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Abstract—Convolutional neural networks (CNNs) are being
used in various fields related to image recognition and are
achieving high recognition accuracy. However, most existing
CNNs do not consider uncertainty in their predictions; that is,
they do not account for the difficulty of prediction, and the
extent to which their predictions are reliable is unclear. This
problem is considered to be the cause of erroneous decisions
when we use CNNs in practice. By considering the uncertainty
of the prediction result, it is thought that recognition accuracy
would improve, and erroneous decisions would be suppressed. We
propose a Bayesian attention branch network (Bayesian ABN)
that incorporates uncertainty into an attention branch network
(ABN). The method incorporates a Bayesian neural network
(Bayesian NN) into the ABN to account for uncertainty in the
prediction result. Also, it outputs prediction results from two
branches and chooses the one having the lower uncertainty.
In evaluations using standard object recognition datasets, we
confirmed that the proposed method improves the accuracy and
reliability of CNNs.

I. INTRODUCTION

Machine learning is a technology that analyzes patterns of
known data, extracts patterns and regularities from the data,
and makes it possible to predict unknown data from patterns
and regularities. Furthermore, convolutional neural networks
(CNNs) [1] are machine learning methods that are mainly used
for image recognition. Since a method using a CNN [2] won a
general object recognition contest [3] held in 2012, CNNs have
been applied to various fields, especially image recognition.
In particular, they have achieved high recognition accuracy in
computer vision, face, place, and object recognition, moving
image analysis, and autonomous driving applications. Familiar
technologies using CNNs include car driving support technol-
ogy and image classification technology.

However, most existing CNNs do not consider uncertainty in
their predictions; that is, they do not account for the difficulty
of prediction, and the extent to which their predictions are
reliable is unclear. This problem is considered to be the cause
of erroneous decisions in practical use of CNNs. In partic-
ular, car driving support technology and image classification
technology have been affected by misjudgments caused by
CNNs. For instance, an electric car made by Tesla caused
a fatal accident allegedly due to a faulty driver assistance
system that misjudged a reflection on the white side of a trailer.
Apparently, the driver assistance system and the driver did not
notice the trailer and could not brake in time to prevent the
accident.

If the uncertainty of the prediction result could be taken into
account, it is thought that recognition accuracy would improve
and erroneous judgments would be suppressed. In this paper,
we propose a Bayesian attention branch network (Bayesian
ABN) that introduces uncertainty in the attention branch
network (ABN) [4]. ABN is a CNN that improves recognition
accuracy and provides visual explanation by introducing a
branch of attention mechanism. The proposed method consid-
ers the uncertainty of the prediction results by incorporating
a Bayesian neural network (Bayesian NN) [5] in the ABN.
In addition, the proposed method outputs prediction results
from two branches and chooses the one having the lower
uncertainty. We verified the effect of incorporating uncertainty
in the prediction result and the change in recognition accuracy
by conducting experiments using general object-recognition
datasets.

A. Contribution

The contributions reported here are summarized as follows.
• In a recognition system using machine learning, the

recognition result and its corresponding score are output.
However, since the reliability of the score is not taken
into account, it may cause misjudgments. In the proposed
method, erroneous judgments are suppressed by consid-
ering the reliability of the score.

• In the recognition system using CNNs, it is difficult to
find the cause of an erroneous judgment because the basis
of that judgment is unclear. In the proposed method, an
attention map can be used for visual explanation, so that
an index can be obtained that is useful for investigating
the cause of an erroneous judgment when it occurs.

II. RELATED WORK

Bayesian NN and Monte Carlo dropout (MC dropout)
[6] are uncertainty estimation methods for neural networks
(NNs). Moreover, as mentioned above, ABN is a CNN that
improves recognition accuracy and provides visual explanation
by introducing a branch of attention mechanism.

A. Bayesian Neural Network

Bayesian NN [5] is a probabilistic model in which the
dependence of multiple random variables is represented by
a graph structure, and the relationships between variables
are represented by conditional probabilities. The difference



Fig. 1: Difference in structure between general NN and
Bayesian NN [5]

in structure between a general NN and a Bayesian NN is
shown in Fig. 1. General NN weights are point estimates,
because they are unique. Therefore, it is impossible to estimate
uncertainty with a general NN. Bayesian NNs are different
from general NNs in that they represent the weight of a
network model by using a probability distribution, and this
enables them to estimate uncertainties along with prediction
results.

