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Abstract— Fast Graspability Evaluation (FGE) has been
proposed as a method for detecting grasping positions on
objects and is now being used for industrial robots. FGE
uses convolution of hand templates with regions on the target
object to estimate the optimum grasping posture. However,
the hand opening width and rotation angles must be set
with high resolution to achieve highly accurate results and
the computational load is high. To address that issue, we
propose a method in which hand templates are represented
in compact form for faster processing by using singular value
decomposition. Applying singular value decomposition enables
hand templates to be represented as linear combinations of
a small number of eigenvalue templates and eigenfunctions.
Eigenfunctions take discrete values, but response values can be
calculated with arbitrary parameters by fitting a continuous
function. Experimental results show that the proposed method
reduces computation time by two thirds while maintaining the
same detection accuracy as conventional FGE for both parallel
hands and three-finger hands.

I. INTRODUCTION

Grasping objects is an important task for industrial robots
and robots that support daily life. Implementing that capa-
bility requires detection of the optimum grasping positions
for the object by using the robot’s vision sensors to acquire
an RGB image and a depth image. The grasping position
detection methods can be categorized into machine learning
methods and model fitting methods.

Model fitting for detection of grasping position includes
using depth images or using 3D point clouds. The Fast
Graspability Evaluation(FGE)[1] uses a depth image for
detecting the grasping position using a hand model. For
detecting grasping position from a point cloud, there have
been proposals of methods in which simple models such as
cylinders are fit to the point cloud [2], [3], [4], [5], [6] and
methods in which a 3D model of the object to be grasped and
a point cloud within the work area are used [7], [8], [9]. The
machine learning approaches involve using a support vector
machine or neural network to learn the grasping positions
of an object by using feature vectors obtained from training
images [10], [11], [12]. A method of using convolutional
neural networks to detect grasping positions that are even
more optimal has also been proposed [14], [15], [16], [17].

Of those methods, FGE can detect grasping positions at
high speed by convolution of binary images of the hand
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model in the target object region. However, achieving highly
accurate grasping position detection requires convolution of
hand templates with more states, such as the hand opening
width and rotation angle, with the binary image. Because
computation cost increases with the number of hand states.

We propose a faster grasping position detection method,
which introduces eigenvalue templates to FGE. In our
method, a hand template group is generated for each region
in which the robot hand and the object collide (collision
region), and each region in which there is contact (contact
region). Applying singular value decomposition to the gener-
ated hand template groups makes it possible to represent the
groups in compact form and increase the processing speed.
The accuracy of detection can also be improved by fitting the
eigenfunctions with a continuous function and approximating
the hand model to an arbitrary resolution.

II. FAST GRASPABILITY EVALUATION

Figure 1 shows the overview of the Fast Graspability Eval-
uation (FGE) [1]. FGE constracts hand collision and contact
regions from robot hand models as templates. Those hand
regions are convoluted with collision and contact regions of
a grasping object, respectively and we obtain the collisionless
region of a hand and an object. Then, a graspability map is
caliculated by convoluting the collisionless region and the
Gaussian filter. The grasping positions are then detected as
the positions at which the graspability map has peak values.
The optimum grasping posture is detected by varying the
resolution of the hand rotation angle and opening width.
Formally, the hand collision region (Hc), in which the robot
hand collides with the target object, and the hand contact
region (Ht ) are constructed from a depth image. For coordi-
nates (x,y), the object contact region Ot(x,y) and the object
collision region Oc(x,y) are obtained from the object depth
image O, the depth to which the hand has proceeded in the
grasping approach w, and the height of the target object h
by using Eq. (1).

