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Abstract— Digital maps are data that numerically represent
map information necessary for autonomous driving. The digital
map is used for estimating vehicle positions, surrounding
environments, and determining moving paths to a destination.
Because it includes important information such as surrounding
environments and road signs. Path information is also included
for safe autonomous driving by following traffic rules. However,
such path data is annotated manually and it is costly. Therefore,
we aim to create path-planning data automatically on digital
maps. Then, we propose a path-planning approach for vehicle
movement. Our approach defines a cost function based on
semantic scene labels and creates a minimum and optimal
path. To estimate such a path, we use optimal rapidly-exploring
random trees. Thus, it is possible to estimate an optimal path
efficiently. Optimal cost is determined by learning with vehicle
moving-path data. We also made a dataset for creating paths
at intersections for quantitative evaluation. The results indicate
that our proposed approach can create a optimal moving path.

I. INTRODUCTION

Digital maps (High Definition Maps) have high precision
data, numerically map information, is necessary for au-
tonomous driving. They include various information to assist
autonomous driving such as the surrounding environment,
road signs, appropriate driving paths, and so on. Especially,
paths information are important data for determining the
first vehicle position on maps, and it is good for self-
localization system. Paths are consist of many positions for
precise autonomous driving by maps information such as
traffic rule signs. Generally, paths are annotated manually
and cost a lot to made. If it creates paths automatically,
a straight path is able to be determined because it just
calculates an intermediate position between lane markings.
However, creating paths at an intersection is more difficult
because there is no exact standard rules. (i.e., many types of
lane markings and intersection shapes, and determined path).

Our goal is an automatic paths planning creation. In the
paper, we focus attention on intersections maps because
they do not have clear lane markings. We develop a path-
planning approach and create a dataset at intersections to this
end. We collected aerial images captured by Google Maps
and annotated semantic scene labels and paths. Our path-
planning approach defines a cost function that is based on
scene context representing the surrounding environment, and
regularizers with respect to path length and traffic rules. We,
then, find a path, whose cost will be minimum by using
optimal rapidly-exploring random trees (RRT*) algorithm.
We evaluated our approach with the created dataset and we
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show that our approach can create optimal paths for self-
driving vehicles.

Our contributions are as follows:
• This is the first attempt to automatically create paths

for self-driving cars. Automatic creations approaches
have been proposed with other data, such as lane and/or
traffic signs, though.

• We propose a path-planning approach to create optimal
path data at intersections without any exact standard
rules such as lane marking. The proposed approach
creates paths based on start-goal positions and surround-
ing semantic label information. It automatically creates
path’s data for any shape of intersections.

• We create a dataset with respect to moving paths at
intersections for quantitative evaluation. This dataset
includes aerial images of intersections and annotated
path data.

II. RELATED WORK

A. Digital maps for self-driving

Digital maps are used for enabling safe and highly accurate
automatic driving. In particular, they use a own self-position
estimation by using information from digital maps and
surrounding information obtained from Light Detection and
Ranging (LiDAR) or drive recorders [1], [2], [3], [4], [5],
[6]. To achieve accurate vehicle localization, Tao et al. [4]
proposed combining an extended Kalman filter with lane
marking. Obst et al. [2] proposed a localization approach
by using a global positioning system (GPS) to correct mea-
surement errors which is caused by weather conditions. This
approached method uses a three-dimensional digital map to
achieve higher localization accuracy. These approaches have
object information for landmarks such as line markers and
stop lines on maps.

Several autonomous driving experiments were conducted
involved these localization approaches in real scenes [7], [8].
In these experiments, the location of a self-driving car was
estimated, and the route was determined for appropriate self-
driving. In contrast, our approach creates positions where a
vehicle should drive and add the information to a digital
map. It was not determined the route in a real time, but we
propose path creation using the stored route information.

It costs to create a wide range of digital maps. Therefore,
extracting information approach, on digital maps from aerial
and/or satellite images, have been widely studied [9], [10],
[11], [12], [13]. Thanks to the development of deep neural
networks, a number of approaches based on convolutional
neural networks (CNNs) have been developed. Azimi et al.
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Fig. 1. Process flow of the proposed method

[11] proposed a CNN-based approach for detecting lane
markings. They developed an encoder-decoder framework
based on a fully convolutional network (FCN) [14], and
created a benchmark dataset for lane-marking detection.
Kampffeyer et al. [12] also proposed a CNN-based approach
estimating the regions of each semantic object such as roads,
cars, or buildings. They introduced a novel analysis of
segmentation results which uses an uncertainty model. Many
studies estimate object’s categories and positions in aerial
and/or satellite images. We estimate positions of vehicles
that should drive with acquired semantic scene labels from
a CNN or manual annotations.