B. Monte Carlo dropout

Applying a Bayesian NN to a CNN is computationally
expensive and difficult to optimize. The MC dropout method
[6] has been proposed as a way to solve this problem. MC
dropout approximates the probability distribution of weights
by expressing the weights of the network model in terms of a
Bernoulli distribution. The approximate variation distribution
q∗θ (wi) of the weights of the unit j = 1, . . . ,Ki−1 and the
layer i = 1, . . . , L are defined as follows.

zi,j ∼ Bernoulli (pi) (1)

q∗θ (wi) = mi · diag
(
[zi,j ]

Ki

j=1

)
(2)

At this time, an approximate model of the Gaussian process is
obtained from the distribution of the random variable vector
zi,j and the variation parameter mi obtained by the Bernoulli
distribution. This definition is equivalent to setting the unit
of the network model to 0 randomly by dropout [7] with a
dropout probability pi. The prediction distribution is obtained
from the average of the sampling using dropout, and the
variance and entropy of the prediction distribution provide
an index that indicates uncertainty. Bayesian SegNet [8] is
a method of applying MC dropout to semantic segmentation
tasks, and variational RNN [9] is a method of applying MC
dropout to recurrent neural network (RNN).

C. Attention Branch Network

ABN [4] is a CNN that improves recognition accuracy
and provides visual explanation by introducing a branch of
attention mechanism. The network structure of ABN based
on a residual network (ResNet) [10] is shown in Fig. 2. An
ABN is constructed from a network used in general object
recognition. The network used for general object recognition

Fig. 2: Network structure of ABN [4]

is divided into a feature extractor and perception branch, and
the attention branch is placed after the feature extractor. The
attention branch consists of convolutional layers and global
average pooling (GAP) [11], and it enables an attention map
representing the visual explanation from the feature map of the
feature extractor. An ABN improves recognition accuracy by
visualizing the attention area in the attention branch, reflecting
it in the feature map of the feature extractor, and estimating
the prediction result in the perception branch.

III. PROPOSED METHOD

We propose Bayesian ABN, which introduces uncertainty
to the ABN. Bayesian ABN uses a MC dropout to improve
the accuracy and reliability of the prediction results of the
ABN by considering their uncertainty. The proposed method
is described below.

A. Construction of Bayesian Attention Branch Network

The network structure of a Bayesian ABN based on ResNet
is shown in the Fig. 3. The Bayesian ABN is based on
networks used in general object recognition like the ABN. In
addition, the Bayesian ABN uses a MC dropout to estimate the
uncertainty of its prediction results. Therefore, if the network
is based on one that does not use dropout, dropout has to
be added to it. For instance, ResNet and ResNeXt [12] are
networks that do not use dropout. In Bayesian ABN based on
ResNet and ResNeXt, dropout is added to the last residual
block of the feature extractor and the residual block of the
perception branch. In particular, dropout is added after the
last convolution layer in each residual module that makes up
the residual block.

B. Learning algorithm

The learning method of Bayesian ABN is the same as that
of ABN. The loss function used during training is calculated
from the predictions obtained from the attention branch and
the predictions obtained from the perception branch. Denoting
the error of the attention branch as Lattention and the error of
the perception branch as Lperception, the loss function L is
expressed as

L = Lattention + Lperception (3)

We employ softmax cross-entropy for both loss functions.
According to this loss function, learning is performed using
the same learning algorithm as using in a general CNN.



Fig. 3: Network structure of Bayesian ABN

C. Uncertainty estimation

Bayesian ABN estimates the uncertainty of prediction re-
sults by using MC dropout during inference. The output
result is sampled using dropout, and the predicted distribution
pbranch is obtained from the average of the samples. The
uncertainty H (pbranch) is estimated using the entropy of the
predicted distribution Pc for each class c = 1, . . . , C:

H (pbranch) = −
∑C
c=1 Pc lnPc (4)

H (pbranch) captures the uncertainty of each prediction distri-
bution in the attention branch and the perception branch.

D. Estimating prediction results using uncertainty

The Bayesian ABN can estimate the uncertainty
H (pbranch) for each predicted distribution pbranch in
the attention branch and the perception branch. However,
it is not possible to improve the recognition accuracy only
by estimating the uncertainty. Therefore, Bayesian ABN
recognition accuracy and reliability are improved by using
the prediction distribution p of the branch with the lowest
uncertainty. If the prediction distribution of the attention
branch is pattention and the prediction distribution of the
perception branch is pprediction, the final prediction result is
expressed as

p =

{
pattention H (pattention) < H

(
pperception

)
pperception H (pattention) = H

(
pperception

) (5)

The final recognition result y is expressed as

y = argmax
c
{Pc ∈ p} (6)

IV. EXPERIMENT

We performed experiments on general object recognition
using networks for general object recognition, an ABN, and
Bayesian ABN. The recognition accuracy was evaluated in
relation to that of general object recognition, and the effect of

introducing uncertainty in the prediction result and the change
in recognition accuracy were analyzed.

