a single RGB image. The pose is
estimated using the viewpoint and in-plane angle, and it is a
classification task in increments of 5 degrees. Single Shot 6D
[18] estimates 6D poses using a model based on You Only
Look Once (YOLO) [19], which is another breakthrough
in object detection like SSD. BB8 [20] restricts the range
of the pose in advance and estimates pose using an RGB
image. PVNet [21] estimates pose in two stages: feature point
extraction and Perspective-n-Point. Normals for each pixel in
relation to the feature points are calculated, and RANSAC-
based voting is performed to avoid uncertain feature points.
As a result, it estimates pose in consideration of uncertainty.
The outputs of the network are the semantic labels of the
objects and the normals to feature points. Sundermeyer et

al. [22] proposed the Augmented AutoEncoder (AAE). They
extract a target object using AAE and estimate the pose of the
object by mapping the pose parameters to the latent vectors
of AAE.

Since appearance-based methods do not use point clouds,
the model-based method is robust against objects that are
difficult to estimate. However, changing the texture and light
source position of the object affects the pose estimation.
In other words, the features extracted from the image are
insufficient for pose estimation. Thus, both model-based
and appearance-based methods have their advantages and
disadvantages. It is desirable to perform pose estimation
repeatedly, like ICP, as an alternative idea. However, it is not
realistic to repeat the process many times using a generation
model that has a high computational cost.

III. PROPOSED METHOD

We propose a novel 6D pose estimation method using iter-
ative processing and an intermediate representation that is ro-



bust against missing point clouds and changes in appearance.
The main feature of this method is parameter estimation by
backpropagation using a simple and differentiable generator
network. Fig. 1 shows the flow of pose estimation by our
method.

First, an arbitrary object detection method detects an
object to be estimated among multiple objects. The detected
object image is converted into an intermediate representation
called a destination image using a pre-trained intermediate
representation network (orange arrow in Fig. 1). Then, the
randomly determined initial pose parameters (q, t) are input
to the pre-trained pose decoder network and generate an
intermediate representation image of the pose parameters
called a synthetic intermediate image (blue arrows in Fig. 1).
The error between the destination image and the synthetic
intermediate image (green arrows in Fig. 1) is backpropa-
gated to the pose decoder network, and the gradient of the
pose parameter is calculated (red arrows in Fig. 1). Thus, the
network outputs the difference between the random param-
eters and the pose parameters of the target object (i.e., the
desired pose parameters). When this process is repeated and
certain parameters are obtained, the pose decoder network
outputs a higher resolution synthetic intermediate image, and
the process is repeated again (dashed blue and red arrows in
Fig. 1). It finally estimates accurate pose parameters by this
coarse-to-fine processing.

This method can estimate by iterative processing without a
point cloud. In other words, there is no need to perform any
refinement using ICP after pose estimation as performed in
the conventional method. Pose estimation is completed only
by this process.

A. Intermediate Representation Network

We introduce intermediate representations for two reasons.
The first reason is the acquisition of robustness against
changing textures and light sources as in conventional meth-
ods. The intermediate representation absorbs changes in
texture and lighting, so changes in appearance and texture do
not affected pose estimation. In addition, for a rectangular
parallelepiped or cubic object, our method reduces the num-
ber of cases where the object is inverted during estimation by
considering each surface in the intermediate representation.
The second is to update the pose parameters by backprop-
agation by associating the object’s pose parameters and the
pose image with the differentiable network. We do not need
to focus on a specific intermediate representation, and we can
select an appropriate intermediate representation depending
on the object or scene. We adopt surface segmentation as
intermediate expressions.

We use SegNet [23], which is a semantic segmentation
network for the surface segmentation. This model learns each
surface and part instead of the object class as a surface
segmentation network. We assigned labels to each surface
in principle as shown in Fig. 2 (a), but assigned a separate
class for parts that are difficult to assign to other planes,
such as the flap part (yellow). In this sandwich example, the
model recognizes seven classes, including the background.

