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Abstract—Deep reinforcement learning (DRL) has great po-
tential for acquiring the optimal action in complex environments
such as games and robot control. However, it is difficult to
analyze the decision-making of the agent, i.e., the reasons it
selects the action acquired by learning. In this work, we propose
Mask-Attention A3C (Mask A3C), which introduces an attention
mechanism into Asynchronous Advantage Actor-Critic (A3C),
which is an actor-critic-based DRL method, and can analyze the
decision-making of an agent in DRL. A3C consists of a feature
extractor that extracts features from an image, a policy branch
that outputs the policy, and a value branch that outputs the state
value. In this method, we focus on the policy and value branches
and introduce an attention mechanism into them. The attention
mechanism applies a mask processing to the feature maps of each
branch using mask-attention that expresses the judgment reason
for the policy and state value with a heat map. We visualized
mask-attention maps for games on the Atari 2600 and found
we could easily analyze the reasons behind an agent’s decision-
making in various game tasks. Furthermore, experimental results
showed that the agent could achieve a higher performance by
introducing the attention mechanism.

I. INTRODUCTION

Reinforcement learning (RL) problems seek optimal actions
to maximize cumulative rewards. Unlike supervised learning
problems, RL problems collect training data by exploring the
environment. Therefore, RL has achieved high performance
in specific tasks (e.g., controlling autonomous systems [1]–
[3] and video games [4]–[6]) in which it is difficult to create
training data. In Go, AlphaGo has defeated a professional Go
player [7]. In 2015, the deep Q-network (DQN), a method
that combines Q-learning [8] and deep neural network (DNN),
achieved a score higher than human players on the Atari 2600
[9]. Since the advent of DQN, deep RL (DRL), a method that
combines deep learning and RL, has become mainstream, and
it is now possible to solve problems featuring a huge number
of states, such as images.

In general, deep learning can solve complex tasks by
training using a large number of network parameters. However,
it is difficult to understand the reasoning behind the decision-
making of the trained network because the number of network
parameters used to make the decision is enormous. This

problem occurs in DRL as well. The reason for judging the
acquired action is unclear, since agents collect training data
by searching the environment and the calculation inside the
network is complicated. Therefore, in order to prove that
the trained network is sufficiently reliable, it is important
to analyze the reason for the judgment of the action that it
outputs.

One approach to interpreting the decision-making of a
network, visual explanation, has been studied in the field of
computer vision [10]–[12]. Visual explanations analyze the
factors of the network output by using an attention map that
highlights the important regions in an input image. Visual
explanation methods have also been applied to DRL models to
help with understanding the decision-making of an agent [13],
[14]. These methods can be categorized into two approaches:
bottom-up and top-down. Bottom-up visual explanations com-
pute attention maps by using the gradient information of a
network. Because the bottom-up approach does not need to re-
train a network, it can be applied to any trained network and
is commonly used in computer vision and DRL. The attention
maps obtained by the bottom-up approach are based on the
input data and response values calculated from each layer.
The bottom-up approach highlights local textural context. Top-
down visual explanations generate attention maps by using the
response values in a network. In contrast to the bottom-up
approach, the attention maps of the top-down approach are
output for the current network output.

In this paper, we propose Mask-Attention A3C (Mask A3C),
which introduces an attention mechanism into Asynchronous
Advantage Actor-Critic (A3C), an actor-critic-based DRL
method. Mask A3C calculates a mask-attention that is an
attention map of the policy and state value, and then a visual
explanation for these values is achieved by visualizing the
created mask-attention. Our method also learns the policy and
state value while considering mask-attention by implementing
the attention mechanism, thereby improving the performance
of the agent.

1) Contributions: The main contributions of this paper are
as follows.



• We propose a top-down visual explanation method that
implements an attention mechanism in the DRL model.
In the proposed method, mask-attention, which is an
attention map for the outputs, can be obtained simply
by forward pass.

• In the proposed method, the decision-making of the agent
after learning can be analyzed by visualizing the acquired
mask-attention. We conducted an experiment with games
on the Atari 2600 and analyzed which information influ-
ences the agent’s decision-making.

• By implementing the attention mechanism in the policy
branch and value branch of the actor-critic method, a
different mask-attention can be obtained depending on the
policy and state value. In this way, it is possible to analyze
an agent’s decision-making from the two viewpoints of
policy value and state value.