B. Path planning

Path planning is an extensively studied problem in the
robotics, and many approaches have been proposed. One
of the conventional approach is rapidly-exploring random
trees (RRT) [15], which enables us a feasible path to find
quickly by randomly exploring paths from a start position to
a destination. Optimal RRT (RRT*) [16], [17] is proposed
finding an optimal path based on RRT. This approach intro-
duces a rewire process for minimizing cost between nodes
extend to the exploration using RRT algorithm. Therefore,
an optimal path can be determined with enough sampling,
and the shortest paths to destinations can be created.

Scene context-aware rapidly-exploring random tree (SC-
RRT*) [18], which takes scene context into account and
observed paths was proposed. Scene context means the
surrounding environment such as roads, sidewalks, and build-
ings. With SC-RRT*, a weight vector w is trained to lower
the cost of pedestrian paths by using scene context and
these paths. It, then, creates an optimal cost map using a

acquired weight obtained by learning and creates optimal
paths by RRT* [16], [17]. However, it is focused attention
on pedestrian moving paths in scenes. Therefore, such paths
are taken the cost into account creating short moving paths
to avoid defined obstacles. On the other hand, our approach
automatically creates a moving path on a digital map for
autonomous driving, and defines an optimal cost function
for vehicles.

III. PROPOSED METHOD

SC-RRT* defines a cost function to create a pedestrian
path. This cost function is for the path will be a minimum
cost. However, our approach is for vehicles, then need to
create swelling curving paths depending on the shape of
intersections or traffic rules. Therefore, we propose a path-
planning approach defined a cost function for vehicles.

Fig. 1 gives an overview of the proposed method. First,
we create feature maps representing each semantic label of
a scene. These are made up of each semantic label, which
means high cost (red) is each label and others are low cost
(blue). We, then, define a weight vector w = (w1, . . . , wn)

T,
where n is the number of created feature maps from the scene
labels. Next, we compute a cost map from feature maps and
weight vectors. After calculating the cost map, we estimate
a path being a minimum cost between set the start and goal
positions. To efficiently estimate the optimal path, we use
RRT* [16], [17].

A. Cost function

In our path-planning problem, the target object is a vehicle
on maps. In the case of going straight through an intersection,
conventional approaches (e.g., RRT* or SC-RRT*) would



be sufficient to generate a path. However, in other cases
(e.g., turning rights), the path should take a roundabout route.
Therefore, we focused attention on a path for turning right
and use our method to define a cost function for vehicles.
Let X ∈ R2 is a scene and x = (x1, . . . , xT ) is a path,
where xn ∈ X is a coordinate. The cost function is defined
by

cp(x,w) =

T∑
t=1

wTf (xt)

+ θ

T−1∑
t=1

∥xt − xt+1∥2

+ cα

T∑
t=1

∥xt − xcenter∥2 .

(1)

The first term computes a cost by accumulating the cost
acquired position at xt. This term is derived from a feature
vector representing the acquired scene context f(xt) at a
location xt and weight vector w. The second term regularizes
the path length, where θ is a scale parameter. This term con-
trols the smoothness and shortness of a path. The third term
is a regularizer for a roundabout route, where c is a binary
parameter and α is a scale parameter. This binary parameter c
is set 1 for right turn or 0 for others. We calculate the distance
between xt and the center of intersection xcenter. For turning
right, our approach creates a path close to the center of the
intersection. This term is only supporting creation in case of
the turning right.

B. Algorithm

The algorithm of the proposed path-planning approach is
shown in Algorithm 1. This is based on RRT* [16], [17].

Given an initial state xinit, SC-RRT* extend the trees T =
(V,E) with N iterations, where V is a set of nodes, and E is
a set of edges. First, we set xinit as the root node of T . The
random state xrand is sampled in X (Sample) and the nearest
node xnearest of T from xrand is selected (Nearest). Then,
the Steer process creates a point xnew. A Steer determines
a node by extending in a straight line to xrand from xnearest

with the length of η. Second, if the path from xnearest to
xnew does not interfere with Xobs (ObstacleFree), node
xnew and edges (xnearest, xnew) are added into each V and
E. Third, a set of near nodes Xnear is selected by the Near

procedure. The radius r to select Xnear is defined as follows:

r = γ

(
log |V |
|V |

)−1/d

, (2)

where |V | is the number of nodes in T , d is the dimension
of the space, and γ is constant. Then, xnew is connected
with a node xparent, which minimizes the accumulated cost
Cost(xnew). To compute Cost(xnew), we use the defined
cost function shown in Eq. (1). RRT* also extends the con-
nection from xnew to other nodes in x′ ∈ Xnear \{xparent}
if the cost of the path from xinit to x′ passing through
xnew becomes smaller, which is called rewire. Because xnew

