
Multi-Domain Semantic-Segmentation using Multi-Head Model

Shota Masaki1,Tsubasa Hirakawa1, Takayoshi Yamashita1 and Hironobu Fujiyoshi1

Abstract— Semantic segmentation is a pixel-wise class iden-
tification problem, which is important for automatic driving
support such as recognizing the driving area. However, seg-
mentation accuracy significantly degrades in scenes that differ
from the training domain. Therefore, it is necessary to prepare
multiple models for each domain, which increases the memory
cost. When training multiple datasets with a single-head model,
it is also necessary to redefine a different object class for
each dataset. We propose a semantic-segmentation method that
involves using a multi-head model for supporting multiple
domains. The proposed method also involves using a shared
network for sharing all domains for training datasets. This
makes it possible to train multiple datasets with different object
classes in a single network. To train all datasets equally, we also
introduce mix loss, which simultaneously back-propagates the
loss of each dataset. From experiments evaluating the proposed
method, we confirmed that the method achieves higher or
equivalent recognition accuracy with fewer parameters than
using a single-head model for each dataset when training
datasets with the same class, training different datasets at the
same time, and training datasets individually.

I. INTRODUCTION
Semantic segmentation is used to classify objects in im-

ages at the pixel level. It can be used to recognize not only
the object class but also the position and shape of the object.
However, the recognition accuracy of semantic segmentation
significantly degrades due to changes in the domain such as
the scene or camera position, which differ from the training.
When semantic segmentation is used for automatic driving
systems that operate in various regions, multiple models
trained with data from different regions must be prepared.
This increases the memory cost and puts other burdens on
the system side.

We propose a semantic-segmentation method that intro-
duces a domain attention (DA) module and uses a multi-
head model to train datasets from different domains simul-
taneously. The proposed method uses a shared network with
an encoder-decoder structure, where the encoder and a part
of the decoder are shared by all domains. By introducing
a DA module into ResNet, we can extract domain-specific
features that cannot be obtained when using a single domain
model. In addition, each head outputs a dataset-specific
class, as shown in Figure 1(b). This makes it possible to
simultaneously train datasets with different object classes,
such as Cityscapes and Mapillary, which cannot be trained
with the single-head model in Figure 1(a). During training,
our method introduces mix loss, which simultaneously back-
propagates the loss of each dataset to avoid bias towards a
single dataset. With this the proposed method, it is possible
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Fig. 1. Overview of (a) single-head model and (b) multi-head model.

to train a multi-head model that can handle multiple domains
with only a small increase in parameters. We evaluated the
effectiveness of the proposed method through experiments
on multiple datasets.

The contributions of this paper are as follows.
• We propose a semantic-segmentation method that in-

volves using a multi-head model. By preparing an out-
put head specific to each domain, datasets with different
object classes can be trained simultaneously.

• By introducing a DA module, which shares information,
and mix loss, which simultaneously back-propagates the
loss of each dataset, to the multi-head model, multiple
domains can be trained simultaneously.

• We evaluated the effectiveness of the proposed method
by measuring its recognition accuracy on multiple
datasets, those with the same object class and those with
different object classes.

II. RELATED WORK
With the advent of fully convolutional networks (FCNs)

[1], semantic-segmentation methods using CNNs has been
actively studied and achieved high recognition accuracy [2],
[3], [4]. SegNet [5] and U-Net [6], which are FCNs that
have an encoder-decoder structure, contribute to memory
saving. Dilation convolution [7], [8] captures a wide range
of features by using a wide range of filter strides. It has
been incorporated into many semantic-segmentation meth-
ods. PSPNet [9] and DeepLab [10], [11], [12] use spatial
pyramid pooling [13] between the encoder and decoder
and can acquire multi-scale contexts by pooling feature
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Fig. 2. Network structure used with proposed method.

maps of different sizes. Channel-wise attention, which is
used in object-recognition tasks, is also used in semantic
segmentation [14], [15], [16], [17]. By assigning importance
to the feature maps, the recognition accuracy of each object
class can be improved.

To adapt a single model to multiple domains, multi-
domain learning has been studied [18], [19], [20]. Many
methods are aimed at object recognition [21], [22]. Such
methods introduce domain-specific convolutional layers or
batch normalization to train each domain separately. An
optimal network structure for multi-domain learning was
proposed [23] for object detection. In particular, by elimi-
nating the domain-specific parameters and adding a module
that shares domain information in the shared network, it
is possible to train a single model that acquires multi-
domain information. For semantic segmentation, composite
datasets that combine multiple datasets into one, such as
MSeg [24] and Bevandic et al [25], have been created. A
composite dataset is created by converting different datasets
into a common label. This requires re-definition of labels,
re-annotation of certain classes, deletion, and integration,
which is a time-consuming process. Kalluri et al [26]. use
a domain-specific model and a domain-sharing model with
semi-supervised learning to achieve Multi Domain learning
with a single model.

