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Abstract—This paper presents the multi-task Deconvolu-
tional Single Shot Detector (MT-DSSD), which runs three
tasks—object detection, semantic object segmentation, and
grasping detection for a suction cup—in a single network based
on the DSSD. Simultaneous execution of object detection and
segmentation by multi-task learning improves the accuracy
of these two tasks. Additionally, the model detects grasping
points and performs the three recognition tasks necessary for
robot manipulation. The proposed model can perform fast
inference, which reduces the time required for grasping opera-
tion. Evaluations using the Amazon Robotics Challenge (ARC)
dataset showed that our model has better object detection
and segmentation performance than comparable methods, and
robotic experiments for grasping show that our model can
detect the appropriate grasping point.

I. INTRODUCTION

Can robots perform tasks in place of human operators?
Also, what is the “visual function” necessary for such work?
Grasping detection is a key function for robots that perform
manipulative tasks, such as industrial and human assistive
robots. Such robots need to recognize the class of the target
object and/or grasp it in accordance with what the user or
operator orders. From the viewpoints of recognition cost and
system running time, object detection and grasping detection
should be performed simultaneously and processed at low
computational cost and high speed.

Due to the rapid progress of deep learning, methods
of object detection and grasping detection achieve better
performances than conventional machine learning methods.
In the Amazon Picking Challenge 2016 and the Amazon
Robotics Challenge (ARC), many teams [1], [2] used deep
learning for object detection and grasping detection, and
several teams used semantic segmentation for recognizing
the detailed area of an object [3], [4], [5]. In the ARC, it
is important to detect a specified object from many classes,
perform segmentation to recognize the object region in detail,
grasp the target object, and put it in delivery cardboard.
Furthermore, this task should be performed as quickly and
as accurately as a human operator. This applies not only to
Amazon’s logistics warehouse (the setting assumed in the
ARC) but also to ordinary living environments. When the
user of the robot wants an object, the robot first detects and
recognizes the items in the room and then determines which
object the user wants. If the robot finds it, it grasps it securely
and delivers it to the user.

1They are with Chubu Univ., Aichi, JP {ryorsk@mprg.cs,
onishi@mprg.cs, hirakawa@mprg.cs, takayoshi@isc,
fujiyoshi@isc}.chubu.ac. jp

! RAZ8T e
(c) Suction grasping detection

Objet detection (b) Semantic segmentation

(@

Fig. 1. Detection and classification results of proposed model. Our model
receives a scene image and then runs (a) object detection, (b) semantic
segmentation, and (c) grasping detection for a suction cup.

In this paper, we propose a network model based on a con-
volutional neural network (ConvNet) that simultaneously per-
forms object detection, semantic segmentation, and grasping
detection for a suction cup (Fig. 1). Simultaneous execution
of object detection and segmentation by multi-task learning
improves the accuracy of both tasks. Additionally, the model
detects grasping points and performs the recognition task
necessary for robot manipulation. As our model is based on
fast object detection, it can perform fast inference. It can also
reduce the time required for grasping operation.

II. RELATED WORK

Object detection and semantic segmentation are funda-
mental tasks in the computer vision field. These tasks are
also often used in the robotics field. Object detection is used
to detect the objects to be grasped by a robot. Semantic
segmentation is used for understanding the surrounding en-
vironment and for detecting a more detailed object area than
simple object detection. By combining these methods with
a grasping detection method, the robot can grasp a specific
object.

A. Object Detection with SSD and DSSD

The Single Shot Multibox Detector (SSD) [6] detects
object fast by a single network. With its six prediction mod-
ules, it detects object candidates of various shapes using a
rectangle called a default box that has multiple aspect ratios.
Offset for each default box is obtained by regression from
feature maps (localization maps) in order to surround the
objects with the rectangle. Similarly, the class of the object
is recognized using feature maps (confidence maps) obtained
by the prediction module representing the likelihood. For
all object candidates obtained by this processing, excessive
object candidates of the same class are deleted by non-
maximum suppression (NMS) processing to reduce excessive
detection.