Ot(x,y) =

{
1 (O(x,y)≥ h)
0 (otherwise)

Oc(x,y) =

{
1 (O(x,y)≥ h−w)
0 (otherwise)

(1)

The coordinates at which the values of the object and hand
model contact region values are maximum and the object
and hand model collision region values are minimum can
be regarded as the grasping coordinates of high graspability.
The contact region for the target object in the hand model
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Fig. 1. Overview of the Fast Graspability Evaluation

T can be calculated by convolution of Ht and Ot , and the
contact region C can be calculated by convolution of Hc and
Oc. Denoting the Gaussian filter as g, the graspability region
G for which there is no collision of the hand model and the
target object can be obtained with Eq. (2).

G = (T ∩C)⊗g (2)

The grasping posture can be estimated from the hand param-
eters and the coordinates at which G is maximum.

A. Issues for FGE

The hand opening width and rotation angle must be
taken into account when detecting the grasping posi-
tion for a parallel hand by FGE. For the values of
{20mm,30mm, · · · ,60mm} for hand opening width h and the
values {0◦,10◦, · · · ,170◦} for hand rotation angle θ , there are
90 templates for the hand collision region and 90 templates
for the contact region. In that case, there are 180 convolution
operations. For accurate grasping position detection, the
number of states is increased to {20mm,25mm, · · · ,60mm}
for the opening width and {0◦,5◦, · · · ,175◦} for the rotation
angle, which results in 324 collision region templates and
324 contact region templates. Thus, the total number of
convolution operations is 648 and the computational load
is greatly increased.

III. PROPOSED METHOD

In our method, singular value decomposition (SVD) is
applied to the large hand template groups to achieve high-
speed object grasping position detection with approximate
calculations.

A. Calculation of the eigenvalue templates by SVD

Applying SVD to the collision region and contact region
of the robot hand makes it possible to approximate the
convolution image of the two regions by combining a small
number of eigenvalue templates. Doing so makes it possible
to approximate the groups of 324 hand templates that result
from the extended number of hand opening width values
and rotation angle values with linear combinations of a few
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Fig. 2. Singular value decomposition of the hand template group

tens of eigenvalue templates and weight coefficients, thus
suppressing the increase in processing time.

To apply SVD, the 324 collision region hand templates
and the 324 contact region hand templates are respectively
represented as the two-dimensional matrices Mc and Mt . The
row vectors of the matrices Mc ∈ RE×F and Mt ∈ RE×F are
respectively composed of the vectorized 324 hand templates
m(d,θ)

c ∈ RE and m(d,θ)
t ∈ RE . As shown in Figure 2, E is

the hand template pixel count (2,500 pixels) and F is the
number of robot hand states. Applying SVD to matrices Mc
and Mt results in the respective three matrices U,S and V T

as shown by Eq. (3).

Mt = UtStV T
t

Mc = UcScV T
c (3)

Because the same processing is performed for contact region
Mt and collision region Mc, the equations for the contact
region are omitted in the following description. As shown
in Figure 2, the matrices St and Sc are diagonal matrices
that have the singular values sti and sci as the diagonal
components. Only the upper elements of the singular values
have large values; the lower elements have values near zero.
Therefore, if we use the contribution rate obtained from
the singular values of matrices St and Sc and denote the
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Fig. 3. Compact matrix representation using the contribution ratio

dimension-reduced matrices as S′t and S′c, Eq. (3) becomes
Eq. (4).

M′t = UtS′tV
T

t (4)

Let uti ∈ RE and uci ∈ RE denote the ith column vectors of
matrices Ut , and Uc, and let δti ∈RF and δci ∈RF denote the
ith row vectors of matrices S′V T

t and S′V T
c . The templates

m(d,θ)
t and m(d,θ)

c for the parameters (d,θ) can then be
defined by Eq. (5).

m(d,θ)
t =

N

∑
i=1

δti(d,θ)uti (5)

Because uti and uci can respectively be regarded as two-
dimensional template images of a contact region and a
collision region (Figure 3), we refer to them here as
“eigenvaluetemplates” and we refer to the weight coeffi-
cients δti and δci as “eigen f unctions” An example visu-
alization of an eigenvalue template for a parallel hand is
presented in Figure 4 Eigenfunctions δti and δci are discrete
functions that have a number of values equal to the number of
robot hand templates prior to decomposition The compilation
images of the contact region and the collision region (T ′(d,θ)

and C′(d,θ)) can be calculated by convolution of the hand
templates obtained by approximation of the collision region
and contact region of the object (Ot and Oc)