• The proposed method outputs the control value of the
agent while considering mask-attention by implementing
the attention mechanism. Therefore, the performance of
the agent can be improved by emphasizing the area
related to the control value.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III introduces the mask-
attention A3C. Section IV shows experimental results on Atari
2600 environments. We conclude the paper in Section V.

II. RELATED WORKS

A. Deep reinforcement learning

The deep Q-network (DQN) [9], which is a typical method
of DRL, expresses the action value function Q(a|s; θ) by using
a neural network and acquires the optimum action by training
the network parameters θ. DRL methods that learn the optimal
action by a value function such as DQN are called value-based
DRL, and have been studied extensively [15]–[18]. There is
also a policy-based DRL that directly learns the policy by
expressing the policy π(a|s; θ) with a neural network [19]–
[22]. The actor-critic method [23], which is a policy-based
method, consists of an actor that outputs the policy π(a|s; θ)
and a critic that outputs the state value V (s; θ). Here, the
state value V (s; θ) numerically expresses how the current state
s contributes to the reward. The actor selects and performs
an action according to a policy π(a|s; θ) that is a probability
distribution from a state s to an action a. The critic estimates
the state value V (s; θ) as the evaluation value of the policy
π(a|s; θ) that is output by the actor. To update the network
parameters in the actor-critic method, the actor parameter
update by the policy gradient method and the critic parameter
update by the TD error are performed in parallel.

Other approaches include distributed DRL, which improves
learning efficiency by constructing multiple environments and
agents [24]–[26]. A3C [27] is a distributed DRL method on
the basis of the actor-critic method. A3C introduces Asyn-
chronous, which is an asynchronous parameter update in
distributed learning and Advantage, which that learns while
considering rewards several steps ahead. Experiments with the

Atari 2600 showed that A3C could achieved a high score in a
short training time by executing the generation of experiences
used for learning in parallel.

In this study, we acquire mask-attention, attention maps
for policy and state value, by implementing an attention
mechanism in A3C. By visualizing mask-attention at the time
of inference, the decision-making of the agent acquired by
learning is analyzed from the visual explanation of the policy
and state value.

B. Visual explanations

1) Visual explanations in image recognition: In the field of
image recognition, several methods utilizing an attention map
have been proposed for analyzing the reason for judgments
on the inference result of the network. An attention map
visualizes the network attended area at the time of inference.
Zhou et al. proposed a class activation mapping (CAM) [10],
which acquires the attention map of a specific class from the
response value of the convolutional layer and the weight of the
fully connected layer. However, the recognition performance
of CAM deteriorates because it is necessary to change a part
of the network structure, such as by introducing global average
pooling (GAP) between the convolution and fully connected
layers. For that problem, Selvaraju et al. proposed gradient-
weighted CAM (Grad-CAM) [11], which acquires an attention
map by using the response value of the convolutional layer
during forward pass and the gradient during back-propagation.
Grad-CAM avoids the deterioration of the recognition perfor-
mance deteriorates by generating an attention map from the
gradient information. In image recognition, the recognition ac-
curacy is known to improve by using an attention map during
learning. Fukui et al. proposed an attention branch network
(ABN) [12] that applies the attention map to the attention
mechanism. This method provides a visual explanation of the
reason for judgment by the attention map and simultaneously
improves the recognition accuracy.

2) Visual explanations in deep reinforcement learning: In
DRL, several works for visual explanation of DRL models
have examined. Sorokin et al. proposed the deep attention
recurrent Q-network (DARQN) [13], where an attention mech-
anism is implemented in DQN, a representative value-based
method. Manchin et al. introduced a self-attention to a policy-
based DRL method [28], in order to improve the score
along with policy analysis. This method analyzes the agent’s
decision-making by using an attention map for the policy.
Our method differs in that it can improve the interpretability
of the agent’s decision-making in the actor-critic-based DRL
method by simultaneously acquiring different attention maps
for policies and state values.

Greydanus et al. acquired a saliency map in A3C by
calculating a perturbation image utilizing an applied Gaussian
filter from the gradient during back-propagation [14]. This
method takes a bottom-up approach, similar to Grad-CAM,
and therefore it is necessary to perform back-propagation to
acquire the saliency map. In contrast, our method takes a top-
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Fig. 1: Detailed network structure of Mask-Attention A3C.

down approach that implements an attention mechanism in the
network structure of A3C.