(b) Examples of surface segmentation

Input images

SegNet resultsFlap BackBottomFront Right-side Left-side BG
(a) Surface segmentation labels of a sandwich

Fig. 2. Surface segmentation labels and SegNet results of sandwich.
(a) The sandwich consists of several surfaces and flaps and is divided into
seven classes. (b) Inference results when learning surface segmentation of
sandwiches on SegNet.

We perform the same data augmentation as with the object
segmentation.

Fig. 2 (b) shows the result of learning SegNet by using
1,117 pairs of real images and ground truth labels of surface
segmentation. Although there is slight misidentification, the
model recognizes all surfaces. As described later, small
misrecognitions or lack of recognition does not harm the
estimation.

B. Pose Estimation by Iterative Update using Pose Decoder

The pose decoder network takes the rotation parame-
ters q = [qx, qy, qz, qw] and translation parameters t =
[tx, ty, tz], and generates the intermediate representation im-
age G(q, t) for pose estimation. We call a generated image a
“synthetic intermediate image”. When a rotation and trans-
lation vector is input, the network generates a corresponding
intermediate representation image. To reduce the number of
parameter values and avoid gimbal locks, we use quaternions
for the rotation parameter. We calculate the loss between
the destination image and synthetic intermediate image to
perform the iterative process, and it is backpropagated to
the pose decoder network. The loss at each pixel (x, y) is
calculated by

lcx,y(q, t) = (Tx,y �G(q, t)cx,y)
2, (1)

where c is each class and Tx,y is the destination image. In
Eq. (1), the class that is estimated to be the correct for each
pixel is checked. If both the label and the estimated class
are backgrounds, the loss is calculated to be 0; otherwise,
the loss is calculated so that the probability of the correct
class approaches 1. Note that the loss is calculated for
each pixel, divided by the number of valid pixels, and
averaged. Even if the synthetic intermediate image causes
partial misrecognition, it has no adverse effect if the number
of correctly identified pixels is much larger.

Next, the obtained loss is backpropagated to the pose
decoder network to calculate the difference �qi and �ti:
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Fig. 3. Model details of pose decoder network. This is an example of a network that generates a surface segmentation image.

TABLE I
UPDATE RATE AT EACH RESOLUTION.

Resolution [pix] 20 40 80, 160, 320
lcx,y(q, t) � 0.2 < 0.2

⌘q 0.01 0.01 0.03 0.005
⌘t 0.0001 0.0001 0.0005 0.0001

Then, we update the pose parameters. The update formula
is ⇢

qn+1  qn � ⌘q�qn

tn+1  tn � ⌘t�tn
(3)

where ⌘{q,t} is the update rate, which depends on the
resolution of the image and value of Eq. (1) as shown in
Table I. This parameter is input to the pose decoder network
again, and the same process is repeated. If the value of
Eq. (1) is smaller than the threshold, the iterative process
ends. This threshold depends on the resolution of the image
and is described in detail in the next section.

We use the random parameters as the initial pose pa-
rameters for pose estimation, but these parameters often
cannot be updated properly when the overlap between the
synthetic intermediate image and the destination image is
small. Therefore, we take 20 patterns of random parameters,
calculate Eq. (1) for each parameter, and use the parameters
with the smallest value of Eq. (1) as the initial pose.

C. Details of Pose Decoder Network

We were inspired to create this original model by the
generative adversarial networks (GANs) [24] by Goodfellow
et al. and their derivatives: deep convolutional GANs (DC-
GANs) [25] and progressive growing of GANs (PGGANs)
[26]. Fig. 3 shows the configuration of our pose decoder
network. Like PGGANs, our network uses a strategy of
increasing the resolution of low-resolution generated images.
However, in our network, there is no discriminator and all
generated images for each resolution are backpropagated
simultaneously. When the network obtains the feature maps
of {20⇥ 20, 40⇥ 40, 80⇥ 80, 160⇥ 160, and 320⇥
320}, the loss is calculated between the ground truth label
downsampled to each resolution and each generated image,
and backpropagation is performed. As a result, the network
outputs an intermediate representation necessary for achiev-
ing coarse-to-fine pose estimation. Furthermore, it generates
features near the edge of the object more accurately. In

