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Abstract— Self-driving decides an appropriate control con-
sidering the surrounding environment. To this end, self-driving
control methods by using a convolutional neural network (CNN)
have been studied, which directly input the vehicle-mounted
camera image to a network and output a steering directory.
However, if we need to control not only steering but also
throttle, it is necessary to grasp the state of the car itself in
addition to the surrounding environment. Moreover, in order
to use CNNs for critical applications such as self-driving, it
is important to analyze where the network focuses on the
image and to understand the decision making. In this work,
we propose a method to solve these problems. First, to control
both steering and throttle simultaneously, we propose using the
current vehicle speed as the state of the car itself. Second, we
introduce an attention branch network (ABN) architecture to a
self-driving model, which enables visually analyzing the reason
of the self-driving decision making by using an attention map.
Experimental results with a driving simulator demonstrate that
our method controls a car stably, and we can analyze the
decision making by using the attention map.

I. INTRODUCTION

To develop self-driving cars, it is necessary to understand
the surrounding environment. Most studies on developing
self-driving cars measure the surrounding environment with
a camera or by light detection and ranging (LIDAR) and
decide control values [1], [2]. Apart from these approaches,
convolutional neural network (CNN)-based vehicle control
approaches, which directly output control values with only a
camera image as an input, have been investigated [3], [4], [5],
[6]. In this approach, we collect in-vehicle camera images
and the corresponding control values when human drivers
control a vehicle. By training a network with the collected
data in an end-to-end manner, a vehicle can be automatically
controlled in the same way a human driver would control it.
Because the system autonomously trains driving skills, the
end-to-end learning approaches have an advantage in which
the system structure becomes simple.

For practical self-driving, both steering and throttle should
be stably controlled. The steering could be controlled prop-
erly by understanding scenes of front-facing camera images.
Unlike a steering, the control of a throttle would be difficult
when using only the surrounding environmental information.
The reason is that video frames captured by an in-vehicle
camera are input to a network one by one, which does not
adequately represent the state of the vehicle itself, i.e., a
vehicle velocity. To consider temporal changes, a method
that introduces a long short-term memory (LSTM) has been
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proposed [4]. This approach only represents the temporal
changes of an input video sequence implicitly, and the actual
speed changes of a vehicle are not represented explicitly.

Apart from throttle controls, another problem is the dif-
ficulty in understanding the reason for network output. For
instance, when the network decides right and left turning,
acceleration, or deceleration, giving the reason why a car
would perform such operations would put passengers at ease.
Also, if a traffic accident occurs because of the self-driving
system, analyzing the reason of the network output would
be of great help in the investigation of the accident.

In this paper, we tackle the above two problems and
propose an end-to-end self-driving method. Our method has
two characteristics. First, we estimate both steering and
throttle simultaneously. To improve throttle control perfor-
mance, we use the information of the car itself, i.e., the
vehicle velocity, in addition to the surrounding environmental
information, which can stably control throttle. Second, we
generate an attention map, which visualizes the region in
which the network is focused as a heat map. We build a
network on the basis of an attention branch network (ABN)
[7]. To apply the ABN structure to a regression problem,
we propose a weighted global pooling (WGP) layer. The
conventional global average pooling (GAP) averages the
entire feature map values, which results in the loss of the
important information. In contrast, because the WGP pools
the whole feature map by weighted average, it can preserve
sufficient information. Experimental results using a driving
simulator demonstrate that the proposed method can stably
control steering and throttle. Furthermore, we analyze the
obtained attention maps.

The contributions of this paper are as follows:
• We estimate both steering and throttle simultaneously.

The proposed method uses a velocity as an additional
input, which enables stable throttle controls.

• To apply an ABN architecture for a regression problem,
we propose the WGP. By introducing the WGP, we
can estimate regression values from the attention branch
while obtaining attention maps.

• By using the attention map, we can visually explain the
reason of the network output in a self-driving control.

II. RELATED WORK

A. Self-driving based on end-to-end learning

Thanks to the recent development of CNNs, self-driving
controls with an end-to-end learning approach have been



studied [3], [4], [5], [6]. Bojarski et al. [3] proposed a CNN
architecture that inputs an in-vehicle camera image and out-
puts a steering angle. To collect the steering angles used for
the training, they drive a car for 72 hours. The collected data
contain various conditions such as weather, time, and road
conditions, which enables the achievement of better control
performance under various conditions. Xu et al. [4] proposed
introducing a long short-term memory (LSTM) to consider
time-series variations of an in-vehicle camera movie. Also,
Yang et al. [6] convert an actual in-vehicle camera image to
a virtual image by a generative adversarial network (GAN)
to apply a CNN trained with virtual images of a driving
simulator to real images. In addition to controlling steering
and throttle, our model reveals the reason for the network
decisions by using an attention map.

