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Abstract. Convolutional neural networks (CNNs) have become a main-
stream method for keypoint matching in addition to image recognition,
object detection, and semantic segmentation. Learned Invariant Feature
Transform (LIFT) is pioneering method based on CNN. It performs key-
point detection, orientation estimation, and feature description in a single
network. Among these processes, the orientation estimation is needed to
obtain invariance for rotation changes. However, unlike the feature point
detector and feature descriptor, the orientation estimator has not been
considered important for accurate keypoint matching or been well re-
searched even after LIFT is proposed. In this paper, we propose a novel
coarse-to-fine orientation estimator that improves matching accuracy.
First, the coarse orientation estimator estimates orientations to make
the rotation error as small as possible even if large rotation changes
exist between an image pair. Second, the fine orientation estimator fur-
ther improves matching accuracy with the orientation estimated by the
coarse orientation estimator. By using the proposed two-stage CNNs, we
can accurately estimate orientations improving matching performance.
The experimental results with the HPatches benchmark show that our
method can achieve a more accurate precision-recall curve than single
CNN-based orientation estimators.

Keywords: Keypoint Matching - Local Image Descriptor - Orientation
Estimation - HPatches.

1 Introduction

Keypoint matching, which is the one of major problems in computer vision, is
widely used for various applications such as large-scale image retrieval [13], image
mosaicking [6], and simultaneous localization and mapping (SLAM) [2,7,12]. In
these applications, the same points must be matched across images taken under
different conditions (e.g., illumination, viewpoint, or rotation changes). Because
of the development of convolutional neural networks (CNNs), several keypoint
matching methods based on CNNs have been proposed [4,16,19,20] and have
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Fig. 1. Overview of keypoint matching. Keypoint matching is done by keypoint detec-
tion, region estimation, normalization, and feature description. The rotation change is
dealt with by estimating orientation.

achieved higher performances than hand-crafted feature-based approaches [1, 5,
10, 15].

Typical keypoint matching methods, e.g., Scale Invariant Feature Transform
(SIFT) [10] or Learned Invariant Feature Transform (LIFT) [19], individually
process detection, normalization, and description as shown in Fig. 1. If any of
these processes have low accuracy, the final matching accuracy will deteriorate.
The process of orientation estimation is only focusing on rotation differences.
Although keypoint detection and feature description have been widely studied,
orientation estimation has not despite its importance in keypoint matching.

Therefore, we focus on orientation estimation. SIFT [10], the representative
method of keypoint matching, estimates the orientation by using the gradient
information of the image. LIFT [19], a typical CNN-based method of keypoint
matching, estimates the orientation on local image patches by inputting local
image patches into a CNN. In this method, positive pairs are only used to train-
ing of the orientation estimator. The positive pairs mean a couple of local image
patches of the same point taken under different conditions. The orientation esti-
mator on LIFT estimates the angle of similar local image patches into the same
orientation. However, when LIFT estimates the orientation between similar but
different keypoint images, these are normalized into the same orientation, which
increases the number of incorrect matching results. This problem is caused by
the network training that focuses on only similarities. A practical approach to
overcome this problem is triplet loss with negative pairs: a couple of local image
patches of different points. Triplet loss is often used when training the distance
between features such as in descriptor training. However, in orientation estima-
tion, triplet loss may decrease orientation estimation accuracy.
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In this paper, we propose a novel CNN-based orientation estimation method
that improves matching accuracy and retains accurate orientation estimation.
The proposed method estimates the orientation of local image patches by using
two coarse-to-fine structured CNNs. These CNNs use different loss functions for
training and estimate different orientations. The first CNN (i.e., coarse orien-
tation estimator) is trained using positive pairs and accurately estimates the
orientation. This training process focuses on the similarities of image pairs. The
second CNN (i.e., fine orientation estimator) is input a local image normalized
by the coarse orientation estimator and estimates the orientation improving the
matching accuracy, which uses negative pairs for network training and focuses
on the differences in image pairs. Then, the final orientation of the input image is
obtained by adding the orientations estimated by the coarse and fine orientation
estimators.

To summarize, our key contributions are as follows:

— The proposed two-stage structure estimates orientation that achieves both
accurate orientation estimation and matching results.