Zhang et al. proposed attention guided imitation learning
(AGIL) [29], which guides the focus area of a network on
the basis of human gaze information. They trained a model
to replicate human attention with supervised gaze heat maps.
The input state was then augmented with this additional
information. This style of attention fundamentally differs from
that used in our work in that it incorporates hand crafted
features as input.

The most similar work to ours was conducted by Mott et
al. [30]. Their method acquires two attentions (“what” and
“where”) by using query-based attention in an actor-critic-
based DRL method. This method requires an attention query to
be generated, which means significant changes must be made
to the network architecture (e.g., keys, values). In contrast,
our method has a simple structure in which an attention
mechanism is implemented in the policy and value branches
and no significant changes to the network architecture are
required. Also, they obtained different attentions related to
“what” and “where” by generating an attention query. In
contrast, our method improves interpretability by acquiring
different attentions toward policy and state value, which are
the outputs of actor-critic-based DRL methods.

The above visual explanations for DRL generates attention
maps from the low-level feature maps extracted from early
or middle convolutional layers, or output for action. In DRL,
a strategy is an important clue to solve a given task and
environment. From the viewpoint of the strategy, the state
value of actor-critic based model plays a crucial role because
the state value is the expected value from current to future
states and affects the future action selections. However, the
existing methods output attention maps with respect to the
instantaneous action selection. Our method based on an actor-
critic outputs two attention maps from both the policy and

value branches. By considering both attention maps, we can
clarify the basis of an agent’s decision-making in more detail.

III. MASK-ATTENTION A3C
We propose Mask-Attention A3C (Mask A3C), which intro-

duces an attention mechanism into A3C, an actor-critic-based
distributed DRL method. In Mask A3C, by implementing
an attention mechanism for the policy branch and the value
branch, we can acquire an attention map that expresses the
focus area of the network for the output of each branch.
In our study, this attention map is called mask-attention. By
visualizing the mask-attention of each branch, we obtain a
visual explanation of the reason for the judgment on the
policy and state value. In addition, our method learns while
considering the mask-attention by implementing the attention
mechanism, which improves the performance of the agent.

A. Overview of Mask A3C structure

Figure 1 shows the network structure of the proposed Mask
A3C. It consists of a feature extractor, policy branch, value
branch, and attention mechanism. Here, let st be a state at
time t. First, the feature extractor extracts a feature map
Ffe(st) from the given state st. The feature extractor consists
of convolutional layers. In A3C, temporal information can be
considered by utilizing LSTM, which greatly improves the
performance of the agent. However, LSTM cannot consider the
spatial information of the input image, so if it is used in Mask
A3C, mask-attention cannot be calculated. We therefore utilize
convolutional LSTM (ConvLSTM) [31], which can consider
spatiotemporal information.

The extracted feature map is fed into the policy and value
branches. The policy branch outputs policies, and the value
branch outputs the state value function. At these branches, the
proposed method adds mask-attention module. Each branch
takes the feature map extracted from the feature extractor and
computes a new feature map Fv(st) and Fp(st) by applying a



convolution and a ReLU activation. Meanwhile, the proposed
method also generates mask-attention. We denote Mv(st) and
Mp(st) as the mask-attentions for value and policy branches,
respectively. The mask-attention can be generated by applying
one convolutional layer of 1×1× # of channels and a sigmoid
function to the feature map st.

These feature maps and mask-attention are used for atten-
tion mechanism, the each branch output policy and state value,
respectively.

B. Attention mechanism

Mask A3C implements an attention mechanism in the policy
branch and value branch so that the policy and state value
functions are learned in consideration of the acquired mask-
attention. The attention mechanism performs mask processing
on the feature map of the middle layer in each branch by
using mask-attention. With this mask processing, the area
that contributes to the optimum action and state value can
be emphasized. By using mask-attention for the feature map,
the mask processing for each branch F ′v(st) and F ′p(st) are
calculated as follows:

F ′v(st) = Fv(st) ·Mv(st), (1)
F ′p(st) = Fp(st) ·Mp(st). (2)

The masked feature maps F ′v(st) and F ′p(st) are then fed
into the output layer and we obtain state value and policy.
By using the masked feature map, the agent focuses on the
highlighted region and selects the optimal action.

