
Adaptive Selection of Auxiliary Tasks in UNREAL

Hidenori Itaya1 , Tsubasa Hirakawa1 , Takayoshi Yamashita1 and Hironobu Fujiyoshi1
1Chubu University

{itaya, hirakawa}@mprg.cs.chubu.ac.jp, {yamashita, hf}@mprg.cs.chubu.ac.jp

Abstract
Deep reinforcement learning (RL) has a difficulty
to train an agent and to achieve higher performance
stably because complex problems contain larger
state spaces. Unsupervised reinforcement learn-
ing and auxiliary learning (UNREAL) has achieve
higher performance in complex environments by
introducing auxiliary tasks. UNREAL supports the
training of the main task by introducing auxiliary
tasks in addition to main tasks during the training
phase. However, these auxiliary tasks used in UN-
REAL are not necessarily effective in every prob-
lem setting. Although we need to design auxiliary
tasks that are effective for a target tasks, design-
ing them manually takes a considerable amount of
time. In this paper, we propose a novel auxiliary
task called “auxiliary selection.” Our auxiliary se-
lection adaptively selects auxiliary tasks in accor-
dance with the task and the environment. Experi-
mental results show that our method can select aux-
iliary tasks and can train a network efficiently.

1 Introduction
Reinforcement learning (RL) problems seek optimal actions
to maximize cumulative rewards. Unlike supervised learning
problems, the correct labels are not given in RL problems, and
an agent needs to determine which actions lead to better re-
sults. Because of the recent success of deep neural networks,
deep RL methods have been proposed [Mnih et al., 2013;
Mnih et al., 2015; Mnih et al., 2016; Jaderberg et al., 2016;
Horgan et al., 2018]. Unlike conventional (i.e., non-deep) RL
methods, deep RL can deal with more complex tasks such
as playing Go [Silver et al., 2016] and video games [Juste-
sen et al., 2017; Firoiu et al., 2017], controlling autonomous
systems [Gu et al., 2017], and grasping objects with hand ma-
nipulators [Levine et al., 2016].

For RL problems, an agent explores an environment and
collects data for training. This exploration is very difficult in
that it takes a lot of time to obtain useful data for training a
deep RL agent. There have been several works on solving
this problem [Lin, 1992; Nair et al., 2015; Mnih et al., 2016;
Jaderberg et al., 2016; Horgan et al., 2018]. Among them,
unsupervised reinforcement learning and auxiliary learning

(UNREAL) [Jaderberg et al., 2016] has been proposed based
on an A3C framework. The key idea of UNREAL is intro-
ducing auxiliary tasks in addition to training the main tasks.
Auxiliary tasks contribute updates to network parameters to
solve main tasks, which outperforms scores of A3C.

However, not all auxiliary tasks used in UNREAL neces-
sarily contribute to solving main tasks in every task and every
environment. On the contrary, some auxiliary tasks might dis-
turb the training of the main task. Although this issue could
possibly resolved by carefully designing auxiliary tasks that
depend on each task, designing efficient auxiliary tasks and
verifying the efficiency is costly.

In this paper, we focus on using auxiliary tasks in deep
RL approaches to propose a novel auxiliary task called aux-
iliary selection. Auxiliary selection adaptively selects aux-
iliary tasks to be used for network updates depending on the
main task and the environment by outputting weights for each
tasks. The output weights are multiplied by the loss values of
auxiliary tasks. The network of the auxiliary selection and
the network of the main and auxiliary tasks are trained at
the same time. During the training, the auxiliary selection
finds appropriate auxiliary tasks. In our experiments with the
DeepMind Lab, we showed that our method selects appro-
priate auxiliary tasks for each task by analyzing the selected
auxiliary tasks and the acquired game scores.

1.1 Contributions
The contribution of this paper is two-fold:

1. The proposed method can select auxiliary tasks adap-
tively. This enables us to find auxiliary tasks and results
by improving the score of the main task and/or suppress-
ing the use of unnecessary auxiliary tasks automatically.

2. Our method can ignores unuseful auxiliary tasks that do
not contribute for training of the main task. Therefore,
we can train an agent appropriately even if such unuseful
auxiliary tasks are included.