B. Visual explanation

In the field of computer vision, visual explanation, an-
alyzing the factor of a network output by generating an
attention map, has been widely investigated [8], [9], [10],
[11], [12]. The visual explanation can be categorized into
two types: bottom-up and top-down. Bottom-up approaches
generate attention maps from the gradient information. A
guided backpropagation [10] and a gradient-weighted class
activation mapping (Grad-CAM) [12] have been proposed.
These methods obtain the maps by using only the positive
values of gradients of a specific class. These are used as
a general analysis method of CNNs because these can be
applied to any pre-trained network models and an attention
map of a specific object class.

Top-down approaches generate attention maps by using
response values output from a network. Although this ap-
proach requires the building and re-training of a network,
we can obtain attention maps for each object class dur-
ing the forward pass. A class activation mapping (CAM)
[9] generates attention maps with response values obtained
from a convolutional layer and the connection weights of
a fully connected layer. However, CAM tends to decrease
classification performance because it needs to replace a fully
connected layer with a convolutional layer. To resolve this
problem, an attention branch network (ABN) [7] has been
proposed. ABN separates a network into a feature extractor
and a perception branch and adds an attention branch behind
the feature extractor. The feature extractor extracts feature
maps from an input image, and the attention branch is based
on convolutional layers. The obtained feature maps are used
with the attention branch to output an attention map. To
output classification results from the attention branch, we
put a global average pooling (GAP) layer [13] at the output
layer. Then, the feature map from the feature extractor is
weighted by the attention map, and we can consider the
highly weighted regions to output results.

In this work, we analyze the reason of a network output
with regard to end-to-end self-driving by using an ABN
framework. However, since the ABN is built for a classi-
fication problem, it is impossible to simply apply the ABN
to a regression problem that outputs steering and throttle

as continuous values. By introducing a WGP, ABN can be
applied for a regression problem.

Visual explanation has been introduced in end-to-end self-
driving. Bojarski et al. [14] visualized the regions in which
a CNN focused upon. They added VisualBackProp [15]
modules to an original CNN and generated a visualization
mask that could be obtained by taking point-wise prod-
ucts to the feature maps of every convolutional layer. The
visualization mask highlights regions where convolutions
respond. Meanwhile, the proposed method introduced an
ABN structure that uses the obtained attention map for the
estimation, which can improve control performance.

III. PROPOSED METHOD
To achieve complete self-driving in an end-to-end manner,

we propose a network model that estimates both steering and
throttle and visually explains the reason of network output.
To this end, we introduce the following two ideas. One is to
use the vehicle velocity as an additional input. Introducing
the velocity enables consideration of both the surrounding
environment and the state of a car itself, and it can control
steering and throttle accurately. The other is to introduce the
ABN framework to obtain an attention map. By introducing
the ABN framework, we can estimate the control values
while obtaining an attention map for visual explanation.
Hereafter, we describe the details of the proposed method.

A. Steering and throttle controls by adding velocity

In order to estimate a throttle, we need to train a network
while considering the velocity changes of a vehicle. How-
ever, conventional end-to-end learning approaches such as
[3] cannot consider the velocity changes because they use
only an in-vehicle camera image as an input. To resolve this
issue, we use a vehicle velocity as an additional input and
train the network. By introducing the velocity, we can extract
features regarding the internal state of the car itself. The
proposed method inputs the velocity at the fully connected
layer, as shown in Fig. 1(a). Specifically, the velocity is
concatenated with a feature vector obtained from the previous
fully connected layer. Then, the network outputs steering and
throttle.

Steering and throttle output from the network are nor-
malized to [−1, 1]. In case of steering, [−1, 0) indicates
turning the steering wheel to the left and (0, 1] to the right.
For throttle, [−1, 0) and (0, 1] mean break and acceleration,
respectively. The estimated steering and throttle values are
obtained by applying the hyperbolic tangent (tanh) function
to response values of the output layer vc. Here, let pcm(x; θ)
be an output value of the network, tcm a ground truth, and c
a category, where c = 0 is for steering and c = 1 for throttle.
To train a network, we compute a mean squared error L(x)
as follows:

pcm(x; θ) = tanh (vc) (1)

L(x) =
1

M

M∑
m=1

C∑
c=1

|pcm(x; θ)− tcm|2, (2)

where M is a mini-batch size.
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Fig. 1. Network structures for self-driving system.

B. Attention mechanism for visual explanation

To generate an attention map, we introduce an ABN frame-
work to our self-driving model described in Section III-A.
Figure 1(b) shows the details of the proposed ABN structure
for self-driving, which consists of a feature extractor, an
attention branch, and a regression branch. Note that we refer
to the perception branch as a regression branch because we
deal with a regression problem. The regression branch has the
same structure as the perception branch, and we modified this
branch to output regression values instead of classification
probabilities. Also, the velocity described in Section III-A is
input to a fully connected layer in the regression branch.