T ′(d,θ) = Ot ⊗
N

∑
i=1

δti(d,θ)uti (6)

B. Eigenfunction fitting with a continuous function
Because the eigenfunctions obtained from SVD (δti and

δci ) have only discrete values, it is to reconstruct the res-
olution of the hand movement by using the parameters
used for SVD. We therefore apply either linear interpolation
or continuous function fitting to the eigenfunctions as off-
line processing. With linear interpolation, the hand opening
width and rotation values can be approximated with arbitrary
resolution. For continuous function fitting, we define the
following function models γti(d,θ) and γci(d,θ) in the same
way as described in reference [18].

γti(d,θ) =
J

∑
j=0

K

∑
k=0

α j,kd j cos(kθ)+
J

∑
j=0

K

∑
k=1

β j,kd j sin(kθ) (7)

(b) Eigenvalue template for the hand collision region

(c) Eigenvalue template for the hand contact region

(a) Collision region and contact region for the hand model

Hand model Hand collision region Hand contact region

Fig. 4. Visualization of the eigenvalue template for a parallel hand

In the above equation, J and K represent the numbers of
hours for the continuous function models, and α j,k and
β j,k are unknown coefficients. The unknown constants are
calculated as the following minimization problem.

argmin
α,β

(∑
d

∑
θ

(δti(d,θ)− γti(d,θ))
2), (8)

d = {20,25,30, · · · ,60},
θ = {0,5,10, · · · ,175}

We set J = 4 and K = 12 to approximate the original eigen-
functions. Representing the eigen function with continuous
function models enables as to reconstruct the hand templates
to arbitrary resolution.

C. Efficient graspability calculation with eigenvalue tem-
plates

The process of detecting grasping position by the proposed
method is illustrated in Figure 5. Because the binary images
of the target object (Ot and Oc) in the eigenvalue templates
(uti and uci ) can be convoluted in advance as qti =Ot⊗uti and
qci = Oc⊗uci , substitutions can be made in Eq. (6) as shown
in Eq. (9) in the first step. In the second step, it is possible to
efficiently calculate the output for an arbitrary hand opening
width d and rotation angle θ by changing only the values of
the eigenfunctions as shown in Eq. (9) for the contact region
or the collision region (T ′(d,θ) or C′(d,θ)).

T ′(d,θ) =
N

∑
i=1

γti(d,θ)qti (9)

In the third step, the graspability map G(d,θ) can be obtained
by convolution with the Gaussian filter g as shown by Eq.
(10).

G(d,θ) = (T ′(d,θ)∩C′(d,θ))⊗g (10)

The positions that have the maximum values in the graspa-
bility map are taken as the grasping positions.
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Fig. 5. Grasping position detection by the proposed method
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（c） Three-finger hand contact region
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（a） Parallel hand contact region
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IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed method, we
compared the detection error and the processing time with
the results for FGE.

A. Overview

We used 34 images of two types of bulk industrial com-
ponents. The size of depth image is 640 × 480 pixels. The
computer used in the experiment had a 3.40 GHz Intel core
I7 6700. The range for the opening width was from 20 mm to
60 mm for both the parallel hand and the three-finger hand.
The range for the rotation angle was from 0◦ to 175◦ for the
parallel hand and from 0◦ to 115◦ for the three-finger hand.
Parameters of hand template (i.e., opening width and totation
angle) and denoted as [d, θ ]. In case that parameters were
5mm for opening width and 5◦ for rotation angle, parameters

are denoted as [5mm, 5◦] Using the FGE with [0.1mm,
0.1◦] as reference values, we evaluated the detection error
by varying the resolution for parallel hand and three-finger
hand models. For the proposed method, SVD was performed
using parameters [5mm, 5◦]. The contribution ratios were
calculated for the matrices Sc and St , and the optimum
contribution rate was determined from the hand template
approximation error and the singular value by varying the
contribution rate.