— The fine orientation estimator can estimate the orientation improving the
final matching accuracy by using the negative pairs for orientation training.
Because the fine orientation estimator focuses on dissimilar points during
training, our method can reduce incorrect matching results.

2 Related work

Orientation estimation in keypoint matching has been considered less important
than keypoint detection and feature description. Hence, the orientation estima-
tion method of SIFT [10] is merely used for various local descriptors. However,
the accuracy of orientation estimation greatly affects the performance of the de-
scriptor. In this section, we introduce the orientation estimation in conventional
keypoint matching.

2.1 Hand-crafted keypoint detectors

SIFT [10] is the most common method in keypoint matching. SIFT uses the
histograms of pixel gradients at estimates orientation and descriptions feature
by voting. Speeded-up robust features (SURF) [5] computes Haar-wavelet re-
sponse of sample points to extract the local image orientation. Oriented FAST
and rotated BRIEF (ORB) [15] computes orientation by using image moments
and the center of mass computed from pixel values in local image patches. His-
togrammed intensity patches (HIPs) [17] estimate orientation by using intensity
over a 16-pixel circle centered around the keypoint detected by FAST. These
methods are design in a hand-crafted manner.
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Fig. 2. Overview of the proposed method. Image patches are input to the coarse ori-
entation estimator and then normalized by using the estimated orientation and the
spatial transformer networks. The normalized image is input to the fine orientation
estimator, and we obtain final results.

2.2 CNN-based methods

Although a number of CNN-based methods for keypoint matching have been
proposed, few researches have focused on the CNN-based orientation estima-
tion. In LIFT [19], different CNNs are used for keypoint detection, orientation
estimation, and feature description. For orientation estimation, LIFT uses a
CNN-based method proposed by Yi et al. [20]. This method estimates orienta-
tion of local image using a single CNN. LF-Net [14] is a CNN-based method
that computes from keypoint detection to feature description in an end-to-end
manner. This method outputs 4-channel feature maps from the CNN used for a
keypoint detector. Then, the location, scale, and orientation of the keypoint are
estimated simultaneously.

Because more accurate CNN-based orientation estimation has not been re-
searched after these methods are proposed. In the latest keypoint matching
methods based on CNN, orientation is often estimated by using either of these
algorithms.

3 Proposed method

The proposed method estimates orientation by using two CNNs. Figure 2 shows
the overview of the proposed orientation estimation method. First, we input local
images to the coarse orientation estimator to estimate the orientation. Second,
the spatial transformer networks (STN) [8] normalizes the input image with re-
sult of coarse orientation estimator. Third, the normalized image is input to the
fine orientation estimator, and we estimate the orientation. Finally, the orienta-
tion of the input image can be obtained by adding the orientations estimated by
both the coarse and fine orientation estimators. Both CNNs have the same net-
work structures but are trained independently by using different loss functions.
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Fig. 3. The training process of the coarse orientation estimator. We train this network
with positive pairs. The two coarse orientation estimators shown in this figure share
parameters.

Hereafter, we introduce the details of our proposed coarse-to-fine orientation
estimator.

3.1 Coarse orientation estimator

For accurate keypoint matching, orientation estimation is also an important
process. If keypoint matching has inaccurate orientation estimation, it might ob-
tain indiscriminate features even for the same image pairs in feature descriptor.
Therefore, orientation must be accurately estimated to improve keypoint match-
ing. The coarse orientation estimator is the first process of our proposed method,
as shown in Fig. 2. The coarse orientation estimator aims to estimate orienta-
tion exactly even if rotation changes exist between two local image patches. To
achieve such orientation estimation, we train the coarse orientation estimator by
using only positive pairs to make it focus on the similarities in patches.