Algorithm 1 Algorithm of proposed approach
1: V ← {xinit};E ← ∅;
2: for n = 0 to N do
3: T ← (V,E);
4: xrand ← Sample(n);
5: xnearest ← Nearest(T, xrand);
6: xnew ← Steer(xnearest, xrand, η);
7: if ObstacleFree(xnearest, xnew) then
8: V ← V ∪ xnew;
9: xparent ← xnearest

10: Xnear ← Near(T, xnew, |V |)
11: for all xnear ∈ Xnear do
12: if ObstacleFree(xnear, xnew) then
13: c′ ← Cost(xnear) + cp(xnew, xnear)
14: if c′ < Cost(xnew) then
15: xparent ← xnear

16: end if
17: end if
18: end for
19: E ← E ∪ {xnearest, xnew};
20: for all x′ ∈ Xnear \ {xparent} do
21: if ObstacleFree(xnew, x

′) and Cost(x′) >
Cost(x′) + cp(xnew, x

′) then
22: E ← E \ {(Parent(x′), x′)}
23: E ← E ∪ {(xnew, x

′)}
24: end if
25: end for
26: end if
27: end for
28: return T = (V,E);

improves the local connection within r, sufficient iteration
provides an approximately optimal path.

C. Interpolation by clothoid curve

we introduce the regularizer with respect to path length
because we need to create smoother path considering vehicle
kinematics. Our method explores paths by using the RRT*-
based algorithm. It, however, creates an unsmooth path. To
make a smoother path, we further interpolate the acquired
path by applying clothoid curve which is used for many kinds
of road shapes. Specifically, we interpolate the start to middle
of acquired path by using a curve fitting method [19].

D. Learning weight vector w

During the learning phase, we estimate an optimal weight
vector ŵ from training data. We apply the feature-matching
approach as standard in a previous study [18]. In feature
matching, we update w which is the acquired features from
the proposed approach with the current weight, corresponds
to the features of the training samples.

A average of features computes f̄ calculated from K paths
is defined by

f̄ =
1

K

K∑
k

f(xk). (3)



A gradient of the cost function is defined as

∇cw = f̄ − f̄w, (4)

where f̄ is the average of aomputed features, and f̄w is also
the average of expected feature count. The f̄ is calculated
from training samples, and f̄w is from created samples
using the proposed approach with the current w. That, then,
updates the parameters by using

w ← we(−λ∇cw), (5)

where λ is a step size.
To calculate the expected features for the current w, we

apply the Algorithm. 1 and create a path. We, then, acquire
proper weights ŵ by repeating the update (Eq. (5)) until w
does not change, which is defined by

∥wk −wk−1∥ = ϵ. (6)

IV. EXPERIMENTAL RESULTS

A. Dataset

We create a moving-path dataset of vehicles at intersec-
tions for learning samples and quantitative evaluation. The
dataset includes intersection images, scene labels, paths, and
coordinates of intersection centers.

The dataset contains 100 aerial images at intersections
collected using Google Static Maps API. Each image size
is 640× 640 pixels. We, then, crop these images to include
only the intersection area without changing the aspect ratio.
Therefore, each image size differe depending on the scene.
We annotate scene labels is classified seven categories, such
as roads and white lines, which would affect vehicle driving.

We collected path information of vehicles driving in those
scenes. We collected a total of 1,417 moving-path samples;
472 straights, 471 turning lefts and 474 turning rights.
Furthermore, we collected the center coordinates center of
intersections. Examples from the dataset are shown in Fig.
2.

B. Experiment settings

We evaluate the difference of our approach’s accuracy by
changing its parameters (i.e., θ and α). Each parameter is
changed by 0.1. Because the number of possible patterns of
parameters is a lot, we estimate optimal parameters in the
following steps:

1) We evaluate the error of conventional SC-RRT* and
the proposed method while changing θ. At that time,
α of the proposed method is fixed to 1.0.

2) Then, we seek appropriate α of the proposed method.
θ is fixed to the best acquired value by the first step
experiment.

We use SC-RRT* [18] as the conventional method, whose
cost function is defined with the first and second terms in
Eq. (1).

As parameters of RRT* in proposed and conventional
methods, we set the tree length to 10 pixels, the number
of random samples to 1,000, and the goal sampling rate to
5 %.

Fig. 2. Examples of created dataset. Top: collected intersection images.
Middle: collected moving paths. Bottom: annotated scene labels in each
scene.

We experiment this quantitative evaluation by applying a
modified Hausdorff distance (MHD) [20]. Given a ground
truth of moving path A = {a1, . . . , aNa} and created path
B = {b1, . . . , bNb

}, the MHD is formulated as

d(A,B) =
1

Na

∑
a∈A

d(a,B) (7)

d(B,A) =
1

Nb

∑
b∈B

d(b, A) (8)

D(A,B) = max(d(A,B), d(B,A)), (9)

where d(a,B) = minb∈B ∥a − b∥. The MHD is used to
measure the degree of similarity of an object’s form. We
quantitatively evaluate the degree of similarity between a
ground truth and a created path regarded as a quadratic curve.