The approximation error was calculated by applying the
Frobenius norm for the hand template and the hand template
obtained by approximation (Eq. 11).

Approximation Error =

√√√√ I

∑
i

J

∑
j
(H(d,θ)

t −m(d,θ)
t )2 (11)
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The grasping position detection error was calculated from
the reference coordinates RRR111 and RRR222 and the detection
coordinates AAA111 and AAA222 using Eq. (12) as shown in Figure
9.

Detection Error =
√

(RRR111−AAA111)2 +(RRR222−AAA222)2 (12)

B. Approximation accuracy by changing contribution ratio

The relationship between the approximation error of the
hand template and the singular value is shown in Figure
6 (a) and (b) for the parallel hand and in Figure 6 (c)
and (d) for the three-finger hand. In the figures, the left
vertical axis represents the singular value and the right
vertical axis represents the approximation error of the hand
template. For a contribution ratio of 90%, the singular value
is often required for both the parallel hand and the three-
finger hand, so a contribution rate that is before the point at
which the change in singular value becomes constant and the
approximate error changes greatly is used. As seen in Figure
6 (a) and (b), 16 singular values are used for the contact
region of the parallel hand and 26 values are used for the
collision region. In that case, the contribution ratio is 40%.
From Figure 6 (c) and (d), we see that 27 singular values
are used for the three-finger hand contact region and 40 are
used for the collision region. In that case, the contribution
ratio is 50%.

C. Comparison of detection accuracy and processing time

The effect of varying the resolution on the detection error
for the proposed method and the conventional method (FGE)
is shown in Figure 7. The grasping posture estimation time
for one item is shown in Figure 8. From Figure 7, we can
see that the accuracy is the same for both methods for both

Reference grasping coordinates

Estimated grasping coordinates

R

R

A

A

1

2

1

2

Fig. 9. Explanation of the valuation equation

the parallel hand and the three-finger hand with linear in-
terpolation of the eigenfunctions at [10mm, 10◦] and [5mm,
5◦]. For [2mm, 2◦] and [1mm, 1◦], however, the detection
accuracy is the same as for [5mm, 5◦], which indicates that
linear interpolation of the eigenfunctions contributes little to
improvement of grasping position accuracy. With continuous
function fitting of the eigenfunctions, on the other hand,
the detection error of the proposed method is the same as
for the conventional method for [2mm, 2◦] and [1mm, 1◦]
for both the parallel hand and the three-finger hand. We
can therefore conclude that fitting the eigenfunctions with
continuous functions is an effective method. From Figure
8(a), we can see that the proposed method can reduce the
processing time for parallel hand grasping posture estimation
by about 62% for [5mm, 5◦] and by about 61% for [1mm,
1◦]. From Figure 8(b), we can see reductions for the three-
finger hand of about 45% for [5mm, 5◦] and about 64%
for [1mm, 1◦]. These results demonstrate the possibility of
achieving both high speed and high accuracy by continuous
function fitting.

D. Example of grasping position detection

An example of grasping position detection for bulk parts
is shown in Figure 10, where the red and green coloring
indicates the estimated grasping posture. There are no large
deviations of the grasping positions that result from the
proposed method and the FGE method for parallel hands and
three-finger hands. We can thus consider the detection error
of the proposed method shown in Figure 7 to be acceptable.

V. CONCLUSION

We proposed the use of eigenvalue templates for faster
high-resolution grasping posture estimation. Introducing
eigenvalue templates for approximate calculation enables as
to reduce computational cost about one third while main-
taining accuracy. Fitting the eigenfunctions with continuous
functions achieves higher accuracy in the detection of grasp-
ing positions. In future work, we will evaluate this method
with a robot manipulator.
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