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Abstract

Knowledge distillation is an efficient approach for
model compression. It is based on a unidirectional
scheme that transfers knowledge from a large, pre-
trained network to a smaller one. A bidirectional
scheme was recently proposed that achieved a higher
performance than a unidirectional distillation. How-
ever, network training is disturbed at the early train-
ing stage of bidirectional distillation by the transfer of
knowledge between them. We propose a “gradual sam-
pling gate” that controls soft target loss by referring
to the training accuracy of each network. Our bidi-
rectional distillation method can improve the accuracy
without increasing the computational cost. To evaluate
our method, we compare classification accuracies with
several network models (ResNet32, ResNet110, Wide
ResNet, and DenseNet) over various datasets (CIFAR-
10, CIFAR-100, SVHN, and Tiny ImageNet). Exper-
imental results show that our method can effectively
train networks and achieve higher accuracies.

1 Introduction

Deep neural networks are very successful in perform-
ing several computer vision tasks. In many cases, in-
creasing the number of layers and channels yields a high
performance model. However, increasing the model pa-
rameters increases memory usage and computational
costs. On the other hand, a network that has few pa-
rameters is desirable in the deployment phase; however,
a smaller network’s performance is lower than a larger
network’s performance. Therefore, gaining a high per-
formance with a smaller network is necessary.

Knowledge distillation [8] is one approach to solving
the problem. This approach trains a student network,
which has few parameters, using a teacher network,
which is a larger, pre-trained model, to help train the
student network. The student network is trained on the
basis of soft targets, the teacher network’s predictions,
hard targets, and one-hot correct labels. The student
imitates the teacher’s class probabilities. Knowledge
distillation can transfer the network’s knowledge from
a teacher to a student more effectively.

Another network distillation framework is deep mu-
tual learning (DML) [19]. DML uses a number of

student networks that transfer their knowledge mutu-
ally. This bidirectional distillation approach outper-
forms unidirectional approaches. Furthermore, DML
improves the accuracy by collaborative learning of both
a large and a small model and small models of the same
architecture. However, because the parameters of each
network are randomly initialized, DML transfers soft
targets whose probability are close to random noise at
the early stage of training. Such soft targets would
disturb training.

We propose a gradual sampling gate (GSG) that con-
trols the amount of knowledge that is transferred be-
tween the networks. At the initial training epoch, the
GSG suppresses soft targets that disturb the network
training by controlling the soft target loss depending on
the training accuracy of each network. Moreover, soft
target loss is stochastically sampled from mini-batch
samples. Our method is independent of internal struc-
ture by transferring soft targets from the output layer.
Therefore, the GSG is applicable to any model archi-
tecture.

To evaluate our method, we conducted experiments
with various datasets (CIFAR-10, CIFAR-100 [10],
SVHN [12], and Tiny ImageNet [1]) and various mod-
els (ResNet32, ResNet110 [7], Wide ResNet [16], and
DenseNet [9]). Experimental results demonstrate that
the GSG outperforms DML. We also verified the effects
of increasing the soft target loss throughout the train-
ing process and stochastically sampled the soft target
loss.

2 Related Work

2.1 Knowledge Distillation

Distillation transfers a large, pre-trained model’s
knowledge to a small model. Typically, a teacher net-
work transfers the knowledge to the output layer of a
student network [4, 8]. Posterior probability distribu-
tions that output from a network contain feature repre-
sentation. Therefore, a student learns from a teacher’s
output probability as a true label, which enables us to
transfer the underlying feature representations of the
teacher to the student. However, probability values
output from a network have extremely low values, ex-
cept for the top-1 class because of a softmax function.
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Figure 1: Overview of our method. Left: a training scheme with a gradual sampling gate (GSG) on two networks.
Right: paths for transferring knowledge on the N-models.

Bucila et al. [4] use logits before applying softmax
as a soft target. This approach facilitates the transfer
of knowledge of all classes. Hinton et al. [8] proposed
introducing a temperature parameter into a softmax
function to effectively transfer the knowledge. How-
ever, there is a way to transfer the knowledge from
a hidden layer as well as an output layer[14, 17]. By
transferring from the hidden layer, the teacher’s knowl-
edge can be transferred effectively even in a deeper
layer model [14]. Zagoruyko et al. [17] proposed an
approach that transfers an underlying feature repre-
sentation of a teacher network to a student network
as an attention. Distillation has recently been con-
nected to curriculum learning [3] in information learn-
ing theory [11]. Furthermore, it has been applied to
object detection [5], domain adaptation [6], and text-
to-speech [13].