A difficulty in applying the ABN for regression problems
is inherent in the attention branch. The attention branch needs
to be built on the basis of convolutional layers to output an
attention map. And, a GAP is used as the output layer of the
attention branch. However, the GAP removes information
because it takes its average over the entire feature map
values. Therefore, it is impractical to use the GAP for the
regression problem in the attention branch. In this work, we
proposed a weighted global pooling (WGP), which computes
the weighted average by using a convolutional layer. As
shown in Fig. 2, the WGP applies a convolution whose kernel
size is the same as the feature map. Let α be a weight for
pooling and f(x) be a feature map for an input x. The

× ∑

Tanh function

f c(x)Feature map :
1×37×45

Convolution kernel :αc
1×37×45

Fig. 2. Overview of the weighted global pooling.

response value of WGP v is defined by

vc =

h∑
i=1

w∑
j=1

αc
j,i · f cj,i(x), (3)

where w and h are the width and height of the feature map,
respectively. Because the WGP weights for each element
of feature map f cj,i(x) and outputs a regression value, it
is difficult for the WGP to lack information of the pooled
feature map.

An attention map is generated by using the feature map
obtained from the Conv.8 layer, as shown in Fig. 1(b). Since
Conv.8 is applied for the feature map before the WGP is
applied, we can obtain two feature maps representing the
attentions of steering and throttle. In the proposed ABN, we
generate an attention map by adding the two feature maps
point-wisely. To train the network, we compute mean squared



TABLE I
AUTONOMY SCORES OF EACH METHOD OVER DIFFERENT DRIVING SCENES.

Throttle Steering
Method Country road Urban road Country road Urban road

Daylight Daylight Night Rainy All Daylight Daylight Night Rainy All
CNN 90.0 76.6 76.6 76.6 79.0 90.0 100.0 100.0 93.3 96.3

CNN+Velocity (Fc.1) 80.0 73.3 70.0 73.3 73.6 80.0 90.0 86.6 86.6 86.3
CNN+Velocity (Fc.2) 90.0 86.6 83.3 83.3 85.4 95.0 96.6 96.6 90.0 94.5
CNN+Velocity (Fc.3) 95.0 93.3 93.3 90.0 92.7 95.0 100.0 100.0 93.3 97.2

CNN+Velocity (Output) 80.0 83.3 83.3 83.3 82.7 85.0 90.0 90.0 83.3 87.2

(a) Country road (b) Urban road

(c) Night-time (d) Rain

Fig. 3. Examples of driving scenes on the GTAV simulator.

errors for the outputs of attention and regression branches as
shown in Eq. (2). Here, we denote the errors of attention and
regression branches as Latt and Lreg , respectively. The loss
function is formulated as follows:

Lall(x) = Latt(x) + Lreg(x). (4)

IV. EXPERIMENTS

In this section, we evaluate the proposed method. First,
we evaluate the control performance by adding the vehicle
velocity. Then, we analyze the reasons of the network outputs
by visualizing attention maps. In addition to the analysis
of attention maps, we demonstrate that our method has
the potential to explain the reason of the network output
linguistically.

Experiments using an actual vehicle in real-world cir-
cumstances are costly and risk accidents. Using a simulator
environment can resolve the issues. To resolve the issues,
we used a driving simulator. Specifically, we built an en-
vironment based on Grand Theft Auto V (GTAV), a video
game. Figure 3 shows examples of driving scenes on the
GTAV simulator. The GTAV simulator can easily configure
various settings, e.g., abundant driving environments such
as country and urban roads, weather, and time. Moreover,
we can drive freely in an extensive world that is about 126
square kilometers. To train networks, we collected in-vehicle
camera images and the corresponding values, i.e., steering,
acceleration, brake, and speed. The collected images are

RGB images whose size are 420 × 350 pixels. To collect
sufficient data, we drive a car in the GTAV simulator for
three hours. In the following experiments, we used 30,000
frames for training and 16,556 frames for evaluation.

As a conventional method, we used a CNN architecture
proposed in [3]. During the training phase, we used RM-
SProp+Graves as an optimization method, whose learning
rate and exponential decay rate are set to 0.01 and 0.99,
respectively. We set the mini-batch size as 4 and train
networks in 150 epochs.

A. Evaluations on control performance

Herein, we evaluate the control performance by introduc-
ing a vehicle velocity. We used a network shown in Fig. 1(a)
as the proposed method to compare the control performance
with or without a velocity. As an evaluation metric, we use
an autonomy score used in [3], which is defined by

autonomy =

(
1− (] of interventions) · 6

elapsed time [sec.]

)
· 100. (5)

This indicates how many times a human driver intervenes
with autonomous controls while a network autonomously
controls a vehicle. If the autonomy score is close to 100,
the number of the interventions are few, and the network
can stably control a vehicle. Moreover, we evaluate the
performance in case that we change the layer concatenating
a velocity.