The Deconvolutional Single Shot Detector (DSSD) [7] is
an extension of SSD to which deconvolution layers have been



added. By up-sampling the feature map using deconvolution
processing, DSSD can obtain richer features through the
deconvolution layers than the one by SSD. These deconvo-
Iution layers combine the feature maps obtained from the
convolution process and the feature maps obtained from
the deconvolution process using the deconvolution module.
Prediction using the combined feature maps makes the object
detection multi-scale, which has the advantage of making
SSD more accurate.

B. Semantic Segmentation

The typical approach for semantic segmentation has the
structure of an encoder-decoder network. For example, Seg-
Net [8] performs the segmentation with an encoder-decoder
structure, where the encoder repeats convolution and max
pooling and the decoder repeats upsampling and convolution
and expands the feature maps to the input size.

C. Multi-task learning

Executing multiple tasks simultaneously with a single
ConvNet can reduce computational costs and improve the
accuracy of each task [9]. In particular, executing object
detection and semantic segmentation simultaneously [10],
[11] improves the accuracy of each task, and also recognizes
each object when multiple objects of the same class exist.
In other words, this model delivers results close to instance
segmentation. This mechanism is necessary for grasping
detection in scenes where multiple objects of the same class
may exist.

D. Grasping Detection using Deep Learning

Following the appearance of the well-known ConvNet
“AlexNet[12]”, many methods using deep learning have been
proposed. The grasping detection methods use supervised
deep learning [13], [14], [15], [16] to learn the grasping
points and the features of the object by giving the correct
grasping points or area to the learning images as supervisor
data in advance. These methods can detect various types of
objects, such as non-rigid objects whose appearance changes,
which are difficult to detect with CAD model fitting, or
transparent objects with point clouds that cannot be acquired.

Lenz et al. proposed grasping detection using a two-stage
deep neural network (DNN) [13], combining DNN with the
two-stage grasping detection [17] proposed by Jiang et al.
This method narrows down the number of grasping candi-
dates by two processing steps using two DNNs of different
scales. Redmon & Angelova [14] proposed a method for
detecting grasping points using ConvNet. Their method splits
the input image into 7 x 7 grids and outputs the grasping
points and the confidence for each grid by AlexNet-based
ConvNet.

In order to reduce data collection and manual labeling
work, methods of acquiring learning data [18], [19] and
grasping operation [20] by robots have been proposed. These
methods use real robots and are highly reliable. They not
only detect grasping points better than when using human-
labeled data but also estimate the robot’s motion, which

enables real robots to perform tasks directly. However, these
methods take too much time and require many robots, and
the learning model cannot be used when the configuration
of the robot changes drastically.

Mahler & Goldberg created a 3D object model database
called “Dex-Net” [21], [22], [23], [24] in which grasping
points are labeled as 3D models. They also proposed a
ConvNet model for this data. Labels for grasping points
are calculated from the robot hand model and environmental
information. It does not require manual annotation.

Many studies have pointed out the usefulness of the
suction gripper. In the Amazon Picking/Robotics Challenge,
many teams had success using the suction gripper to pick up
various everyday items. The suction gripper outperforms the
multi-finger gripper in situations where the area of approach
is narrow, and objects must be picked up at a single contact
point. For stable grasping, a robot can approach the plane
area and make a vacuum between the object and the gripper.

However, for some objects, grasping detection is difficult
using only the depth image. For example, objects with
colorless glass, plastic, and mesh surfaces pass light, so depth
values are missing in a typical depth sensor. In addition, a
sensor using visible light cannot obtain the depth value of
objects that have a gloss or absorb light. Researchers have
addressed this with a method for grasping detection from
the semantic segmentation result [5], a method to output
semantic segmentation and graspability at the same time [25],
and a method for grasping detection using an RGB-D image
at the same time [14].

III. MULTI-TASK DSSD

As the structure of DSSD is similar to the encoder-decoder
structure of SegNet, our concept is to have multi-task DSSD
(MT-DSSD) improve accuracy by learning object detection
and semantic segmentation at the same time. Furthermore,
we add a grasping point detector for the suction cup to this
model. The network structure of our MT-DSSD is shown
in Fig. 2. We use the VGG[26]-based DSSD as a base
and add a layer that performs semantic segmentation and
object grasping detection. As a result, the three tasks (object
detection, semantic segmentation, and grasping detection) are
performed simultaneously using the common feature maps.

