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Abstract: Multi-task learning is a machine learning approach in which multiple tasks are solved simultaneously. This
approach can improve learning efficiency and prediction accuracy for the task-specific models. Furthermore,
it has been used successfully across various applications such as natural language processing and computer vi-
sion. Multi-task learning consists of shared layers and task-specific layers. The shared layers extract common
low-level features for all tasks, the task-specific layers diverge from the shared layers and extract specific high-
level features for each task. Hence, conventional multi-task learning architecture cannot extract the low-level
task-specific feature. In this work, we propose Separation Multi-task Networks, a novel multi-task learning
architecture that extracts shared features and task-specific features in various layers. Our proposed method
extracts low- to high-level task-specific features by feeding task-specific layers in parallel to each shared layer.
Moreover, we employ channel-wise convolution when concatenating feature maps of shared layers and task-
specific layers. This convolution allows concatenation even if layers have a different number of channels of
feature maps. In experiments on CelebA dataset, our proposed method outperformed conventional methods at
facial landmark detection and facial attribute estimation.

1 INTRODUCTION

From a person’s face, many attributes can be captured
many attributes including age, gender, facial expres-
sion and the positions of facial landmarks. These fa-
cial attributes will benefit many applications such as
face recognition, face swapping, and virtual makeup.
facial attribute estimation is thus an attractive research
field in computer vision(Zhao et al., 2018).

Since the Deep Convolutional Neural Network
(DCNN) achieves high recognition accuracy in ob-
ject recognition (Krizhevsky et al., 2012)(Simonyan
and Zisserman, 2015)(He et al., 2016), it is used in
many tasks such as object detection(Liu et al., 2016)
and human pose estimation(Wei et al., 2016). Sim-
ilarly, the DCNN can achieve high-accuracy facial
landmark detection and facial attribute estimation (Lv
et al., 2017)(Liu et al., 2015). However, training and
inference time increases in proportion to the number
of tasks due to a DCNN needing to be built for each
single task. Therefore, facial image analysis will need
vast cost because it requires information for many
tasks such as facial landmark detection, age estima-
tion, and gender recognition.

By using multi-task learning, multiple recogni-
tion tasks can be simultaneously trained and with a
single DCNN(Caruana, 1998)(Zhang et al., 2014b).
Thus, training and inference time can be greatly re-
duced. This method is efficient in facial image anal-
ysis consisting of multiple tasks. Multi-task learning
may share feature representation among all tasks and
optimize multiple tasks simultaneously. By training
multiple tasks simultaneously, common features can
be efficiently extracted in earlier layers. Zhang et al.
(Zhang et al., 2014b) proposed a Tasks-Constrained
Deep Convolutional Network that detects facial land-
marks and estimates attributes simultaneously. Misra
et al. (Misra et al., 2016) proposed Cross-stitch Net-
works that perform surface normal estimation and se-
mantic segmentation. Feichtenhofer et al. (Feichten-
hofer et al., 2017) proposed a method that detects ob-
ject and tracks object. Moreover, multi-task learning
has been successfully in not only in the computer vi-
sion but also in various fields such as natural language
processing(Liu et al., 2017). The methods based on
multi-task learning consists of shared layers to extract
shared features among all tasks and task-specific lay-
ers to extract task-specific features as shown in Fig-



(a) Hard parameter sharing (Conventional Multi-task Learning)

(b) Soft parameter sharing
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Figure 1: Network architectures of existing multi-task
learning: (a) hard parameter sharing which conventional
multi-task learning and (b) soft parameter sharing.

ure 1(a). The conventional multi-task learning can
not exploit the low-level features of task-specific lay-
ers, because task-specific layers come after shared
layers. Thus, only the high-level features of shared
features and task-specific features are extracted from
these layers.

In this work, we propose Separation Multi-task
Networks, a novel multi-task learning architecture of
DCNN that extracts shared features and each task-
specific feature simultaneously. Unlike the architec-
tures based on the conventional multi-task learning,
Separation Multi-task Networks conduct parallel pro-
cessing with shared layers that extract shared fea-
tures among all tasks, and task-specific layers that
extract task-specific features in each task. The fea-
ture maps of shared layers are concatenated to feature
maps of each task-specific layers. Thus, Separation
Multi-task Networks are able to extract shared fea-
tures and task specific features in each layer. To im-
plement a network, our proposed method introduces
a two-stage training. The network with shared lay-
ers is trained first, and all task-specific layers are ap-
pended to train task specific features. When shared
features are concatenated to task-specific features, the
number of channels of the feature maps increases.
Therefore, 1× 1 convolution (Channel-wise Convo-
lution) is performed on the concatenated the feature
maps. This allows changes to the number of chan-
nels of the feature maps that ate input for task-specific

layers. Also, it allows fine-tuning by general pur-
pose networks such as VGGNet(Simonyan and Zis-
serman, 2015) and ResNet(He et al., 2016), which are
trained on an Imagenet dataset. In the experiments,
we evaluate the effectiveness of Separation Multi-task
Networks by performing facial landmark detection
and facial attribute recognition on the CelebA dataset.
We will also evaluate the effectiveness of introducing
channel-wise convolution.