A. Datasets

The experiment used the CIFAR-10 dataset, CIFAR-100
dataset [13], and ImageNet-1K dataset [14]. The input image
size of the CIFAR-10 and CIFAR-100 datasets is 32 × 32
pixels, and that of the ImageNet-1K dataset is 224×224 pixels.
The number of categories for each dataset is as follows: The
CIFAR-10 dataset consist of 10 classes, the CIFAR-100 dataset
consist of 100 classes, and the ImageNet-1K dataset consist of
1, 000 classes. During training, we applied the standard data
augmentation. For the CIFAR-10 and CIFAR-100 datasets, the
images are first zero-padded with 4 pixels for each side then
randomly cropped to again produce 32 × 32 pixels images,
and the images are then horizontally mirrored at random. For
the ImageNet-1K dataset, the images are resized to 256× 256
pixels then randomly cropped to again produce 224 × 224
pixels images, and the images are then horizontally mirrored
at random. The numbers of training and evaluation images of
each dataset are as follows: The CIFAR-10 and CIFAR-100
datasets use 50, 000 images for training and 10, 000 images
for evaluation, and the ImageNet-1K dataset uses 1, 281, 167
images for training and 50, 000 images for evaluation.

B. Experimental conditions

The ABN and Bayesian ABN of the experiments were based
on networks used for general object recognition. ResNet, wide
residual network (WRN) [15], dense convolutional network
(DenseNet) [16], and ResNeXt were chosen as the networks
for general object recognition. For the CIFAR-10 and CIFAR-
100 datasets, ResNet had 110 layers, and WRN had 28 layers;
their widening factor was 10. DenseNet had 190 layers; the
growth rate was 40, and the compression parameter was 0.5.
ResNeXt had 29 layers; the branch number was 16, and the
width parameter was 4. For the ImageNet-1K dataset, ResNet



TABLE I: Recognition accuracy of each method [%]

Methods CIFAR-10 dataset CIFAR-100 dataset ImageNet-1K dataset

Base ABN Bayesian
ABN

Top-1
accuracy

Top-5
accuracy

Top-1
accuracy

Top-5
accuracy

Top-1
accuracy

Top-5
accuracy

93.57 − 75.86 − 77.81 −
ResNet X 94.25 99.77 76.09 92.80 79.35 94.55

X 94.28 99.78 78.97 94.58 80.31 95.01

95.83 − 79.50 − 76.61 −
WRN X 96.04 99.89 82.01 95.53 76.93 92.97

X 96.06 99.90 82.04 95.75 77.75 93.20

94.08 − 75.85 − 77.80 −
DenseNet X 94.48 99.79 76.51 93.57 75.85 92.87

X 94.75 99.83 79.47 94.87 78.61 94.16

96.42 − 81.68 − 77.60 −
ResNeXt X 96.93 99.91 82.05 86.73 78.48 94.10

X 96.97 99.93 83.11 96.94 79.39 94.62

had 152 layers, and WRN had 34 layers; their widening factor
was 2.

Regarding the experimental conditions used during training,
the dropout probability of WRN and ABN and Bayesian ABN
based on WRN was set to 0.3. We optimize the networks by
stochastic gradient descent (SGD) with momentum. The total
numbers of iterations to update the networks is as follows: The
number of training epochs was 600 on the CIFAR-10 dataset
and CIFAR-100 dataset and 200 on the ImageNet-1K dataset.
The initial learning rate was set to 0.1, and is divided by 10
at 1/2 and 5/6th of the total number of training epochs. As
for the experimental conditions at the time of the evaluation,
the dropout probability of Bayesian ABN was 0.3, and the
number of samplings for MC dropout was 50.

C. Experimental result

We evaluate the recognition accuracy and the effectiveness
of uncertainty in the proposed method by experiments on
general object recognition.

1) Evaluation of recognition accuracy: We evaluated the
recognition accuracies of networks used for general object
recognition, ABN, and Bayesian ABN. TABLE I shows the
recognition accuracies of the methods on the CIFAR-10
dataset, CIFAR-100 dataset, and ImageNet-1K dataset in terms
of the top-1 and top-5 accuracies. The accuracy of the base
network (i.e., ResNet, WRN, DenseNet, and ResNeXt) is cited
from [10], [15], [16], [12], respectively. In each case, Bayesian
ABN achieved the highest recognition accuracy. Although the
results of the proposed method on CIFAR-10 dataset are not
increased so much, in case of the results on CIFAR-100 and
ImageNet-K datasets, more difficult datasets, our method can
improve those accuracies. This is because more information
is needed to calculate the uncertainty and more accurate
measurements can be obtained.