this structure, the number of discriminators increases, and
optimization becomes difficult, so we only use the generator.
In the Conv. block, four convolutions are performed, and
the following parameters are set: filter size: 3 ⇥ 3, stride:
1, and padding: 1. During the first three repetitions in each
block, the output value is input to the activation function
(ReLU). In addition, since the features of the pose parameters
disappear when the unpooling is performed, the feature map
of each resolution and the output of the first FC layer are
concatenated.

Our network structure was adapted from that of the
Synthesizer CNN proposed by Oberweger et al. [27], but
ours is much deeper. Furthermore, the crucial difference is
that Oberweger et al. estimate the pose with the Updater
CNN, while we can estimate the pose by backpropagating
the pose decoder network. This is a novel approach that not
only reduces the number of CNNs to be trained, but also
uses gradients from backpropagation for pose estimation.

1) Loss Function: The loss function of the pose decoder
network is the average of loss at each resolution: Loss =
(L1+L2+L3+L4+L5)/5, where L{1,2,3,4,5} are the losses
at each resolution ({20 ⇥ 20, 40 ⇥ 40, 80 ⇥ 80, 160 ⇥
160, and 320⇥ 320}).

These losses depend on the intermediate representation.
The loss of object/surface segmentation is calculated by the
mean squared error for each class.

2) Training Data and Method: An intermediate represen-
tation image for training is created as follows: (1) a random
pose parameter is determined, (2) the 3D CAD model of
the object is rotated and translated (Fig. 4(a)) with the pose
parameter, and, (3) an image is synthesized by perspective
projection (Fig. 4(b)). The random pose parameter deter-
mined in (1) is used as the input, and the image rendered in
(3) is used as the ground truth label.

The optimizer is the Momentum SGD with the following
parameters set: learning rate: 0.0001 and momentum: 0.9.

D. Coarse-to-Fine Iterative Update

The resolution of the generated image is a trade-off
relation between the accuracy of matching and the estimated
speed. To avoid this trade-off, we perform the coarse-to-fine
iterative update and achieve high-speed and high-precision
estimation. First, matching is performed with a coarse-
resolution image. When both the rotation and translation
losses are lower than their respective thresholds, the process



(a) left: 3D CAD model
right: 3D CAD model w/ intermediate representation (surface segmentation)

(b) Examples of synthetic images from perspective projection

{-0.39, 0.09, 0.90, -0.15}
{0.05, -0.03, 0.49}

{0.75, 0.61, -0.03, 0.25}
{-0.04, -0.02, 0.33}

{0.40, 0.12, -0.27, -0.87}
{0.05, 0.05, 0.31}

Fig. 4. Example of the 3D CAD model and the images obtained by
perspective projection transformation. This example converts a sandwich
to a surface segmentation. (a) The 3D CAD model of the intermediate
representation is made by replacing the textures or creating a model with
a similar shape. (b) We rotate and translate with random parameters and
perform perspective projection transformation.

TABLE II
RELATIONSHIP BETWEEN RESOLUTION AND THRESHOLD.

Res. [pix] 20 40 80 160 320
Thresh. 0.001 0.001 0.00005 0.00005 0.00005

proceeds to the next step. At this time, if any parameter
falls below its threshold, it is fixed and the other parameters
continue to update. Next, using the parameters obtained in
the previous process as initial pose parameters, the same
process is performed on a higher resolution image. By
repeating this process over multiple resolutions, the accuracy
is higher than the estimation with a single resolution, which
reduces the processing time. Table II shows the thresholds
for each resolution. We define this threshold on the basis
of the gradient when the image is changed by only several
pixels.