IV. EXPERIMENTS

To evaluate the effectiveness of Mask A3C, we conducted
experiments using the game task of OpenAI gym [32]. Three
games were used: “Ms. Pac-Man”, “Space Invaders”, and
“Seaquest”. The comparison methods were A3C, Policy Mask
A3C, Value Mask A3C, and Mask A3C, for a total of four
patterns. Policy Mask A3C and Value Mask A3C refer to a
Mask A3C in which the attention mechanism is implemented
in only one branch (i.e., policy branch or value branch). The
learning conditions were 35 for the number of workers, 0.0001
for the learning coefficient, and 0.99 for the discount rate. The
termination condition of learning was when the global steps
reached 1.0 × 108. The termination condition of an episode
was the end of one play in the game and the case where the
number of steps reached 1.0×104. We used the following four
evaluation methods.
• Visual explanations using mask-attention
• Score comparison on the Atari 2600
• Score comparison by inverting the gaze area of mask-

attention
• Reaction of mask-attention to new states

A. Implementation details

The input was a grayscale image of the game screen and the
output was the action in each game. The image used as input
was resized to 80 × 80. The output dimension of the feature
extractor was 32-dimensional for the first two convolutional

layers and 64-dimensional for the one remaining convolutional
layer. For the hidden state in ConvLSTM, the output dimension
was 64-dimensional. The policy branch consisted of one
convolutional layer, one fully connected layer, and a softmax
function. The output dimension of the convolution layer was
32-dimensional and the number of output units of the fully
connected layer was the number of actions in each game.
The value branch consisted of one convolutional layer with
a 32-dimensional output dimension and one fully connected
layer with one output unit. The network structure of A3C
in this experiment was the structure excluded the attention
mechanism from Mask A3C.

B. Visual explanations using mask-attention

Figures 2 and 3 show visualization examples of mask-
attention in Atari 2600. Hereafter, we discuss the obtained
mask-attentions shown in these figures.

1) Ms. Pac-Man: Ms. Pac-Man is a game in which the
player collects scattered cookies while avoiding enemies. The
actions of the agent that is the Pac-Man are “Noop”, “Up”,
“Down”, “Left”, “Right”, “Up + Left”, “Up + Right”, “Down
+ Left”, and “Down + Right”. In Fig. 2(a), the agent of Frame
1 was attending around Pac-Man. The agent of Frame 2 was
attending to the cookies remaining on the screen. In Frame 3,
Pac-Man moved to the gazed area of Frame 2 and acquired the
cookies. These results demonstrate that the agent controlled
Pac-Man toward the cookies while simultaneously attending
to the surroundings of Pac-Man. In Fig. 3(a), Point 1, which
was the beginning of the game, the agent was attending to
the entire screen. In contrast, Point 2 is reduced the gaze
area in accordance with the decreases of cookies. Also, from
Point 1 to Point 2, the state value decreased as the cookies on
the screen decreased. These results demonstrate that the agent
recognized the cookies as the score source.

2) Space Invaders: Space Invaders is a shooting game in
which the player repels the enemy invaders. The actions of the
agent that is the cannon are “Noop”, “Left”, “Right”, “Attack”,
“Left + Attack”, and “Right + Attack”. In Fig. 2(b), the agent
in Frame 1 is attended to the invaders and the action was
“Attack”. In Frame 2, we can see that the beam in Frame 1
was heading toward the invader, and in Frame 3, the beam
was repelling the invaders that were attended to in Frame 1.
In all frames, the agent attended around itself while avoiding
the defensive walls. From these results, we can see that the
agent repelled the invaders while simultaneously avoiding the
defensive wall. In Fig. 3(b), the agent in Point 1 was attending
to all of the invaders and the agent in Point 2 was shrinking
the gaze area in accordance with the decreasing number of
invaders. In addition, from Point 1 to Point 2, the state value
is decreased according to the number of invaders. These results
demonstrate that the agent recognized the invaders as the score
source.

3) Seaquest: Seaquest is a game in which players use
submarines to rescue divers and destroy enemies and fish. The
actions of the agent that is the submarine are “Noop”, “Up”,
“Down”, “Left”, “Right”, and “Attack”. In Fig. 2(c), the agent



Frame 1

Image Image with mask-attention

Frame 2

Image Image with mask-attention

Frame 3

Image Image with mask-attention

(a) Ms. Pac-Man: The white arrow shows the direction of travel of Pac-Man.

Frame 1

Image Image with mask-attention

Frame 2

Image Image with mask-attention

Frame 3

Image Image with mask-attention

(b) Space Invaders: The red circles in Frame 2 show the beam that is the attack of the agent in Frame 1, and the red circles in Frame 3
show the destroyed invaders. The white arrow shows the direction of travel of the beam that is the attack of the agent.