A. Deconvolution Module and Prediction Layer

In the deconvolution module, as shown on the left side of
Fig. 3, feature maps from the previous layer and the encoder
are merged by an element-wise sum. After that, feature maps
are input to the activation function (ReLU). At this time, the
feature maps of the previous layer are expanded to the same
size as the feature map of the encoder by deconvolution. Af-
ter processing by the deconvolution module, object detection,
semantic segmentation, and grasping detection are performed
at the same time by three branches in the prediction module,
as shown on the right side of Fig. 3.

1) Detection branch: As in the original SSD and DSSD,
the detection branch outputs the localization maps, which are
offsets to the default box, and the confidence maps, which
are the class likelihood of each default box.
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2) Segmentation branch: The segmentation branch out-
puts the segmentation maps with three deconvolution lay-
ers and expands them to the input size. After that, all
segmentation maps obtained by the six prediction modules
are concatenated and convoluted, and we obtain the final
semantic segmentation result.

3) Grasp branch: The grasp branch regresses the grasping
point (z;5,y;;) for each pixel of the feature map in order to
detect the correct grasping point for the suction cup. We
call this the “default point”. The number of default points
of the six prediction modules is 1,940, which is equal to
the number of pixels of all feature maps from each branch.
These default points are too numerous for grasping detection
of the whole image, so we use only the fifth prediction
module (19 x 19, 361 default points) from the input side.
Detecting the grasping point with the minimum necessary
feature maps helps keep the whole network from slowing
down. We call the feature maps that regress the default points
“grasp localization maps”. Similar to localization maps in the
detection branch, grasp localization maps obtain the offset of
default points and bring the default points close to the correct
grasping points. We call the feature maps that represent the
graspability for each default point “graspability maps”. The
model learns the positive grasping points as 1 and the rest
as 0 for computing graspability.

B. Loss Function

Our model optimizes the following loss function:

L () = O‘CLC(Xba Cb) + alLl(lba gb) + QSLS(CS,gS)+
agLgi(lg, 8g) + agpLgp(Xg, cg). (1)

L.(-) is the class probability loss for the confidence
maps, which is the same as the original SSD. The loss is
the softmax loss over multiple class confidences cp, and is
computed by

L.(xp,cp) =

1 Zﬁ\é(mbﬁéo) xp log(épY)  (each 4 epoch)
N ¥ P log(67) (otherwise)

2

where ¢! is the output of a softmax function and x1, €
{0,1,...,#class} is the correct classification class. &
represents the i-th probability of the class p. As with SSD[6],
most of the learning data are negative samples. Therefore,
hard negative mining is performed to reduce the imbalance
between positive and negative samples. Furthermore, we
found empirically that model optimization is faster by not
learning the background class every four epochs.

L,(+) is the object candidate loss for the localization maps.
Since the object candidate area estimation corresponds to re-
gressing the estimated coordinates to the correct coordinates,
this is shown using mean square error, as
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where 1, is the estimated offset of default boxes and gy, is
the correct offset of default boxes. cx and cy indicate the
center location of the box. w and h indicate the width and
height of the box.

L4(-) is the semantic segmentation loss for the segmenta-
tion maps. Since the segmentation is a classification task,
the loss is the softmax loss over multiple segmentation
confidences cg and is computed by

N
1 .
LS(CS, gs) = _N Z gsf IOg(Csf)v

where ésf is the output of a softmax function and gg is the
correct class of semantic segmentation.

L (-) is the grasping candidate loss for the grasp localiza-
tion maps. Like localization maps, this is shown using mean
square error, as

1 Y o,
Lo(lgge) = 5D D (o =67 @

i MmeEcr,cy



where 1g is the estimated offset of default points and gg is
the correct offset of default points. cz and cy indicate the
coordinates of default points.