IV. EXPERIMENT

We experimented with our pose estimation method using
our own datasets. We also conducted ablation experiments
to confirm the effect of the coarse-to-fine iterative update.

A. Dataset and Evaluation Metrics

1) Dataset: We used the Convenience Store Products
(CSP) dataset created for 6D pose estimation of store prod-
ucts. Our approach assumes pose estimation for grasping
detection used by a robot working in a convenience store.
Therefore, we created a dataset for 6D pose estimation using
four products sold at convenience stores in Japan. Target
products are a sandwich, riceball, cup-a-soup, and lunchbox.
As shown in Fig. 6, the included data is a 3D CAD model,
surface segmentation information, and other intermediate
representation data. These products are packaged in trans-
parent plastic, making it difficult to obtain point clouds.

Using this dataset, we train two networks. The intermedi-
ate representation network uses RGB images of objects as

Pose Decoder Network
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Fig. 5. Flow of coarse-to-fine update. First, estimation starts at a lower
resolution. If both the rotation and translation losses are lower than their
respective thresholds, the same process is performed on a higher resolution
image.

Original
3D CAD

Surface
segmen-
tation

Sandwich Riceball Cup-a-soup Lunchbox

Fig. 6. All items of the Convenience Store Products dataset. The
dataset contains 3D CAD models with real textures and the intermediate
representation of each product.

input and intermediate representation images (e.g. surface
segmentation) as ground truth labels. We train 200 sets
of these pairs for each object. The pose decoder network
is trained by preparing the data as mentioned in Sec. III-
C.2. Since we can make countless pairs of input data and
ground truth images, the network learns 4 million images
(4 batchsize ⇥ 1,000,000 iterations). The test data is a set
of real RGB images and pose parameters, and 51 sets are
prepared for each object.

2) Evaluation Metrics: We used the mean and standard
deviation of the rotation and translation errors for each axis.
The rotation error is the angle between the quaternion of
the attitude parameter converted to the Euler angle and the
correct angle for each rotation axis. The translation error is
the difference between the translations of each axis.

B. Comparison with Other Methods

We experimented with the pose estimation of each object
using CSP. We evaluated the performance using ICP and our
proposed method. We prepared 51 pairs of ground truth poses
and their intermediate representation images and compared
the average and standard deviation of rotation error and trans-
lation error for each axis. As shown in Table III, the proposed
method with surface segmentation achieved high accuracy.
The accuracy is higher when using surface segmentation
than when using object segmentation as an intermediate
representation. Furthermore, our method achieved a smaller
standard deviation than that of ICP, which means that the
proposed method performs stable pose estimation. However,



TABLE III
COMPARISON USING CSP DATASET. THE VALUES IN PARENTHESES INDICATE THE STANDARD DEVIATION.

Error of R [deg] Error of t [mm]
items methods Rx Ry Rz tx ty tz

sandwich ICP 41.39
(38.02)

26.54
(18.23)

94.23
(51.86)

7.18
(15.31)

5.29
(7.07)

3.38
(1.85)

ours 25.07
(20.89)

13.74
(17.43)

17.35
(31.83)

3.44
(3.74)

2.99
(2.41)

12.70
(9.77)

riceball ICP 82.38
(43.81)

44.44
(28.29)

85.32
(56.24)

2.63
(1.57)

2.76
(1.51)

3.93
(2.77)

ours 54.01
(35.00)

33.28
(28.14)

62.67
(64.22)

2.49
(1.63)

2.78
(1.58)

5.93
(5.88)

cup-a-soup ICP 54.85
(51.04)

53.44
(38.14)

84.57
(56.51)

5.31
(10.31)

5.22
(6.55)

6.18
(6.41)

ours 25.75
(38.99)

73.62
(36.26)

20.88
(50.21)

2.31
(2.22)

3.14
(3.33)

9.27
(17.36)

lunchbox ICP 52.10
(41.60)

46.10
(30.73)

82.07
(55.81)

2.62
(1.47)

2.38
(1.32)

4.00
(2.96)

ours 53.15
(48.19)

46.70
(31.55)

80.42
(63.67)

6.48
(5.54)

6.11
(5.22)

21.64
(14.4)

TABLE IV
COMPARISON FOR EACH RESOLUTION. “SINGLE”: USING ONLY A SINGLE RESOLUTION, “C2F”: USING THE COARSE-TO-FINE ITERATIVE UPDATES.