Figure 3 shows the training process of the coarse orientation estimator. We
use the distance between the described features of image patches to train the
coarse orientation estimator. The reason is that it is difficult to prepare ground
truth with respect to orientation as described by Yi et al. [20]. Although SIFT
orientation could be used as ground truth, it may not necessarily be correct.
Therefore, the distance between described features of normalized image patches
leads to estimate orientation accurately in the coarse orientation estimator. In
training of coarse orientation estimator, we use only positive pairs to focus on
the similar points in the input image pair. Moreover, we rotate the input images
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Fig. 4. The training process of the fine orientation estimator. The input images for the
fine orientation estimator are normalized by the coarse orientation estimator. During
the training, we update only the network parameter of the fine orientation estimator
and not the other networks.

randomly to achieve robust orientation estimation. Here, let p? and p? be image
patches of a positive pairs and O.(p) be the estimated orientation of patch p by
coarse orientation estimator. We define the loss function of the coarse orientation
estimator Leoarse (P?, PP) as:

Leoarse (P1,P) = [|d(Ic(p?)) — d(IC(pp))H%, (1)

where d(-) is a feature vector extracted by a descriptor. I.(p) is an image patch
rotated by estimated orientation O.(p), which is formulated as follows:

I.= t(pa Oc(p))v (2)

where t(p, O.(p)) is computed by STN. The parameters of the descriptor are
fixed and we do not train the descriptor during the training of the coarse ori-
entation estimator. It mean that the network is attention to the similarities
between positive pairs.

3.2 Fine orientation estimator

The coarse orientation estimator has a problem that the same orientation is esti-
mated for different image patches having repetitive patterns or simple textures.
This is caused that the coarse orientation estimator trains using only positive
pairs. Therefore, we proposed auxiliary network as the fine orientation estima-
tor. The fine orientation estimator is trained by using negative pairs to focus on
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the different appearance points between image patches, which can estimate the
orientation contributing to keypoint matching accuracy.

Figure 4 shows the training process of the fine orientation estimator. The
fine orientation estimator is trained by using the distance between the extracted
features of normalized image patches by a descriptor. We train the fine orienta-
tion estimator after training the coarse orientation estimator. We use three local
images, which consist of a positive pairs and a negative image, as a training
sample pair. Because the fine orientation estimator is necessary to focus on the
differences between images. Let p,, be a negative image in a training sample
pair and Oy(p) be the orientation of patch p estimated by the fine orientation
estimator. The loss function of the fine orientation estimator L fin.(p?, p*, P,,)
is defined as:

['fine (pq’ pp’ pn) = (3)
max (0, [|d(I(p?)) — d(I¢(p"))|I3 — [|d(Iy(p?)) — d(I;(P")II5 + M) ,

where M is a margin of triple loss. We set M = 8.0 in the experiments described
below. I;(p) is an image patch rotated by estimated orientation Oy(p), which
is formulated as follows:

Iy = t(p, O5(Ie(p)))- (4)

During the training of the fine orientation estimator, the parameters of the coarse
orientation estimator and the descriptor are fixed to estimate orientation to
accurately match keypoints.

3.3 The calculation of final orientation

The orientation estimated by the fine orientation estimator is not the orientation
for the original input local image since the input image is normalized by the
coarse orientation estimator. Therefore, we compute the final orientation ?"Put
for an input image by adding the orientations estimated by the coarse and fine
orientation estimators, which are defined as follows:

ginrut — O, + Oy. (5)

4 Experiments

We evaluate the proposed method in terms how the orientation estimation ac-
curacy affects the final keypoint matching accuracy.

4.1 Experimental settings

Dataset We use the HPatches dataset [3] to evaluate the proposed method.
The HPatches dataset consists of local image patches extracted from six origi-
nal images of the same scene under different conditions such as viewpoint and
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Table 1. Results on HPatches benchmark. Orientation indicates the loss function used
for training the coarse and fine orientation estimators. ”"L2” is Eq. (1), and ”Tri” is
triplet loss shown in Eq. (3).

Orientation Patch Verification Image Matching Patch Retrieval
Coarse Fine
L2 — 0.8332 0.2660 0.3734
Tri — 0.8623 0.2754 0.3976
L2 L2 0.8366 0.2755 0.3859
Tri L2 0.8299 0.2670 0.3745
Tri Tri 0.8658 0.2976 0.4196
L2 Tri (Proposed) 0.8680 0.3011 0.4232

illumination changes. In total, the dataset contains 116 scenes. To detect image
patches from the original images, the HPatches dataset used DoG, Hessian, and
Harris detectors. On the basis of the difficulty of those changes, image patches are
categorized into the three categories: easy, hard, and tough. We used 1,461,525
positive pairs for training and 892,980 positive pairs for evaluation. Addition-
ally, we created negative pairs by selecting patches randomly and used them for
training the fine orientation estimator. While training both the coarse and fine
orientation estimators, we randomly rotated the image pairs and input them
into the networks to obtain robustness to larger rotation changes.