Lgp(-) is the graspability loss for the graspability maps.
This classifies two classes: ”grasping possible” and ”grasping
impossible”. Therefore, the loss is the softmax loss over
multiple graspability confidences cg and is computed by

Lgb(xg, cg) =

1 Zij\é(zg £0) ngg log(CAgfg) (each 4 epoch)
N va g7 log(cyy?) (otherwise)

where ¢,7 is the output of a softmax function. xg = {0, 1}
is the correct class of graspability. (’)f ¢ represents the i-th
probability of graspability, p, = 1 is the probability that it
can grasp, and p, = 0 is the probability that it cannot grasp.

We set each value of o in Eq. (1) as a, = 0.25,
a; = 0.25, ay = 0.25, oy = 0.125, and agp = 0.125.
These weights were determined empirically, the same as the
hyperparameters of the network. In general, we found that
it is better to set a smaller weight for tasks where the loss
converges quickly, or where the loss value is larger than other
tasks. If these « values are not appropriate, learning will not
be stable, and loss will diverge.

(&)

C. NMS reflecting segmentation result

To obtain a more accurate object bounding box, the non-
maximum suppression (NMS) of the object detection reflects
the result of semantic segmentation. First, the bounding
rectangle of each object is obtained from the result of
semantic segmentation, and we calculate the IoU between
the bounding box of the object detection and the bounding
rectangle. Next, we calculate the average of the class score
of the bounding box, use it as the class score of the new
bounding box, and process the NMS.

IV. EXPERIMENTS
A. Dataset

There are many datasets for the object detection task,
semantic segmentation task, or both, but there are no datasets
for both tasks and the grasping detection task. Also, since
we developed this model for the picking task, it is not
desirable to evaluate it using a common object detection
dataset. For these reasons, we modified and used the Team
MC? ARC2017 RGB-D Dataset[27] featuring 40 kinds of
items used in the ARC2017. It includes 1,210 images for
learning and 250 images for evaluation. The evaluation im-
ages contain scenes where multiple objects of the same class
exist. The dataset and item list can be found at our research
group’s web site (http://mprg. jp/research/arc_
dataset_2017_e). For the suction grasping point, we
annotated in accordance with rules. As a result, the model
can learn grasping points that humans can intuitively grasp,
and we don’t need to consider geometric properties. In fact,
just a few hours were sufficient for manually annotating the
grasping positions.

B. Evaluation Metrics

1) Object Detection: We evaluated the object detection
by measuring the recognition rate, miss rate, and mean IoU.
The recognition rate is the rate at which the detected objects
can be correctly recognized. It means that the estimated
class is equal to the correct class (# detected objects that
have the correct class / # detected objects). The miss
rate is the rate at which it could not be detected for all
objects (# objects that could not be detected / # objects
that should be detected). The mean IoU is the average of
the ToU = (area(Bg) Narea(By)) / (area(Bgq) U area(By)),
between the detected bounding box (Bg) and the correct
bounding box (By).

2) Semantic Segmentation: We evaluated the semantic
segmentation by the global accuracy, class accuracy, and
mean IoU, the same as in Pascal VOC[28].

3) Grasping Detection: We evaluated the grasping detec-
tion by measuring the accuracy, miss rate, and mean distance.
Accuracy represents the ratio at which the Euclidean distance
on the image (1280 x 960 pixels) between an estimated
grasping point and the correct grasping point is 80 pixels
or less. Miss rate represents the ratio at which the grasp-
ing points could not be detected for all correct grasping
points. Mean distance represents the average of the Euclidean
distances of the correct grasping points. Also, in order to
determine if the grasping detection result of the proposed
model is actually appropriate, we applied our model to a
real robot system and performed a grasping experiment.

C. Experimental Results of Object Detection

We compared our object detection models with an original
SSD, a single-task model of DSSD that only performs object
detection. The evaluation results of object detection are listed
in Table I. Our model improved the recognition rate by
11.59 points compared with SSD, thus demonstrating its high
accuracy. In addition, our model improved the mean IoU by
2.12 points compared to the single-task DSSD. We conclude
from these results that our model can detect the object region
with higher accuracy due to using the NMS reflecting the
results of semantic segmentation.