III. PROPOSED METHOD

We propose a semantic-segmentation method that involves
using a DA module introduced to a multi-head model to
train multiple domains simultaneously. The network structure
used with the proposed method is shown in Figure 2. The
base network is DeepLab v3+ [12] with ResNet101 [27] as
the backbone. DeepLab v3+ is a network that uses Atrous
spatial pyramid pooling (ASPP). ASPP can acquire multi-

scale features by integrating different convolutional processes
of dilations in parallel and executes 1 × 1 convolution,
3 × 3 convolution with dilation set to 6, 12, and 18 and
global average pooling (GAP) in parallel and concatenates
the acquired five feature maps. To improve the segmentation
accuracy around the boundary of each object, the feature
maps of the lower layers are skipped to the decoder. The
feature map to be skip-connected is that of the first stage of
ResNet. The skip-connected feature map is 1×1 convoluted
and concatenated with the feature map acquired from ASPP.
This allows us to obtain the features of object boundaries
that are obscured in the high-dimensional layer.

A. Multi-head model

With conventional semantic-segmentation methods, the
feature maps acquired by the encoder and decoder are input
to the output head. The output head has a single-head
structure that outputs probability maps for the number of
classes. Since this structure can only output for predefined
classes, it cannot train datasets with different numbers of
classes simultaneously. Therefore, we adopt a multi-head
model to train datasets with different numbers of classes
simultaneously. This allows us to prepare an output head
for each dataset so that we can deal with dataset-specific
classes. In the shared network, the feature map acquired from
ASPP and that of the first stage of ResNet are concatenated
and input to the dataset-specific output heads. Each output
head consists of three convolutional layers of two 3× 3 and
1 × 1. Bilinear up-sampling is used to resize the acquired
probability maps to the input size. The proposed method
inputs the feature maps obtained from the shared network to
the output head corresponding to the dataset. It then outputs
a probability map for each class. Here, let N be the number
of training datasets. Given input data x, the probability of
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Fig. 3. Structure of domain attention (DA) module

each class is calculated as

yn = Fheadn (FFE (x)) , (1)

where FFE is the shared network and Fheadn , n ∈
{1, . . . , N} is the dataset-specific output head. The only
dataset-specific parameter to be prepared in this structure
is the output head. This makes it possible to minimize the
increase in the number of parameters due to the increase in
datasets since the feature extractor is shared.

B. Domain attention module
The DA module [23] is applied to the residual block of

ResNet and can acquire multiple feature representations by
learning while sharing the information of each domain. The
structure of the DA module is shown in Figure 3. It is
composed of an squeeze excitation (SE) adapter and domain
assignment. The SE adapter consists of multiple SE modules
[28], each one specialized for each domain. By concatenating
each output, the expression space of all domains can be
formed. The weight vector acquired by each SE module from
input x can be obtained by

xSE = FSE (Favg (x)) , (2)

where Favg is GAP and FSE is the FC+ReLU (rectified linear
unit)+FC layer. The domain assignment consists of GAP, a
fully connected layer, and softmax layer and acquires weights
that adapt to the domain. The weights of domain assignment
can be calculated as

wda = softmax (WDAFavg (x)) , (3)

where x is the feature map, and WDA is the weight matrix of
the softmax layer. The output from all the combined layers
after GAP is equal to the number of SE modules in the SE
adapter. The acquired weights are multiplied by the output

of the SE adapter and calculated by the sigmoid function.
This allows us to obtain a domain-appropriate weight vector
from the SE adapter.

C. Loss function

In conventional multi-domain learning, we input different
domain data in order, calculate the cross-entropy error at each
head, and back-propagate each time. Since the parameters
are updated for each dataset, there is a possibility of bias
toward a particular dataset depending on the order in which
the back propagation is executed. Therefore, we introduce
mix loss, which inputs all domain data and sums the losses
output by each head before back propagating, into the multi-
head model. When training N datasets, the back propagation
error L can be calculated as

L =
N∑

n=1

Ln. (4)

By calculating the loss of all domains then back-propagating,
it is possible to update the parameters of each domain at
the same time and prevent recognition-accuracy improvement
from improving for only a specific dataset.

D. Training process

Since the number of images contained in each dataset
differs, the number of images trained per epoch is not equal.
To train all datasets in a balanced manner, it is necessary
to avoid an unbalanced number of images during training.
Therefore, we adjust the number of images by matching
the number of images used per epoch to the dataset with
the largest number of training images. The mini-batch for
training is composed of only data from the same dataset. This
is to avoid mixing multiple domains in a single input since
each head has domain-specific parameters. During training,
mini-batches of all datasets are input sequentially, and the
errors are accumulated and back-propagated simultaneously.
However, as the number of datasets to be trained increases,
the training time and memory usage become huge. To reduce
the training time and memory usage, we use automatic
mixed-precision [29] training.