2 Related work
One major problem of deep RL is the very long training
time because it is difficult to substantially explore a large
state space. Auxiliary information is introduced to train an
agent efficiently in such complex tasks. Jaderberg et al.



Figure 1: The network architecture of our method. Our method is based on an UNREAL framework. The proposed auxiliary selection is built
separately from the UNREAL network and outputs a policy to select auxiliary tasks and a state value.

[2016] proposed UNREAL. UNREAL introduces unsuper-
vised learning-based auxiliary tasks into the A3C [Mnih et
al., 2016] framework. In UNREAL, three auxiliary tasks are
introduced: i) pixel control (PC), which trains actions that
vary pixel values, ii) value function replay (VR), which shuf-
fles past experiences and trains a state value function, and
iii) reward prediction (RP), which trains experience that ob-
tains higher rewards and predicts future rewards. These auxil-
iary tasks are performed within the network of the main tasks.
These tasks support the training of the network to solve the
main task and achieve higher performance.

If we leverage unnecessary auxiliary tasks that do not con-
tribute to the main task, these tasks might disturb the net-
work’s training to solve the main task. To avoid using unnec-
essary tasks, Du et al. [2018] proposed a method that blocks
the training data obtained from an auxiliary task if the aux-
iliary task is not effective. This approach calculates a cosine
similarity between gradients for main and auxiliary tasks. If
these gradients are similar, the auxiliary task is used for train-
ing. Otherwise, training data of the auxiliary task is blocked.
Meanwhile, our approach builds an independent network for
selecting auxiliary tasks. This can adaptively select efficient
auxiliary tasks without interfering with the training of the
main task.

3 Proposed method
In this section, we introduce the details of our method, auxil-
iary selection.

3.1 Auxiliary selection
Figure 1 shows the network structure of our method. Our
method was built based on UNREAL, and we added the aux-
iliary selection. In the auxiliary selection, images stored in
a replay buffer are input and then a state value VAS(s) and
a policy πAS are output. Among them, the policy πAS rep-
resents whether we use each auxiliary task for the main task
training or not. Here, we denote weights for each task as
CPC = {0, 1}, CVR = {0, 1}, and CRP = {0, 1}. The pol-
icy πAS is defined as

πAS = (CPC, CVR, CRP). (1)

Unlike auxiliary tasks, the network for auxiliary selection is
not shared with the network of the main task. Therefore, we
train the network of auxiliary selection independently. Thus,

we adaptively select auxiliary tasks depending on the envi-
ronment.

3.2 Loss functions
We formulated the loss function of our method by using the
loss function of conventional UNREAL as follows:

L = LA3C + CPC

∑
c

L
(c)
Q + CVRLVR + CRPLRP, (2)

where LA3C is a loss value of the main task (i.e., A3C), and∑
c L

(c)
Q , LVR, andLRP are loss values of each auxiliary task.

Note that, in terms of the pixel control, we split an input im-
age into n× n grid and compute losses for each grid. Hence,
L
(c)
Q represents the loss of n-step Q-learning for a grid c.

In our method, we select auxiliary tasks by multiplying loss
value and binary weight obtained from auxiliary selection.

In case that we train the auxiliary selection by using Eq. (2)
simultaneously, the network is trained so that CVR, CPC, and
CRP become zero. Therefore, we define another loss func-
tion to train the network of the auxiliary selection and train
the network apart from training the main and auxiliary tasks.
The loss function of the auxiliary selection can be formulated
using loss functions of the state value VAS(s) and the policy
πAS(a|s) as follows:

LASv = (r + γVAS(st+1, θ
−)− VAS(st, θ))

2 (3)
LASp = − log(πAS(a|s))A(s, a)− βH(πAS), (4)

where θ− is the network parameters before a network update.
And, an entropy H(πAS) promotes explorations that prevent
the network parameters from converging into a local minima.
And β is a scale parameter for the entropy H(πAS).