Training details We input local image patches of 64 x 64 pixels into the pro-
posed method. The coarse and fine orientation estimators have the same struc-
ture, which consists of three convolutional layers and two fully-connected layers.
For the convolution layers, the first convolution layer use a filter size of 5 x 5
and 10 output channel with 3 X 3 max pooling, the second convolutional layer
a filter size of 5 x 5 and 20 output channel with 4 x 4 max pooling, and third
convolutional layer use a filter size of 3 x 3 and 50 output channel with 2 x 2
max pooling. The size of the output of the first fully connected layer is 100, with
the second fully connected layer having two outputs. Then convert the output to
radian. During the training, we used the Adam optimizer [9] to update network
parameters. We set the learning rate as 0.001, mini-batch size as 128, and the
number of training epochs is 300. The descriptor consists of three convolutional
layers and extracts a 128-dimensional feature vector from 64 x 64 pixels patches.
We train a descriptor by triplet loss with HPatches dataset. Also, we use a de-
scriptor trained with easy samples on the HPatches dataset for training the fine
orientation estimator. We train each network in the following order: descriptor,
coarse orientation estimator, and fine orientation estimator.
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Fig. 5. Examples of orientation estimation accuracy. First row is input image pair, and
the others are normalized images by orientation estimator. Input images are rotated
by 180 degrees. The red numbers below the pair are estimation errors. From second to
fourth rows are results to different loss functions. ”L2” is the loss shown in Eq. (1) and
”Tri” is triplet loss shown in Eq. (3).

4.2 Accuracies over different loss functions

We compare the performance over different loss functions used for each orienta-
tion estimator. The HPatches benchmark evaluates the performance with respect
to three metrics: patch verification, image matching, and patch retrieval. For
more details about these metrics, please refer to Balntas et al. [3]. In this paper,
due to we focus on the effect and performance of orientation estimation, we first
randomly rotate image patches and normalize the patches by using estimated
orientation. Then, we extract feature vectors from the normalized patches. The
distance between extracted features is large even if we use positive pairs when
the accuracy of orientation estimation is low. Therefore, accurate orientation
estimator is required to obtain the highly accuracy in keypoint matching. In
addition, we perform orientation normalization of patch pairs containing a ro-
tation change of 180 degrees and investigate estimation errors. For compara-
tive methods, we use a single CNN, i.e., only coarse orientation estimator, and
the proposed coarse-to-fine structured orientation estimator. Furthermore, we
change the loss function used for each network training to investigate the effect
on matching accuracy.

Table 1 shows results of each orientation estimation method on HPatches
benchmark and Fig. 5 shows examples of the estimated orientation accuracies.
From Tab. 1, when only the coarse orientation estimator is used, the triplet
loss achieved higher accuracy than L2 loss. However, triplet loss has higher es-
timation errors than L2 loss as shown in Fig. 5. This result indicates that the
estimated orientation affects the accuracy, and triplet loss function is robust to
different patch pairs. And it can improves accuracy even when the estimation
error is larger than L2 loss. In the proposed coarse-to-fine orientation estimation
method, we employ triplet loss for the fine orientation estimator. Because of
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Table 2. Results for area under the precision-recall curve

Method HP Rot. 90 Rot. 180
LIFT 0.535 0.154 0.437
Coarse 0.540 0.182 0.511
Coarse-to-Fine (Proposed) 0.536 0.232 0.513
Matches : 951 Matches : 951 Matches : 951
Correct points : 228 Correct points : 232

— LIFT [auc = 0.486]
Coarse [auc = 0.531]
08 —— Proposed [auc = 0.542)]

Precision

LIFT Coarse Coarse-to-Fine (Proposed)