THE VALUES IN PARENTHESES INDICATE THE STANDARD DEVIATION.

iteration resolution Error of R [deg] Error of t [mm] time
type [pix] Rx Ry Rz tx ty tz #itr. [sec]

single

20 26.68
(23.90)

14.61
(17.61)

22.60
(37.04)

5.50
(5.74)

4.11
(3.73)

11.01
(11.36) 61 4.66

40 25.61
(22.31)

13.90
(17.85)

19.10
(35.66)

4.17
(4.44)

3.32
(2.56)

11.22
(10.19) 63 4.98

80 22.94
(22.19)

12.86
(17.87)

16.86
(35.71)

3.87
(4.02)

3.15
(2.57)

11.4
(10.37) 48 4.05

160 23.06
(22.23)

12.61
(17.53)

16.71
(35.42)

3.83
(4.06)

2.98
(2.45)

11.49
(10.82) 47 5.38

320 22.85
(22.32)

12.93
(17.71)

16.43
(34.65)

3.99
(4.08)

2.95
(2.44)

11.51
(11.01) 51 9.97

c2f 20 to 320 21.46
(22.15)

12.88
(17.90)

16.02
(35.22)

3.79
(3.77)

2.8
(2.44)

10.53
(10.82) 73 8.22

DestinationEstimated

20 × 20 40 × 40 80 × 80 160 × 160 320 × 320

Initial 10 20 30 36 37 42 43 46 47 57 67 72 73 83 Real img.

4031 32Initial 10 20 30 50 51 55 56 66 83 84 94 Estimated Destination Real img.

20 × 20 40 × 40 80 × 80 160 × 160 320 × 320

Resolution
[pix]

# Iteration

Syntheticintermediateimage

Resolution
[pix]

# Iteration

Syntheticintermediateimage

Fig. 7. Transition of pose estimation on sandwich.

the error of tz is high because our approach does not use the
depth image. To solve this problem, it is necessary to use
the other intermediate representation (e.g. a surface normal
map) to cover this performance and to improve the accuracy
of the pose decoder network.

C. Ablation Study for Coarse-to-Fine Iterative Update

We compared iterative processing at a single resolution
and coarse-to-fine iterative update processing using multi-
ple resolutions to confirm the usefulness of coarse-to-fine
processing. We used the sandwich of CSP as experimental
data. Table IV shows the average and standard deviation

of the number of updates of each pose parameter under
each condition. When using a single resolution, 320 [pix]
achieves the best accuracy. However, the speed is twice
that of 20 [pix]. On the other hand, coarse-to-fine iterative
update achieves the fastest estimation speed and improves
accuracy. The speed of ICP is about 1 second, so it is
inferior in terms of speed. The coarse-to-fine iterative update
contributes to both high accuracy and high speed. Figs. 7 and
8 show the transition of pose estimation by the coarse-to-fine
iterative update and the loss on sandwich, respectively. We
also show these in the attached video. First, pose estimation



TABLE V
EXPERIMENTAL RESULTS OF ROBOTIC GRASPING.

Input images

Segmentation results

Pose estim. results

1st grasp success p p p p p ⇥ ⇥ ⇥
Re-grasp success - - - p -
Placement success p p p p p

→ →

Fig. 8. Loss between synthetic intermediate image and destination
image.

is performed at a low resolution, and the resolution is then
gradually increased, and the estimated pose approaches the
target pose. The graph (Fig. 8) shows that the loss between
the synthetic intermediate image and the destination image
has converged. When we perform the iterative update at a
low resolution, the loss is stagnant, but we can resolve this
issue by increasing the resolution.