Finally, the loss function of auxiliary selection is defined
by adding losses of Eqs. (3) and (4) as

LAS = LASv + LASp. (5)

3.3 Algorithm
First, we synchronize the network parameters of each thread
θ′UNREAL and θ′AS with shared parameters θUNREAL and θAS,
respectively. Then, agents of each thread repeat taking ac-
tions in an environment by following policy π(at|st) until
agents lead to a termination condition or tmax steps. The ex-
periences (st+1, rt, at) are stored in a replay buffer. Next,



(a) nav_naze_static_01 (b) seekavoid_arena_01 (c) lt_horseshoe_color

Figure 2: The scores of DeepMind Lab over different global steps. The horizontal axis shows the number of global steps to update network
parameters and the vertical axis shows scores of each task. From left to right: the scores of nav mazze static 01, seekavoid arena 01, and
lt horseshoe color.

we execute the auxiliary selection and three auxiliary tasks
in turn, and we compute the gradients dθUNREAL and dθAS

shown in Eqs. (2) and (5). By using these gradients, we up-
date the network parameters θUNREAL and θAS. The above
procedures are processed on each thread asynchronously and
we repeat these processes until Tmax steps.

4 Experimental results
4.1 Experimental settings
We tested our method in a DeepMind Lab environment [Beat-
tie et al., 2016]. DeepMind Lab mainly contains three
games: i) nav maze static 01 (maze), ii) seekavoid arena 01
(seekavoid), and iii) lt horseshoe color (horseshoe).

We compared our method with the following baselines:

UNREAL: A method uses three auxiliary tasks for training.

PC, VR, and RP: Each of them uses an auxiliary task for
training, respectively.

We did not change the hyperparameters during the training
phase of each method. For maze and seekavoid, we trained
networks in 5.0 × 107 steps. For horseshoe, we updated the
network parameters in 1.0× 108 steps.

4.2 Results
nav maze static 01 Figure 2(a) shows scores for
nav maze static 01. UNREAL and PC achieved higher
performances, while scores of VR and RP are almost zero.
This means that VR and RP did not improve the main task.
The PC promoted an agent to take action changing pixel
values. In other words, this enabled an agent to move in
every corner of the maze environment. Our method also
achieved a higher score as UNREAL and PC.

seekavoid arena 01 Figure 2(b) shows the score of
seekavoid arena 01. The performances of PC and RP were
inadequate because actions changing pixel values are not suit-
able for this task. Moreover, if an agent can obtain sev-
eral rewards in this task, RP would be inefficient. On the
other hand, UNREAL and VR achieved higher scores. Sur-
prisingly, VR outperformed UNREAL, and our method also
achieved higher performance as VR.

lt horseshoe color Figure 2(c) shows the score of
lt horseshoe color. PC was the most effective. The reason

Table 1: The number of times each auxiliary task was selected in
one episode. The percentage in each bracket indicates the selection
ratio of each auxiliary task in one episode.

Env. Auxiliary task
PC VR RP

maze 435.4 (48.3%) 487.8 (54.1%) 369.0 (41.0%)
seekavoid 0.3 (0.1%) 300.0 (100.0%) 0.0 (0.0%)
horseshoe 8545.1 (94.9%) 14.1 (0.1%) 8998.2 (99.9%)

is that actions that defeat enemies change pixel values signif-
icantly. However, UNREAL outperforms the other methods,
and our method achieved the same performance as UNREAL.

4.3 Analysis of the selected auxiliary tasks
Figure 3 shows the number of actions output from the auxil-
iary selection during one episode on each game. Also, Tab. 1
shows the number of times each auxiliary task was selected in
one episode. Note that the number of selected auxiliary tasks
was calculated by averaging over 50 episodes. The number
of action steps in an episode was 900 for the maze, 300 for
seekavoid, and 9,000 for horseshoe.

The results of the maze show that {CPC, CVR, CRP} =
{0, 1, 0}, and {1, 0, 1} were often selected. All auxiliary
tasks were equivalently selected, as shown in Tab. 1. Because
appropriate auxiliary tasks for the maze task were UNREAL
or PC, our method equally selected all auxiliary tasks.

In seekavoid, {CPC, CVR, CRP} = {0, 1, 0} was selected,
which means our method stably selected the value function
replay. Since these results correspond to the results in Fig.
2(b), our method only selects auxiliary tasks that contribute
to the training of the main task.

In horseshoe, {CPC, CVR, CRP} = {1, 0, 1} was selected;
that is, pixel control and reward prediction were often se-
lected. Although the best score was achieved by UNREAL,
auxiliary selection for horseshoe did not select value function
replay. To analyze the reason of the selection, we conducted
additional experiments. In addition to the results of baselines
shown in Fig. 2(c), we added the following baselines:

A3C: A method without auxiliary tasks.