Frame 1

Image Image with mask-attention

Frame 2

Image Image with mask-attention

Frame 3

Image Image with mask-attention

(c) Seaquest: The red circle in Frame 2 shows the submarine replenishing oxygen.

Fig. 2: Visualization example of mask-attention in policy: The controller in “Image with mask-attention” is an action that
is output by the DRL model. The green broken line in the State value shows the transition to the next stage.



Point 1 Point 2

Point 1 Point 2

Image Image with mask-attention Image Image with mask-attention

(a) Ms. Pac-Man
Point 1 Point 2

Point 1 Point 2

Image Image with mask-attention Image Image with mask-attention

(b) Space Invaders
Point 1 Point 2

Point 1 Point 2

Image Image with mask-attention Image Image with mask-attention

(c) Seaquest

Fig. 3: Visualization example of mask-attention in state value: The green broken line in the graph shows the transition to
the next stage.

in Frame 1 is attending to the oxygen gauge and the action
was “Up”. In Frame 2, the submarine operated by the agent
is floating on the surface of the sea. When the amount of
oxygen is reduced in Seaquest, it can be replenished when the
submarine rises to the surface of the sea. In Frame 3, we can
see that the oxygen gauge is full due to the rise to the sea
level in Frame 2, and there is no gaze on the oxygen gauge.
From these results, we can see that the agent recognizes the
oxygen gauge is low and controls the submarine to rise to sea
level. In Fig. 3(c), the agent in Point 1 was attending to the
entire oxygen gauge. On the other hand, in Point 2, where
the amount of oxygen is low, the gaze area of the oxygen
gauge was reduced in accordance with the amount of oxygen.
The state value also decreased from Point 1 to Point 2. These
results demonstrate that the agent recognized the oxygen as
the score source.

4) Discussion: We obtained different mask-attentions in
the policy and state value by implementing an attention
mechanism for each branch. The policy represents the proba-
bility distribution of the action selection in the current state.
Therefore, the mask-attention of the policy indicates the area
that contributes to the action of the agent. The state value
represents the expected value of the return in the current
state. Here, return is the sum of rewards during one episode.
Therefore, the mask-attention of the state value indicates the
area that represents the property of the game.

C. Score comparison on the Atari 2600

Table I shows the max and mean scores over 100 episodes
on the Atari 2600. As we can see, the mean score in Breakout
was lower for Policy Mask A3C, Value Mask A3C, and Mask
A3C than for A3C. In contrast, the max score in Breakout
was 864 for all methods. This score is the best score that can



TABLE I: Max and mean scores over 100 episodes on Atari 2600: Scores of models that had the highest average score
among five trials in each method are shown.

Att. mechanism Breakout Ms. Pac-Man Space Invaders Beamrider Fishing Derby Seaquest
Policy Value max mean max mean max mean max mean max mean max mean

864 662.0 5380 4573.3 19505 18531.8 34748 28341.1 41 32.1 2760 2728.2
X 864 595.8 6330 4833.8 19860 19102.8 32604 28495.3 41 37.5 2820 2784.0

X 864 606.9 4830 4044.5 19675 18537.8 35108 28205.7 43 36.1 2820 2786.4
X X 864 640.0 6610 5314.1 19810 19212.5 34448 27671.1 41 34.3 17150 6701.9

TABLE II: Score comparison by inverting the gaze area of mask-attention: Normal and inverse are the scores when the
gaze area was not inverted and is inverted, respectively. Random is the score when the action was randomly selected. Max /
mean = maximum and average scores over 100 episodes.

Att. mechanism Breakout Ms. Pac-Man Space Invaders Beamrider Fishing Derby Seaquest
Policy Value max mean max mean max mean max mean max mean max mean

X
normal 864 595.8 6630 4833.8 19860 19102.8 32604 28495.3 41 37.5 2820 2784.0
inverse 4 2.2 290 268.9 805 306.9 4996 1554.2 -49 -75.7 280 158.2

X X
normal 864 640.0 6610 5314.1 19810 19212.5 34448 27671.1 41 34.3 17150 6701.9
inverse 5 1.8 410 194.4 915 420.2 6380 2063.9 -49 -74.7 420 280.6

random 5 1.2 1080 247.8 460 142.1 852 356.5 -85 -93.1 300 82.8

TABLE III: Decrease rate of score due to inverse of gaze area in mask-attention (%): Max / mean = maximum and average
scores over 100 episodes.