2) Visualization of uncertainty: The experiment used the
CIFAR-10, CIFAR-100, and ImageNet-1K datasets to visual-
ize the uncertainty of the results of a ResNet-based Bayesian
ABN. Fig. 4 shows a visualization of the uncertainty results for
each data. The x axis represents the correct answer label, the y
axis represents the recognition result, and the color of the point
represents the average uncertainty. The uncertainty of the data
in the case of an incorrect recognition result tends to be high,
indicating that the uncertainty was correctly estimated. From
this trend, uncertainty can be used to determine whether the
prediction is accidental or inevitable. Focusing on the labels 2
and 9 in Fig. 4 (a), it can be confirmed that the recognition is
wrong although the uncertainty is low. Label 2 represents the
car class and label 9 represents the ship class. It can be easily
confused because of its similar shape.

3) Assessing the effectiveness of incorporating uncertainty:
We evaluated the recognition accuracy of an ABN and a
Bayesian ABN based on a network for general object recogni-
tion on the CIFAR-100 dataset and ImageNet-1K dataset. We
compared their recognition accuracy over the different thresh-
olds based on class score or uncertainty. As the reliability
measures, we use uncertainty and a class score provided by
the Bayesian ABN and a class score obtained from the ABN.
The class score is the maximum value of the class likelihood
that is the prediction result. H (pbranch)

Fig. 5 shows the results for the CIFAR-100 dataset, and Fig.
6 shows those for the ImageNet-1K dataset. The horizontal
axis shows the threshold of reliabilities, i.e., the uncertainty
or class score. The vertical axis shows the ratio of evaluation
samples being correctly classified with lower uncertainty or
higher class score than the threshold. Note that, in order to
deal with both the uncertainty and class score in a graph, we



(a) CIFAR-10 dataset

(b) CIFAR-100 dataset

(c) ImageNet-1K dataset

Fig. 4: Visualization of uncertainty on (a) CIFAR-10, (b)
CIFAR-100, and (c) ImageNet-1K datasets. each colorized dot
shows the averaged uncertainty of samples.

scale the uncertainty values H (p) to H ′ (p) by

H ′ (p) = 1− H (p)

Hmax
(7)

where Hmax is the maximum value of uncertainty in the
evaluation dataset. We normalize the class score into [0, 1]
by using the maximum value of class scores obtained from

the evaluation samples. Therefore, higher reliability (e.g., 1)
indicates more certain classification results, and lower relia-
bility (e.g., 0) indicates more uncertain results.

When using the CIFAR-100 and ImageNet-1K datasets,
comparing the ABN with the Bayesian ABN shows that the
Bayesian ABN classifies more evaluation samples correctly.
The results on ImageNet-1K datasets (Fig. 6) show that the
uncertainties achieved higher accuracy than the class score.
Consequently, these results show that the reliability of a model
can be improved by using uncertainty.

4) Visualization of attention maps: We visualized the at-
tention maps of ResNet-based ABN and Bayesian ABN on
the CIFAR-10, CIFAR-100, and ImageNet-1K datasets. Fig.
7 shows the obtained attention maps for an input image.
Because of the MC dropout of Bayesian ABN, the proposed
method generates different attention maps for each sampling.
Therefore, we visualize the mean and variance of the attention
map. Here, we visualize the attention map as a heat map; red
means more highlighted areas, where the attention map takes
values between 0 and 1. For the variance of the attention map,
white is high and black is low variances.

ABN and Bayesian ABN attention maps capture character-
istic regions of objects in an image. Comparing the attention
map of ABN and the mean attention map of Bayesian ABN,
those seem to be almost the same. Meanwhile, the variance
of attention maps obtained from Bayesian ABN represents the
confidence of each pixel’s attention map values, which would
be helpful for further understanding of the decision-making of
a network model.

V. CONCLUSION

We evaluated the recognition accuracy of the proposed
method and evaluated the effectiveness of incorporating un-
certainty by conducting experiments on general object recog-
nition. The proposed method achieved the highest recognition
accuracy among the methods evaluated in every case of the
experiments. Incorporating uncertainty was proved effective
because recognition accuracy improved when a threshold
based on uncertainty was set. In the future, we aim to improve
the recognition accuracy and reduce learning costs of CNNs
by incorporating uncertainty into active learning.
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