D. Robotic Grasping Experiment

Our final goal is for a robot designed to operate in a
convenience store to understand the correct pose of a product,
grasp it, and dispose or display it again. To confirm that the
proposed method can perform this task on the basis of the
estimation results, we conducted an experimented using a
UR5e arm robot, as shown in Fig. 9.

Although it is equipped with an Intel RealSense D435i
vision sensor, which can be used to retrieve depth informa-
tion, only the RGB camera was used. The task is to display
a convenience store product (in this case, a sandwich) on a
shelf in the correct position. Since our method assumes that
the approximate position of an object detected using object
detection, the sandwich is first placed in the picking area in a
random position. We estimate the object’s pose and approach
the object in the direction normal to the surface with the
widest visible area to perform suction grasping. If the front
of the object cannot be grasped, it cannot be displayed in
the correct pose. Therefore, the robot places the object once
on the picking area and re-grasps it from its front side.

Table V shows the results of the grasping experiment. The
upper part of the table shows the input images, segmentation
results, and pose estimation results for the eight patterns. The

Placement area

Intel RealSense D435i
(Use only RGB camera)

Suction cup

Universal Robots UR5e

Picking area

Fig. 9. Our robot system.

lower part shows the success and failure of first grasping
the object (1st grasp), re-grasping the object (Re-grasp), and
displaying the object in the placement area (Placement) using
the pose estimation results. In the third case, the sandwich is
of a different type, but the difference in texture is absorbed
by segmentation, and the pose estimation and placement
are successful. In the fourth case, since the object could
not be grasped in front, we grasped the back of the object
and displayed it on the shelf. The attached video shows the
grasping process in the fourth case. There were a number of
cases in which the estimation results strongly differed from
the segmentation results on the basis of the pose, and there
were those in which grasping was not possible even if the
estimation results were approximately correct.

V. LIMITATION AND DISCUSSION

The low Ry of “cup-a-soup” indicates that it is difficult to
estimate an object’s rotation on a cylinder. On the other hand,
objects with easy-to-surface segmentation, such as “sand-
wich” and “rice ball” have relatively good accuracy. Since
the accuracy depends largely on the choice of intermediate
representations, we believe it is effective to increase the
repertoire of intermediate representations and increase the
number of objects for which pose estimation is possible. In
addition, because we compute the error with a surface that
is visible as an image, it may lead to the wrong estimation
such as being flipped upside down. Therefore, we need to
define a loss function that considers the positional surface
relation. These are included in our future work.

The major limitation of our method is that the shape of the
object must be simple enough to be estimated. If the object



is too complex to be represented by surface segmentation,
the pose estimation becomes difficult. Therefore, when the
proposed method estimates the poses of objects with complex
shapes such as objects from the LineMOD and YCB datasets,
it is effective to set the surface appropriately or use other
intermediate representations such as a normal map.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a 6D pose estimation method
using iterative processing that introduced an intermediate
representation. The errors between random and target pose
parameters are backpropagated to a pose decoder network
and a gradient is obtained for approaching the target pose.
The pose parameter is updated using the obtained gradient,
the error is calculated again, and backpropagation is re-
performed. By repeating this process, we can estimate a
more accurate pose. Furthermore, estimation by coarse-to-
fine iterative update is much faster.

We conducted experiments using the CSP dataset, and the
results showed that the proposed method estimates the object
pose with high accuracy. An ablation study showed that the
coarse-to-fine iterative update estimated the object’s pose
with high accuracy while suppressing the speed reduction.
Furthermore, grasping experiments using a robot showed
that the estimated pose by the proposed method is accurate
enough for grasping an object using a suction cup.

In this research, we attempted to pose estimation by
repeatedly processing one image. However, assuming a real
robot application, it is expected that we need to estimate
the object’s pose while moving a robot arm and plan an
ideal moving-path. In the future, we will apply it to the path
planning of a robot arm.
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