(@)

Matches : 963 Matches : 963 Matches : 963
Correct points : 258 Correct points : 301 Correct points : 316

— UIFT [auc = 0.421]
Coarse [auc = 0.450]
08 —— Proposed [auc = 0.474]

Precision

000 et e LIFT Coarse Coarse-to-Fine (Proposed)

(b)

Fig. 6. Examples of matching results and precision-recall curve for (a) HP and (b) Rot.
180 conditions. From left to right: precision-recall curve, matching results of LIFT, only
coarse orientation estimator, and the proposed method.

it achieved the highest accuracy and smallest estimation error. Therefore, the
proposed coarse-to-fine structured method effectively improves orientation esti-
mation accuracy.

4.3 Evaluation of area under the precision-recall curve

In this section, we evaluate the performance on keypoint matching. In this ex-
periment, we use HPatches full sequence [3], which consists of 116 sequences
and 580 image pairs. We use the LIFT detector for keypoint detection and the
scale estimation. We evaluate the performance under three different conditions.
The first condition is keypoint matching with original image pairs (denoted as
HP). In the second condition, we rotate reference images 90 degrees (denoted as
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Rot. 90) and use them to conduct keypoint matching. In the third condition, we
rotate the reference images 180 degrees (denoted as Rot. 180).

‘We compare the performances of the proposed method, LIFT, and the coarse
orientation estimator trained with positive pairs. Note that all methods use the
same descriptor. For the evaluation metric, we use the area under the precision-
recall curve (AUC).

Table 1 shows AUCs over different three conditions. The results of HP show
that the proposed method can maintain the same matching accuracies as the
other methods. Moreover, the proposed method achieved the highest accuracies
for Rot. 90 and Rot. 180. Therefore, the proposed method can improve the
matching when there are larger rotation changes. Figure 6 shows examples of
matching results and precision-recall curves. The proposed method achieved a
larger number of correct matches and a more accurate precision-recall curve than
the other methods. Therefore, the orientation estimated by the proposed method
contributes to keypoint matching.

4.4 Comparison with other local feature descriptors

We compare the performances of the proposed method and other local feature
descriptors provided in the HPatches benchmark. For comparative methods, we
use SIFT [10], RootSIFT [1], BRIEF [11], ORB [15], BinBoost [18], Siamese
variants of DeepCompare [21], DeepDesc [16], TFeat margin*, and TFeat ratio*
[4]. Patch pairs prepared in HPatches have at most a 30-degree rotation differ-
ence. The results of comparative methods are obtained by evaluating with this
dataset. The proposed method first normalizes local image patches with esti-
mated orientations and describes features from the normalized patches. Then,
we evaluate for each task.

Figure 7 shows the evaluation results on the HPatches benchmark. The pro-
posed method achieved the highest accuracies in all tasks. Moreover, for tough
samples, the proposed method largely improves the performance. Therefore, our
method efficiently normalizes rotation and describes features for image viewpoint
changes.

5 Conclusion

In this paper, we proposed an orientation estimator using two convolutional neu-
ral networks (CNNs) that has a coarse-to-fine structure. The coarse orientation
estimator is trained by using positive pairs and can estimate the orientations
accurately. The fine orientation estimator is trained by triplet loss with negative
pairs and can estimate orientation for accurate keypoint matching. We train
each network with different loss functions, which enables us to achieve both
accurate orientation estimation and accurate keypoint matching. The evalua-
tion results demonstrate that our method achieved higher accuracy in all tasks
on the HPatches benchmark than conventional hand-crafted approaches and
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Fig. 7. The evaluation results on HPatches benchmark. Top to bottom: verification,
matching and retrieval results. Marker color indicates the level of geometrical noise:
easy, hard, and tough. DIFFSEQ and SAMESEQ show the scores of negative examples
for the verification task. VIEWPT and ILLUM indicate the type of differences in image

pairs in matching task.

CNN-based approaches. Moreover, our method achieved higher matching accu-
racy than single CNN-based orientation estimators. Consequently, the proposed
method can estimate orientation that contributes to final keypoint matching ac-
curacy. Our future work includes obtaining the invariance for projective changes.
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