PC+RP: A method uses pixel control and reward prediction.

Figure 4 shows the scores of each baseline and our method.
This results shows that the score of VR was lower than that of



MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

(a) maze

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

(b) seekavoid

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

MPRG Work Document November 29,2018 8

{CPC, CVR, CRP}

(c) horseshoe

Figure 3: The number of selected actions of the auxiliary selection during one episode. Horizontal axis shows actions {CPC, CVR, CRP}
output from auxiliary selection, and the vertical axis shows the number of selected actions. From left to right: results of (a) nav maze static 01
trained with 5.0× 107 steps, (b) seekavoid arena 01 trained with 5.0× 107 steps, and (c) lt horseshoe color trained with 1.0× 108 steps.

Figure 4: Game scores of horseshoe over different global steps. The
horizontal axis shows the number of global steps to update network
parameters and the vertical axis shows scores of each task.

A3C. And PC+RP achieved the same score as UNREAL and
our method. Therefore, our method successfully removes the
value function replay from the training of horseshoe.

The results above show that our approach can select auxil-
iary tasks that contribute to training the main task.

5 Conclusion
In this paper, we proposed auxiliary selection that adaptively
selects auxiliary tasks to be used for training. Our method
selects auxiliary tasks by multiplying the loss values of each
auxiliary task and the weights obtained from auxiliary selec-
tion in the training phase. This enables us to train efficiently
by not having to design auxiliary tasks for each environment
manually. Experimental results show that our method can se-
lect proper auxiliary tasks and train the network to solve main
tasks efficiently. Our future work includes experiment in var-
ious environments and introduce other auxiliary tasks.

References
[Beattie et al., 2016] C. Beattie, J. Z. Leibo, et al. DeepMind

Lab. arXiv preprint, 2016.

[Du et al., 2018] Y. Du, W. M. Czarnecki, et al. Adapt-
ing Auxiliary Losses Using Gradient Similarity. arXiv
preprint, 2018.

[Firoiu et al., 2017] V. Firoiu, W. F Whitney, et al. Beating
the World’s Best at Super Smash Bros. Melee with Deep
Reinforcement Learning. arXiv preprint, 2017.

[Gu et al., 2017] S. Gu, E. Holly, et al. Deep reinforcement
learning for robotic manipulation with asynchronous off-
policy updates. In ICRA, 2017.

[Horgan et al., 2018] D. Horgan, J. Quan, et al. Distributed
Prioritized Experience Replay. In ICLR, 2018.

[Jaderberg et al., 2016] M. Jaderberg, V. Mnih, et al. Rein-
forcement Learning with Unsupervised Auxiliary Tasks.
arXiv preprint, 2016.

[Justesen et al., 2017] N. Justesen, P. Bontrager, et al. Deep
Learning for Video Game Playing. arXiv preprint, 2017.

[Levine et al., 2016] S. Levine, P. Pastor, et al. Learn-
ing hand-eye coordination for robotic grasping with deep
learning and large-scale data collection. In ISER, 2016.

[Lin, 1992] L.-J. Lin. Self-improving reactive agents based
on reinforcement learning, planning and teaching. Ma-
chine Learning, 8(3):293–321, May 1992.

[Mnih et al., 2013] V. Mnih, K. Kavukcuoglu, et al. Playing
Atari with Deep Reinforcement Learning. In NIPS work-
shop, 2013.

[Mnih et al., 2015] V. Mnih, K. Kavukcuoglu, et al. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[Mnih et al., 2016] V. Mnih, A. P. Badia, et al. Asyn-
chronous Methods for Deep Reinforcement Learning. In
ICML, 2016.

[Nair et al., 2015] A. Nair, P Srinivasan, et al. Massively par-
allel methods for deep reinforcement learning. In ICML
workshop, 2015.

[Silver et al., 2016] D. Silver, A. Huang, et al. Mastering the
game of Go with deep neural networks and tree search.
Nature, 529(7587):484, 2016.


	Introduction
	Contributions

	Related work
	Proposed method
	Auxiliary selection
	Loss functions
	Algorithm

	Experimental results
	Experimental settings
	Results
	Analysis of the selected auxiliary tasks

	Conclusion