Table I shows the autonomy scores of each method over
different driving scenes. The scores of the conventional CNN
are 79.0% for throttle and 96.3% for steering. Our method
introducing a velocity outperforms the conventional CNN.
Particularly, when we input a velocity at the Fc.3 layer, the
proposed method achieved the highest scores, whose throttle
is improved by 13.7%. Because the Fc.1 and Fc.2 layers
consist of 1,000 and 100 units respectively, it is thought that
a velocity is handled as noise. In contrast, if we input a
velocity at the output layer, the efficient feature extraction
from the velocity might become difficult. Therefore, it does
not contribute to the performance improvement. From these
results, we input a velocity at the Fc.3 layer in the following
experiments.

B. Visualization results of the network output

Next, we analyze the obtained attention maps. To visualize
attention maps, we built the proposed ABN by adding the
attention branch structure shown in Tab. II on the conven-
tional CNN [3] as shown in Fig. 1(b). As a comparative



Fig. 4. Examples of the attention map and visualization mask [15]. Values under attention maps and visualization masks are the estimated steering (S)
and throttle (T) values in each scene.

TABLE II
DETAILED STRUCTURE OF THE ATTENTION BRANCH

Layer Detail
1st Conv. kernel : 1,000 × 1 × 1

activation func. : Leaky ReLU
stride : 1

2nd Conv. kernel : 100 × 1 × 1
activation func. : Leaky ReLU
stride : 1

3rd Conv. kernel : 2 × 1 × 1
activation func. : Leaky ReLU
stride : 1

Output kernel : 2 × 37 × 45
(WGP) activation func. : tanh

visualization method, we used visualization masks [15].
Figure 4 shows examples of the obtained attention maps and
visualization masks over different driving scenes. Figure 4(a)
shows a scene in which the wheel must be turned to the right.
The attention map highlights the center line, and steering
is estimated as a positive value, i.e., turn to the right. The
visualization mask of the same scene responds to a left side
line, although a positive steering value is also estimated. In
the scene of Fig. 4(b) in which the wheel must be turned to
the left, the estimated steering values are negative, and the
right side line is highlighted in both the attention map and
visualization masks. These results show that each method
focuses on roadway lines to estimate steering, whereas there
are differences about highlighted regions.

Figure 4(c) shows a scene in which a car needs to stop.
In this scene, the attention map highlights a brake lamp in
the front truck. And, the estimated throttle is 0, that is, the

network decision makes the car stop. The visualization mask
for the same scene does not highlight the brake lamp of the
truck ahead and focuses on the building behind the truck.
The corresponding throttle is a positive value, which means
forward movement. Figure 4(d) is a scene in which a car
drives following the front vehicle. Both the attention map
and visualization mask focus on the front vehicle. Therefore,
to decide throttle, networks pay attention to objects in front
of the car. Among them, our method successfully controls a
throttle.

C. Caption selection with attention maps

The attention maps highlight regions where a network
focuses on estimating control values. This indicates that our
method has the potential to explain the reason of the decision
making as a language by generating a caption that describes
the highlighted region. Therefore, we briefly introduce the
results of captions with respect to the reason of the network
output. To select captions, we used a fully convolutional
localization network (FCLN) [16], which is based on a region
proposal network, and it generates captions for each detected
region by RPN. In this experiment, we select a caption by
selecting a region that is highlighted by the attention map.

Figure 5 shows examples of the selected captions for each
scene. In the first row, the throttle changes from 0.05 to -
0.15, and the self-driving car tries to stop. In this scene,
“man on a red motorcycle” is selected as a caption. This
means that the estimated decision is reasoned as “a car on
the road.” Likewise, in the second row, the estimated decision
is also reasoned as “a car on the road.” From these results, the



Fig. 5. Examples of the selected captions from the dense captioning with an FCLN by using the peak in an attention map on self-driving. (a) input image
and the estimated steering and throttle, (b) the corresponding attention maps, (c) captions obtained from an FCLN, and (d) the selected captions from the
results of an FCLN by using the attention map.

attention map can explain the reason of the decision making
linguistically.

V. CONCLUSIONS

In this paper, we proposed an end-to-end self-driving
method that estimates steering and throttle and visually
explained the reason of the network output for the purpose
of complete self-driving. By using a velocity as an additional
input, the proposed method improves the control perfor-
mances of steering and throttle. And, the introduced ABN
structure generates attention maps for visual explanation. As
an application of the obtained attention maps, we combined
the attention map and an FCLN that generates captions for
specific regions. The generated captions are akin to the
possible reason of the decision making. Our future work
includes developing an interactive and linguistic explanation
method of the decision making on the basis of the proposed
method.
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