2.2 Bi-Directional Distillation

Deep mutual learning [19] is a bidirectional distilla-
tion method. DML uses a number of student networks
that teach each other collaboratively and do not require
a teacher network. As a criterion for knowledge trans-
fer between these networks, Kullback-Leibler (KL) di-
vergence is used to equalize probability distributions
output from each network. DML is related to entropy-
regularization-based approaches to finding wide min-
ima on loss landscape [19]. DML has been applied to
acceleration of large scale distributed neural network
training [2] and re-identification [18].

3 Method

In this section, we introduce the details of our grad-
ual sampling gate (GSG). Figure 1 overviews the pro-
posed network architecture. The GSG stochastically
controls the soft target loss by introducing the gate ar-
chitecture in a connection between the θ0 and θ1 net-

works. In early stages of training, each network learns
individually with only hard targets because the GSG
cuts off the soft target loss. During a training pro-
cess, networks learn collaboratively by increasing the
amount of soft targets.

3.1 Gradual Sampling Gate

To calculate soft target loss, the GSG does not use
every sample. Instead, the number of samples used to
calculate soft target loss is controlled based on the ac-
curacy of a network θn. When the accuracy rate of the
network is low, soft target loss is computed from only
a few batch samples. Meanwhile, many batch samples
are used when it is high.

Figure 2 illustrates the procedures of the GSG. A

soft target loss Lsoft
i of a sample i in batch samples B =

{ŷi,xi}Ni=1 is masked by random variable ri ∈ {0, 1}
taken from the Bernoulli distribution. ri is formulated
as follows:

δa,b =

{
1 a = b

0 a ̸= b
(1)

acc =
1

N

N∑
i

δŷi,y(xi)
(2)

ri ∼ Bernoulli (acc) , (3)

where acc is the accuracy rate of the network to which
the other network transfers the soft target, ŷ is the
teacher label, y is the class label predicted by the net-
work, and δ is the delta function. r tends to become 1
when the network accuracy is high.

3.2 Loss Function

We describe how the GSG trains the networks θ0 and
θ1 collaboratively. The output probability of class C
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Figure 2: Overview of stochastic and gradual sampling.
More details can be found in Section 3.1. tend indicates
the end of iteration.

from networks θ0 and θ1 with respect to the ith sample

in batch samples B = {ŷi,xi}Ni=1 is given by:

pcθn(xi) =
exp (zc(xi))∑C
j=1 exp (z

j(xi))
, (4)

where z refers to logits, i.e. a unnormalized output of
the network. pcθn(xi) is given by calculating a softmax
from z.

In order to estimate the difference between the out-
put probability and the true label, we use cross entropy
loss as hard target loss:

Lθn
CE = −

N∑
i=1

C∑
c=1

δc,ŷi
log
(
pcθn(xi)

)
. (5)

At the initial epoch, networks are trained using only
hard target loss Lθn

CE .
We used KL divergence as soft target loss in order to

estimate the difference between the output probability
of θ0 and θ1:

DKL(pθn ||pθ1−n
) =

C∑
c=1

pcθ1−n
(x) log

pcθ1−n
(x)

pcθn(x)
. (6)

In training of DML, the soft target loss is computed
from DKL in all batch samples. On the other hand, in
our proposed method, GSG chooses samples stochasti-
cally depending on the training accuracy of network θn
as follows:

Lθn
KL =

1

N

N∑
i=1

ri ·DKL(pθn(xi)∥pθ1−n
(xi)) (7)

Algorithm 1 Gradual Sampling Gate

Input: Training data D, Training epochs τ ;
Initialize: t = 1, Randomly initialize θ0, θ1;

while t ≤ τ do
Compute predictions pcθ1 and pcθ2 by (4);
Compute loss function Lθ1 and Lθ2 by (9);
Compute gradients and update parameters θ0
and θ1;
t ⇐ t+ 1

end while

ri ∼ Bernoulli

(
1

N

N∑
i=1

δŷi,yn(xi)

)
. (8)

The main difference between DML and GSG is stochas-
tic sampling by KL loss with ri.