C. Experimental results

Table I shows the MHD of SC-RRT* and the proposed
approach, where α was fixed to 1.0. SC-RRT* achieved the
best result from θ = 1.0. On the other hand, our approach is
the most part better the MHD than SC-RRT* with θ = 0.5-
0.8. These results indicate the proposed approach is able to
create a more proper moving path for vehicles. Therefore,
we fixed θ = 0.8 and evaluate the proposed approach with
different α to decide the best parameter patterns.

Table II shows the MHD of the proposed approach with
fixed θ = 0.8 changing by α = 0.1. These results indicate
the result in the case of θ = 0.8 and α = 0.1 is the lowest
error. It indicates this parameter pattern is the most proper.



Fig. 3. Examples of generated paths

TABLE I
MHD OF SC-RRT* AND PROPOSED APPROACH (UNIT: PIXELS)

approach θ α MHD
SC-RRT* [18] 0.5 – 6.275

0.6 – 6.044
0.7 – 6.100
0.8 – 5.962
0.9 – 5.843
1.0 – 5.695

Proposed 0.5 1.0 4.273
0.6 1.0 6.930
0.7 1.0 4.076
0.8 1.0 3.987
0.9 1.0 5.887
1.0 1.0 5.883

TABLE II
MHD VALUES WITH FIXED θ = 0.8 AND CHANGING α (UNIT: PIXEL)

approach θ α MHD

Proposed 0.8

0.1 4.882
0.2 4.793
0.3 4.499
0.4 4.515
0.5 4.365
0.6 4.328
0.7 4.160
0.8 4.250
0.9 3.967
1.0 3.987

Table III shows MHD focus attention on the different
courses which is right turns, left turns and going straights.
The MHD of straights and left turns are smaller than right
turns. The created paths for straights and left turns are
shorter to avoid collisions between a vehicle and obstacles.
On the other hand, moving paths for right turns needed to

TABLE III
MHD ON THE RIGHT OR LEFT TURNS OR GOING STRAIGHTS

(UNIT: PIXELS (METERS))

straight left turn right turn
SC-RRT* (θ = 1.0) [18] 4.268 3.119 9.744

(1.067) (0.780) (2.436)
Proposed (θ = 0.8, α = 0.9) 1.901 1.074 4.177

(0.475) (0.269) (1.044)

move toward the center of the interaction, then move to turn
the right. These paths are comparatively difficult problems
because it just create the shortest paths such as for straights
or left turns.

In our dataset, 1 pixel in the image plane is corresponding
to about 0.25 meters. From Tab. III, our method decreases
error by over 1 meter in case of right turn.

D. Qualitative evaluations

The results of created paths are shown in Fig. 3. Each
approach in left turns is able to create similarity paths. In
straights and right turns, SC-RRT* create square or improper
paths from start to end point. But our approach is able to take
traffic rules into, and also account the center of intersections.
These results show our approach creates proper moving paths
at interactions for vehicles.

The RRT-based approach has features in which the resul-
tant paths are not quite smooth because it constantly extends
nodes. In fact, the moving paths of vehicles should be more
smooth like the real driving paths. Therefore, we need to
consider creating more smoothly moving paths.

Examples of failure results are shown in Fig. 4. The top-
left of the figure shows the straight course which should
be just created straight paths, but, the created paths are not
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Fig. 4. Examples of failure results

straights. That is why the clothoid fitting does not interpolate
sufficiently. The top-right and bottom of figures show the
results in right turn. In these cases, we need to create paths
that go straight toward the center of intersection and then turn
to right. However, these results just start to turn right before
entering the intersection. The third term of our cost function
does not work effectively. In these results, the clothoid fitting
also does not interpolate in these results. Therefore, we need
to set more appropriate scale parameters or acquire optimal
parameter by training.

V. CONCLUSIONS

We propose the automatic path-planning approach on
digital maps for autonomous driving. The proposed approach
creates cost maps from feature maps by scene labels and
weight vectors, and creates paths being a minimum cost
from a start position to a destination. We estimate optimal
weight vectors from learning data by calculating optimal cost
maps. We also define the cost function for moving vehicles
at interactions.

We create a dataset to evaluate the performance of the
proposed approach by using a dataset we created, and our
proposed approach is able to create paths suitable for vehicle
movement at intersections. Because this is the first attempt
of creating optimal vehicle paths for digital maps, our path-
planning approach is a rather simplicity. But it will be further
improved based on the following aspects. Our approach is
estimating optimal values with parameters, and the other
is considering vehicle kinematics and dynamics to create
smooth paths. Simultaneously optimizing every paths at
an intersection is also necessary to consider interactions
between vehicle movements.
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