IV. EXPERIMENTS

We evaluated the effectiveness of the proposed method us-
ing multiple datasets. We conducted the experiments on three
datasets with the same classes, three datasets with different
numbers of classes, and five datasets trained simultaneously.
We applied random horizontal flipping, random scaling in the
range [0.5, 2.0], and random cropping with 512×512 pixels
for data augmentation for each dataset. We used stochastic
gradient descent (SGD) with momentum set to 0.9 and
weight decay set to 0.0001. We set the initial learning rate
to 0.01 and scheduled the learning rate by multiplying by
(1 − itertotal

iter )0.9. We set the number of training cycles to
100 epochs, and used the mIoU as the evaluation metric.



TABLE I
DATASETS USED FOR THIS STUDY

Dataset Cityscapes BDD Synscapes A2D2 Mapillary ADE20K

Domain Driving Driving Driving Driving Driving Everyday
(Germany) (USA) (Simulator) (Germany) (Worldwide) objects

Class 19 19 19 18 63 150
Training Images 2,975 7,000 23,000 26,955 18,000 20,210

Validation Images 500 1,000 2,000 4,493 2,000 2,000

Input image Ground truth Single Domain Multi Head Proposed

Fig. 4. Comparison of visualization results. The first and second rows show the results of Cityscapes dataset. The third and fourth rows show the results
of BDD dataset. The fifth and sixth rows show the results of Synscapes dataset.

A. Datasets

Table I shows the number of classes, number of images,
and domain information of the datasets used in the exper-
iments. The experimental datasets can be divided into two
categories: automotive image datasets and daily scenes. Both
Cityscapes and A2D2 consist of images taken in Europe.
However, Cityscapes only contains images taken in cities,
while A2D2 includes those from highways and rural roads.
Mapillary [30] and ADE20K [31] are datasets that contain
images of different sizes. Therefore, we resized the short side
of all images to 720 pixels. Cityscapes [32], BDD [33], and
Synscapes [34] consist of the same 19 classes. For Mapillary,
we used images from 63 classes, excluding the void category
that includes vehicles, and used the images of 63 classes,
excluding the void category that includes vehicles, etc. We

TABLE II
COMPARISON OF INFERENCE RESULTS OF CONVENTIONAL METHOD OF

TRAINING DATASETS INDIVIDUALLY AND PROPOSED METHOD OF

TRAINING MULTIPLE DATASETS SIMULTANEOUSLY [%]

Train \ Test Cityscapes BDD Synscapes
Cityscapes 77.57 39.81 63.06

BDD 59.05 61.55 55.78
Synscapes 39.04 12.66 91.55

proposed method 78.49 62.63 90.18

also used the images of A2D2, which was redefined into 18
classes.



TABLE III
COMPARISON OF INFERENCE RESULTS ON THE SAME CLASS OF DATASETS [%]

DA module Multi Head Mix Loss Cityscapes BDD Synscapes Mean
Single Domain - - - 77.57 61.55 91.55 76.89

Multiple Domains

- - - 75.55 63.14 86.91 75.34
- - ! 75.86 63.33 88.10 75.76
- ! - 77.30 59.47 90.20 75.66
- ! ! 77.92 62.51 90.14 76.86
! ! ! 78.49 62.63 90.18 77.10

B. Experiments on dataset with the same classes

We used Cityscapes, BDD, and Synscapes as the target
datasets. Table II shows the comparison of inference results
from a conventional method of training datasets (domains)
individually (hereafter, Single Domain) and the proposed
method. Table III shows the comparison of recognition ac-
curacies when training multiple datasets using only a single-
head model (Single Head), using only mix loss (Mix Loss),
using only a multi-head model (Multi Head), and using the
proposed method of using introducing mix loss and a DA
module to a multi-head model (Proposed). Table IV shows
the comparison of number of parameters used with. And,
Fig. 4 shows the output results of; those for Cityscapes in
the first and second rows, BDD in the third and fourth rows,
and Synscapes in the fifth and sixth rows.

Comparison with Single Domain. From Table II, we
can see that the recognition accuracy of Single Domain con-
siderably decreased for all datasets when domain information
was learned and evaluated differently. This indicates that
semantic segmentation cannot deal with untrained domains.
However, the proposed method achieved better recognition
accuracy for Cityscapes and BDD, and comparable accuracy
for Synscapes by training the three datasets simultaneously.
These results indicate that the proposed method is effective
for multi-domain learning.