The overall loss function Lθn is defined by

Lθn = Lθn
CE + Lθn

KL. (9)

At initial epoch, each network learns with only hard
targets. As the network’s accuracy improves, soft tar-
gets are also used.

3.3 Generalization for N-Models

The soft target loss function that is defined by Eq.(7)
applies to only two networks, but our method can be
extended to more networks (see Fig. 1). The loss func-
tion of the network θn ∈ {θ0, θ1, · · · , θM} can be ex-
tended as follows:

Lθn
KL =

1

M − 1

M∑
l=1,l ̸=n

1

N

N∑
i

ri·DKL(pθn(xi)∥pθl
(xi)).

(10)
Training several models with the GSG improved en-
semble prediction of the models (see Section 4.4).

3.4 Optimization

The optimization algorithm is described in Algo-
rithm 1. We take output probabilities pcθ1 and pcθ2 from
the same input images. Then, we compute losses and
update parameters of network θ0 and θ1 using SGD.
Two networks are updated simultaneously by one for-
ward calculation from the same batch samples. There-
fore, the computational cost is low.

4 Experiment

We evaluated our method’s performance on various
network architectures and datasets.



Models Method CIFAR-10 CIFAR-100 SVHN Tiny ImageNet Param

ResNet32 Independent 93.03 70.10 97.87 52.59 0.5 M
DML 93.00 72.00 97.94 52.86
GSG 93.47 72.67 98.16 52.97

ResNet110 Independent 93.53 70.99 97.95 56.70 1.7 M
DML 94.20 73.54 98.09 56.14
GSG 93.81 74.30 98.12 56.85

DenseNet-40 Independent 93.25 72.15 97.99 54.83 1.0 M
DML 93.77 73.74 97.99 55.82
GSG 94.16 73.62 98.08 55.87

WideResNet 28-2 Independent 94.16 74.58 98.04 57.76 1.5 M
DML 94.68 76.55 98.17 60.36
GSG 94.94 76.65 98.18 59.79

Table 1: Classification performances on each dataset with different network architectures. All experiments are
trained with the two same models. “Independent” is independently trained. “DML” is deep mutual learning.
“GSG” is our method. “Param” is the number of model parameters.

4.1 Datasets and Models

CIFAR-10: The CIFAR-10 dataset [10] contained
50,000 training images with 5,000 images per class and
10,000 test images with 1,000 images per class. The
CIFAR-10 dataset was comprised of 32×32 pixel RGB
images with 10 classes. However, we padded 4 pixels
on each side to make the image size 40×40 pixels. We
used randomly cropped 32×32 pixel images for train-
ing, and we used the original 32×32 pixel images for
testing.
CIFAR-100: The CIFAR-100 dataset [10] used 50,000
training images with 500 images per class and 10,000
test images with 100 images per class. The CIFAR-
100 dataset contained 32×32 pixel RGB images with
100 classes. We applied the same augmentations as
CIFAR-10.
SVHN: The Street View House Numbers (SVHN)
dataset [12] consisted of 73,257 standard training im-
ages, 26,032 test images, and 531,131 extra training
images. We used all the training data without any
data augmentation.
Tiny ImageNet: Tiny ImageNet [1] was a subset of
the ImageNet dataset [15] with 64×64 resolution. It
contained 100,000 training images and 10,000 test im-
ages in 200 classes. We applied the same augmenta-
tions as CIFAR-10.
Models: We conducted experiments using small net-
works (ResNet32, ResNet110 [7], Wide ResNet28-
2 [16], and DenseNet40 [9]). In the experiments using
Tiny ImageNet, we changed the stride of the first conv
layer to 2 for each model.