Att. mechanism Breakout Ms. Pac-Man Space Invaders Beamrider Fishing Derby Seaquest
Policy Value max mean max mean max mean max mean max mean max mean
X 99.53 99.63 95.41 94.43 95.94 98.39 84.67 94.54 98.90 99.12 90.07 94.31
X X 99.42 99.71 93.79 96.34 95.38 97.80 81.47 92.54 98.90 99.09 97.55 95.81

be obtained in Breakout. Breakout is a simple game with no
external factors: it simply consists of the player hitting the
ball back with a paddle. Therefore, we presume that A3C and
Mask A3C got the same score. In Ms. Pac-Man, the max and
mean scores of Policy Mask A3C and Mask A3C improved
compared to those of A3C. The control of the agent in Ms.
Pac-Man is complex because it is necessary to select an action
while considering external factors (e.g., the enemy). Policy
Mask A3C and Mask A3C, which implement an attention
mechanism on the policy branch, can emphasize the areas that
contribute to the action (e.g., cookies and enemies), which
is why Policy Mask A3C and Mask A3C obtained a higher
score than A3C. In Space Invaders, Policy Mask A3C and
Mask A3C improved the max and mean scores compared to
A3C. Also, the max and mean scores of Value Mask A3C
were almost the same as those of A3C. The agent in Space
Invaders needs to select actions in consideration of external
factors (e.g., enemies), the same as in Ms. Pac-Man. Policy
Mask A3C and Mask A3C, which implement an attention
mechanism in the policy branch, can emphasize the areas that
contribute to the action (e.g., defensive walls and invaders),
which is why they obtained a higher score than A3C. There
was no significant difference among the scores for Beamrider.
In Beamrider, two kinds of enemies exist from the agent’s
point of view: one, an enemy that the agent should defeat, and
two, the necessity that the agent should avoid collisions. These
enemies are like similar in appearance. Since our attention
mechanism and the mask-attention that highlights the enemies
are insufficient to distinguish these enemies, they do not

contribute to the score improvement. In Fishing Derby, Policy
Mask A3C, Value Mask A3C, and Mask A3C improved the
mean scores compared to A3C. In Fishing Derby, there are
many fish that are score sources, and getting the closest fish
is the fastest way to get a point. Policy Mask A3C, Value
Mask A3C, and Mask A3C, which implements an attention
mechanism, can emphasize the fish closest to the player. This
is why the mask-attention methods obtained a higher score
than that A3C. In Seaquest, Mask A3C improved both the
maximum and average scores compared to the other methods.
This is because only the Mask A3C agent could learn the
action of replenishing oxygen. Seaquest features an oxygen
gauge at the bottom of the screen, and the game ends when
the oxygen is gone. Mask A3C, which implements an attention
mechanism in the policy and value branches, can emphasize
the oxygen gauge, which is why Mask A3C obtained a higher
score than the other methods.

D. Comparison of scores by inverting gaze area in mask-
attention

In visually explaining the decision-making of an agent
using Mask A3C, we want to verify whether mask-attention
represents an effective gaze area for the optimum action. In
a case where the game score obtained by inverting mask-
attention does not change, it means the mask-attention does not
contribute to the agent’s action. In contrast, if the game score
significantly decreases, it means the mask-attention largely
contributes to the agent’s actions acquiring the game score.
For this verification method, we created a map in which the
gaze area of the mask-attention in the policy branch is inverted



and then calculated the score on Atari 2600 when the created
map was used for the attention mechanism. We investigated
whether mask-attention is effective for the visual explanation
of an action by comparing the scores when the gaze area was
inverted and when it was not inverted. The map in which the
gaze area of the mask-attention is inverted was created by

Minverse(st) = 1−M(st), (3)

where st is the state (grayscale image in the experiment),
M(st) is mask-attention, and Minverse(st) is the map after
inverting the gaze area of mask-attention.