Comparison of Single Head, Mix Loss, Multi Head,
and Proposed. To confirm the recognition accuracies of
Proposed, we first compared it with Single Head. From Table
III, we can see that Single Head achieved high accuracy
for BDD but showed decreased accuracy for Cityscapes
and Synscapes. This indicates that this it is biased towards
one dataset. For Mix Loss, high recognition accuracy was
achieved only with BDD. For Multi Head, high accuracy
was achieved with Cityscapes and Synscapes, but decreased
in accuracy for BDD. With Proposed, all datasets were
trained in a balanced manner. Therefore, we can say that
the introduction of both mix loss and a multi-head model is
effective for training datasets with the same label.

Proposed improved in recognition accuracy compared with
Multi Head on all datasets. The recognition accuracies for
Cityscapes and BDD improved compared to that with Single
Domain. This may be due to the fact that different domain
information can be shared and used by the DA module. These
results indicate that the DA module is effective for multi-
domain learning.

Comparison of the number of parameters. As shown

TABLE IV
COMPARISON OF NUMBER OF PARAMETERS WITH SINGLE DOMAIN,

SINGLE HEAD, MULTI HEAD, AND PROPOSED

Params Reduction rate [%]
Single Domain 178.02M -

Single Head 59.34M 66.67
Multi Head 61.94M 65.21
Proposed 76.37M 57.10

TABLE V
COMPARING INFERENCE RESULTS ON DATASETS WITH DIFFERENT

CLASSES [%]

Cityscapes Mapillary ADE20K Mean
Single Domain 77.57 43.71 36.42 52.57

Proposed 76.01 43.31 37.16 52.16

in Table IV, the number of parameters with Single Domain
for training datasets individually increased with the number
of datasets. Proposed reduced the number of parameters by
57. 10% by using a shared network compared with Single
Domain. The increase rate of the number of parameters
for Single Head was 1.04 times that for Multi Head and
1.28 times that for Proposed. These results indicate that the
Proposed can train multiple datasets with only a small in-
crease in the number of parameters, compared with preparing
multiple models trained on each dataset (Single Domain).

From these results, we confirmed that mix loss, a multi-
head model structure, and DA module can achieve the same
or higher accuracy than the base accuracy when training
datasets with the same class.

C. Experiment with datasets with different classes

Next, we compared the accuracy of training datasets
consisting of different numbers of classes simultaneously.
We used Cityscapes, Mapillary, and ADE20K to compare
Proposed, which showed high accuracy in the above exper-
iments, with Single Domain.

The comparison results are listed in Table V. The accuracy
of Proposed was comparable to that of Single Domain even
when trained on datasets with different number of classes
and domain information. Even if you learn the domain
information of drive scenes such as Cityscapes and Mapillary
and the domain information of everyday scenes such as
ADE20K at the same time, you can see that each domain
information can be learned with one model. Therefore, we



TABLE VI
COMPARISON OF INFERENCE RESULTS ON FIVE DATASETS [%]

Cityscapes BDD Synscapes A2D2 Mapillary Mean
Single Domain 77.57 61.55 91.55 78.08 43.71 70.49

Proposed 79.51 65.59 89.47 76.56 44.96 71.22

confirmed that Proposed can be trained on datasets with
different numbers of classes at the same time.

D. Experiments when training five datasets
The number of datasets used for training simultaneously

was set to five. We used Cityscapes, BDD, Synscapes, A2D2,
and Mapillary to compare Proposed with Single Domain.

The comparison results are listed in Table VI. When the
five datasets were trained simultaneously, the recognition
accuracy for Cityscapes, BDD, and Mapillary improved
by 1.94, 4.04, and 1.25 points, respectively, over Single
Domain. We also confirmed that the segmentation accuracy
for Synscapes and A2D2 was the same as that of Single
Domain. These results confirm that Proposed is effective
even when training five datasets simultaneously.

V. CONCLUSIONS
We proposed a semantic-segmentation method that uses

a multi-head model that learns different domains simul-
taneously. By applying a DA module, which shares do-
main information and mix loss, which simultaneously back-
propagates the loss of each dataset, and using a multi-head
model, which prepares an output head for each dataset, it is
possible to train a single model for datasets with different
classes. In the experiments, the segmentation accuracy was
higher than that of using a single-head model when trained
on data with the same classes, and was higher than that
of a conventional method for training datasets individually.
Even when simultaneously training datasets with different
numbers of classes, which is difficult to train, the proposed
method achieved the same accuracy as the conventional
method. In the experiment on five datasets, the segmentation
accuracy of the proposed method was higher than that of the
conventional method. In the future, we will aim to have the
segmentation accuracy of the proposed method surpass that
of the conventional method even when training datasets with
different numbers of classes and confirm its versatility by
applying it to other base networks.
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