4.2 Implementation Details

We used SGD with Nesterov momentum as the opti-
mization algorithm for all the experiments, and we set
the initial learning rate to 0.1, momentum to 0.9, and

minibatch size to 64. On CIFAR-10 and CIFAR-100,
the learning rate dropped by 0.1 every 60 epochs, and
we trained for 200 epochs according to [19]. On SVHN,
the learning rate dropped by 0.1 at half of the maxi-
mum epoch and we trained for 40 epochs. On Tiny
ImageNet, the learning rate dropped by 0.1 at half of
the maximum epoch, and we trained for 80 epochs.

4.3 Results for Various Datasets and Models

Table 1 shows the classification performance of each
dataset with different network architectures. All the
experiments were trained with the same two models.
In the results of CIFAR-10 with ResNet32, DenseNet-
40, and Wide ResNet28-2, our method outperformed
DML. The proposed method of ResNet32 significantly
improved by 0.47% compared with DML. From the re-
sults of CIFAR-100 with ResNet32, ResNet110, and
Wide ResNet28-2, the proposed method outperformed
DML. Notably, the proposed method of ResNet110 im-
proved by 0.76% compared with DML. From the results
of SVHN with all models, our method outperformed
DML. Particularly, the proposed method of ResNet32
improved by 0.22% compared with DML. From the re-
sults of Tiny ImageNet with ResNet32, ResNet110, and
DenseNet-40, our method outperformed DML. The
proposed method of ResNet110 particularly improved
by 0.71% compared with DML.

4.4 GSG Ensemble vs DML Ensemble

Zhang et al. reported that an ensemble of networks
trained with DML outperforms an independent model
ensemble. We verified the effect of an ensemble on the
GSG by increasing the number of models to be collab-
oratively learned. Figure 3 shows the ensemble model
accuracies with ResNet32 on CIFAR-100. The GSG en-
semble prediction is higher than DML. The GSG can
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Figure 3: Performance of ensemble models with
ResNet32 on CIFAR-100. The dash line is a mean ac-
curacy of all model predictions. The solid line is a
mean accuracy of ensemble predictions. All the exper-
iments were performed 5 runs using the same seed for
the random number generator.

increase the diversity of internal representations in the
ensemble group because it cuts the soft targets off at
an early stage in training.

4.5 Comparison with Constant Sampling

The GSG uses the value of training accuracy as the
occurrence probability of r, as in Eq. (3). This makes
it possible to suppress the transfer of unnecessary soft
targets. To verify this effect, we evaluated the perfor-
mance when we set r as the constant as follows:

ri ∼ Bernoulli (C) , (11)

where C is a constant parameter C = {0, 0.1, · · · , 1}.
Figure 4 shows the performance by using constant

sampling or GSG. This experiment was performed 5
runs with two ResNet32 on CIFAR-100. We used the
same seed of a random number generator used when
initializing model parameters and data augmentation
on each trial. GSG achieved higher performance than
any constant sampling. This result shows that trans-
ferring soft targets from the beginning of training does
not contribute improving performance.

4.6 Stochastic Gate vs Deterministic Gate

Our method probabilistically selects soft targets by
using a Bernoulli distribution shown in Eq. (3). We
select only correct samples deterministically, which is
defined by

ri = δŷi,y(xi)
. (12)

To verify the effect that probabilistically selects sam-
ples, we evaluated the performance by using different
soft target losses: Eqs. (3) and (12).
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Figure 4: Accuracies over different sampling patterns.
A horizontal line inside the box denotes a median and
a triangle marker denotes the mean. “0.0” · · · “1.0”
indicates a constant parameter C. “0.0” is the same as
independent learning. “1.0” is the same as deep mutual
learning.

Method Accuracy [%] Improvement
Deterministic Gate 72.27 -
Stochastic Gate 72.64 +0.37

Table 2: Stochastic Gate vs Deterministic Gate

Table 2 shows the classification accuracies when us-
ing different soft target losses. This experimental setup
is the same as Section 4.4 and 4.5. The stochastic ap-
proach achieved a higher performance than a determin-
istic approach.

5 Conclusion

In this paper, we proposed a gradual sampling gate
(GSG) that probabilistically samples soft target loss
in bidirectional knowledge distillation. The GSG can
suppress unnecessary soft targets at an early stage of
training by controlling the amount of soft target loss
based on accuracy. Experimental results show that our
method outperformed conventional DML.
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