Table II shows the score comparison by inverting the gaze
area of mask-attention. (Also, Table III shows the decrease
ratio from the normal score to the inverse score.) As shown
in Table II, the inverse score was significantly lower than the
normal score in all games. In addition, the inverse score in
Breakout was equivalent to a random score, and the inverse
score of Mask A3C in Ms. Pac-Man was 53.4 lower than
random. In contrast, we can see that the inverse score in Space
Invaders, Beamrider, Fishing Derby, and Seaquest was higher
than a random score. However, from Table III, we can see that
the decrease ratio in the mean of Space Invaders, Beamrider,
Fishing Derby, and Seaquest was more than 90%, as with the
other games. Therefore, we conclude that the gaze area of
mask-attention in the policy branch can represents a useful
area for action to obtain a high score.

E. Reaction of mask-attention to new states

We want to verify whether mask-attention and the behavior
of an agent are affected when changes are made to the
object that mask-attention was attending to. In a case where
the behavior of the agent significantly changes by making
changes to the object being attended, the object is an important
component that contributes to the agent’s behavior. In this
experiment, we focused on the fish and oxygen gauges in
Seaquest. For this verification method, we added the fish to
the image when evaluating Mask A3C in Seaquest. The frame
to add fish is the frame in which the agent destroys the fish
and the fish disappears from the image. After adding the fish
to the image, we investigated the behavior of the agent and
the change in mask-attention. Similarly, we added the oxygen
gauge full of oxygen to the image. The frame to add the
oxygen gauge is before the agent replenishes oxygen.

Figure 4a shows the changes in agent behavior and mask-
attention due to the addition of fish. Here, the fish was added
after Frame 2. From the Figure 4a, we can see that the policy /
value mask-attention after Frame 3 is attending to the fish. At
this time, the agent is moving to the right in Frame 3, but is
attacking the fish added in Frame 4. These results demonstrate
that the fish in Seaquest is an object that greatly contributes to
the behavior of the agent. Figure 4b shows changes in agent
behavior and mask-attention due to the addition of oxygen
gauge. Here, the oxygen gauge is added after Frame 2. From
the figure 4b, we can see that the policy mask-attention after
Frame 3 is not attending to the oxygen gauge. Also, the value
mask-attention of Frames 3 and 4 in Fig. 4b is not attending

to the entire oxygen gauge, unlike Fig. 3c Point 1. However,
the value mask-attention of Frames 5 and 6 is attending to the
entire oxygen gauge, similar to Fig. 3c Point 1. At this time,
the agent’s behavior rose to sea level in Frames 3 and 4, but
descended in Frames 5 and 6. These results demonstrate that
the amount of oxygen in the oxygen gauge in Seaquest is an
object that greatly contributes to the behavior of the agent.

The policy mask-attention in the experiment of adding
the oxygen gauge is not attending to the oxygen gauge in
Frame 3. Here, Frame 3 is the frame immediately after adding
the oxygen gauge. In other words, the policy mask-attention
immediately reflects the effect of adding the oxygen gauge.
On the other hand, in the value mask-attention in the same
experiment, the entire oxygen gauge is not attended to in
Frames 3 and 4, but it is attended to in Frames 5 and 6. These
results demonstrate that the change in mask-attention due to
the addition of an oxygen gauge is different for the policy
and value mask-attention. Therefore, we conclude that policy
mask-attention shows the area that contributes to the behavior
in the current state, and value mask-attention shows the area
related to the characteristic of the game considering the time
series.

V. CONCLUSION

In this paper, we proposed Mask-Attention A3C (Mask
A3C), which introduces an attention mechanism into Asyn-
chronous Advantage Actor-Critic (A3C). In Mask A3C, we
acquire a mask-attention that expresses the important area
for the policy and state value by implementing an attention
mechanism in the policy and value branches. This enables
a visual explanation of the judgment reason in the decision-
making of the agent, from the two viewpoints of policy and
state value, by visualizing mask-attention. We also emphasize
which areas contribute to the optimal action and state value by
implementing an attention mechanism, which simultaneously
improves the performance of the agent.

Experiments with the Atari 2600 confirmed the acquisition
of different mask-attentions in the policy and value branches.
The results demonstrate that the mask-attention of the policy
branch indicates the area that contributes to the action while
that of the value branch indicates the area that expresses
the property of the game. We provided a useful analysis for
the decision-making of agents in game tasks from the two
viewpoints of policy and state value by visualizing these mask-
attentions. A comparison of game scores showed that the score
improved when the attention mechanism was implemented in
the policy branch. However, our experiments were conducted
with game tasks that are easy to analyze visually. Our future
work will entail the visual analysis of agents using mask-
attention is a future work for complex tasks (e.g., robot control
and autonomous driving).
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