Examples of object detection results for each method are
shown in Fig. 4(a). In the case of the scene with little
overlap of objects (first row in the figure), most objects
could be detected. However, depending on the appearance
of the object and the overlapping, sometimes the detection
was not done well. In the case of a scene with many
overlapping objects (second row), sometimes objects hidden
by another object were not detected. Overall, our model
could detect the object region closer to the correct region
than the other models, as with Bath_Sponge in the first
row and Knit_Gloves in the second row.

D. Experimental Results of Semantic Segmentation

Next, we compared our model with three semantic seg-
mentation models: SegNet, U-Net[29], and PSPNet [30].
The evaluation results of semantic segmentation are listed
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Fig. 4. Examples of results for (a) object detection, (b) semantic segmentation, and (c) grasping detection. (a) When objects were simply arranged, the
model performed detection stably. However, it was difficult to detect bulk scenes of multiple kinds of items. (b) The proposed model performed recognition
with better accuracy than the other models. Miss recognition of an overlapping area of objects and near the boundary decreased. (¢) Comparing the correct
labels (blue) with the detection results (red), the proposed model detected grasping points closer to the correct labels. Both methods had difficulty detecting

in bulk scenes.

TABLE I
EVALUATION RESULTS OF OBJECT DETECTION (%).

Algorithm Recog. rate Miss rate Mean IoU
SSD 80.67 24.76 76.70
Single-task DSSD 87.18 29.01 80.96
Multi-task DSSD 92.26 3291 83.08
TABLE II

EVALUATION RESULTS OF SEMANTIC SEGMENTATION (%).

Algorithm Global Acc. Class Acc. Mean IoU
SegNet 72.11 64.30 44.69
U-Net 79.26 69.95 54.19
PSPNet 85.28 79.42 67.76
Multi-task DSSD 90.49 85.04 76.01

in Table II. Our model improved each evaluation index
compared to the other models.

Examples of the semantic segmentation results for each
model are shown in Fig. 4(b). Compared with the other
models, ours could suppress mistakes in classes and avoid
miss recognition occurring at the edges of objects and
at boundaries with other objects. Our model dramatically
reduced the case of recognizing several classes on one
object compared to SegNet and U-Net. However, in the
case of scenes with many overlapping objects, none of the
models could accurately recognize at the boundary with other
objects.

E. Experimental Results of Grasping Detection

To the best of our knowledge, there is no method for
detecting grasping points for the suction cup from an RGB
image. Therefore, for this comparison, we use a case where

TABLE III
EVALUATION RESULTS OF GRASPING DETECTION.

Method Accuracy (%) Miss rate (%) Mean dist. (pix)
Centroid 50.62 37.78 38.27
Multi-task DSSD 76.18 33.08 29.11

the centroid of the semantic segmentation result is set as the
grasping points. The evaluation results of grasping detection
are listed in Table III. Our model improved the accuracy by
25.56 points and the mean distance by 9.16 points compared
with the case using the centroid of the semantic segmentation
result. These results demonstrate that our model can detect
optimum grasping points close to the correct ones.
Examples of the grasping detection results are shown in
Fig. 4(c). When using the centroid of semantic segmentation
results, the model detected the grasping point as near the
center of the object regardless of the shape or appearance of
the object. Therefore, some grasping points were inaccurate,
such as Measuring_Spoons and Glue_Sticks in the
second row of the figure. In addition, when the result of
semantic segmentation was incorrect, it not only detected
incorrect grasping points but also an excessive number of
them. We conclude that our model acquired the optimum
grasping points for each object by learning. In the first row
of the figure, our model avoided the difficult part to grasp
on Measuring_Spoons and detected the grasping points
on the product label made of paper. Also, our model avoided
the non-flat surface of Glue_Sticks and detected the area
of the plane. In scenes with many objects (the second row),
our model avoided detecting unnecessary grasping points,



TABLE IV
SUCCESS RATE (%) IN GRASPING EXPERIMENTS (SINGLE ITEM).

Item ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Centroid N/A 10 50 0 60 100 | N/A | 100 50 100 | N/A | 100 | 100 | 100 50 80 0 100 0 0
Proposed N/A | 20 60 80 100 | 100 | N/A | 100 80 100 | N/A | 100 90 100 90 100 50 100 40 10
Item ID 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Centroid N/A | N/A 0 50 60 100 0 100 | 100 80 40 90 N/A 10 50 40 N/A | 70 N/A | N/A
Proposed N/A | N/A | 20 100 70 100 60 100 | 100 100 | 100 | 100 | N/A | 80 80 100 | N/A | 90 N/A | N/A
TABLE V
INFERENCE SPEED COMPARISON WITH DIFFERENT METHODS. IDS ENSENSO Nm//,
Task Processing time [ms]
Det. Seg. Grasp. CPU GPU TX2 D5 RGB camera e
v/ 817 128 589 Small suction cup
i 135
v v 1276 256 833 e L
N N N 1283 263 851

avoided items with many overlaps, and successfully detected
grasping points that were easy to grasp.

FE. Inference Speed Comparison

A comparison of the processing time (excluding screen
drawing time) is shown in Table V. The experimental envi-
ronments were CPU: Intel Core i7 6700K 4.00GHz, GPU:
NVIDIA GTX 1080Ti, and TX2: NVIDIA Jetson TX2. Even
when our model used TX2, which is an embedded device, it
could detect at a sufficient speed for robotic picking. Many
methods of general object detection are run at 10 FPS or
more, but considering the picking task, even this level is
expected to deliver a sufficient performance. Furthermore,
our model detects multiple grasping points at once and can
make an approach many times with one sensing action as
long as the position of the object does not change. For
this reason, we consider these detection speed results to be
sufficient.

G. Robotic Grasp Evaluation

Simply comparing the results with the correct label is
insufficient to evaluate the grasping detection. Even when
the detected grasping point is some distance away from the
correct label, grasping points might be grasped if they are
detected in the object area. Therefore, in this experiment,
we evaluated by robotic grasp whether the grasping points
detected by our model are appropriate. Our robot system is
shown in Fig. 5(a). Our method detects grasping points on the
object in the picking area where the red sheet is laid. The
robot approaches the normal direction of the nearby point
of the obtained grasping points. When the robot picks and
places at the destination area located at the side, we deem it
a success. However, we exclude some objects from the target
of grasping if they exceed the payload of the end effector or
do not have an area that can be grasped.

The grasping success rate of each item when putting a
single item in the picking area is shown in Table IV. The
robot grasps each item ten times, and each item has a
different pose every time. We compare our model with a
case where the centroid of the segmentation result is used as
the grasping position. In both cases, the robot could stably

Picking area

Placement area

(a) Our robot system

(b) Scenes of multiple objects

Fig. 5. (a) Our robot system and (b) grasping experiments scenes.
TABLE VI

RESULTS OF GRASPING EXPERIMENTS (MULTI-ITEM).

Scene 1 Scene 2 Scene 3
. L Centroid 7 9 19
No. of trials for picking Proposed 4 5 4
Centroid 57 44 11
Success rate (%) Proposed 100 100 75

grasp items with many flat areas. The robot with our model
could grasp Toilet_Brush (ID: 4) and Glue_Sticks
(ID: 9) while avoiding difficult suction areas. When using
the centroid, it could not grasp some items well.

The number of trials for picking all objects (/ in 10 minutes
if picking has not finished) and the grasping success rate
of each scene when putting multiple items in the picking
area are shown in Table VI. We experimented with the three
scenes shown in Fig. 5(b). The robot with our model was
able to perform stable grasping even for multiple items.

V. CONCLUSION

In this paper, we have presented multi-task DSSD (MT-
DSSD), a model that simultaneously runs object detection,
semantic object segmentation, and grasping detection of
a suction cup. The proposed model can perform object
detection and semantic segmentation with high accuracy
while simultaneously detecting the grasping points of the
target object. We installed the proposed model in a real robot
system and demonstrated through robotic grasp experiments
that the detected grasping points are suitable for picking
tasks.

Our model, with its ability to detect objects and grasping
points at high speed, can be applied to visual servoing that
runs path planning in real time while sensing. In the future,
we will proceed with research on deep visual servoing.
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