2 RELATED WORKS

2.1 Multi-task Learning

Multi-task learning is a machine learning approach
in which multiple learning tasks are optimized at the
same time(Caruana, 1998). A single DCNN with
multi-task learning can improve learning efficiency
and prediction accuracy for the task-specific mod-
els. In the conventional DCNN, training and infer-
ence time increases in proportion to the number of
tasks due to the need to build a single DCNN for each
task. Meanwhile, multi-task learning can greatly re-
duce training and inference time by simultaneously
training multiple tasks with a single DCNN. Multi-
task learning has the advantage that it can extract effi-
cient common features. There are two types of multi-
task learning in DCNN: hard parameter sharing and
soft parameter sharing(Ruder, 2017).

2.2 Hard parameter sharing

Hard parameter sharing is a network architecture that
shares parameters from an input layer to intermedi-
ate layers with multiple tasks. The network architec-
ture is as shown in Figure 1(a). Shared layers extract
features common to all tasks. Task-specific layers are
stacked after shared layers and extract all task-specific
features. Then, task-specific layers of each task out-
put the recognition results. Shared layers can reduce
over-fitting more than a single DCNN because these
layers train efficient feature representation to all tasks.
Hard parameter sharing is a general method of multi-
task learning and has many applications (Zhang et al.,
2014b)(Misra et al., 2016)(Dai et al., 2016).

Cross-stitch Networks perform surface normal
estimation and semantic segmentation simultane-
ously(Misra et al., 2016). In this method, DCNN is
structured for each training task, and shared features
are trained by Cross-stitch units. Cross-stitch units
integrate feature maps extracted by each channel of
each task and generate shared feature maps that are
fed into each DCNN. The accuracy in surface normal



estimation and semantic segmentation is higher than
when a single DCNN is used. Specifically, the accu-
racy is significantly improved for the categories that
have few training data.

Multi-task Network Cascades arrange several
tasks in a cascade structure to perform instance seg-
mentation(Dai et al., 2016). Multi-task Network Cas-
cades sequentially process object detection, mask es-
timation, and category estimation after shared fea-
tures extraction. The output of each task is fed to the
next task with shared features. The method achieves
highly accuracy in instance segmentation tasks.

Since multi-task learning can extract task-
independent features, it is also used to improve the
accuracy of specific tasks. A Tasks-Constrained Deep
Convolutional Network(TCDCN) trains facial land-
mark detection as the main task and the sub-tasks such
as face orientation detection, gender estimation, smil-
ing recognition (Zhang et al., 2014b), simultaneously.
These sub-tasks help to improve the accuracy of the
main task. This means that sub-tasks categorize the
facial appearance, and the main task considers there
categorizations to obtain efficient features. TCDCN
introducing task-wise early stopping, which stops the
training of a sub-task before it finishes, reduces the
negative effects over-fitting of sub-tasks on the main
task.

2.3 Soft parameter sharing

Soft parameter sharing is a network architecture con-
sisting of constrained layers that make the distance
between the parameters of each task uniform. Un-
like hard parameter sharing, soft parameter sharing
has DCNNs for each task. The network architecture
of soft parameter sharing is shown in Figure 1(b). To
make the distance between the parameters of each
task uniform, soft parameter sharing utilizes regu-
larization by the L2 norm(Duong et al., 2015) and
trace norm(Yang and Hospedales, 2016). Because
the architecture of soft parameter sharing constructs
a DCNN for a task, training and inference time in-
creases in proportion to the number of tasks.

3 PROPOSED SEPARATION
MULTI-TASK NETWORKS

In this section, we describe the network architecture
of Separation Multi-task Networks in 3.1, the two-
stage training in 3.2, and channel-wise convolution in
3.3.
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Figure 2: Our proposed Separation Multi-task Networks.

3.1 Network architecture

As shown in Figure 2, in our proposed Separation
Multi-task Networks, shared layers that extract shared
features among all tasks and task-specific layers that
extract task-specific features in each task are con-
structed in parallel. The feature maps of shared lay-
ers are concatenated to the feature maps of each task-
specific layer. The concatenated feature maps are fed
into each task-specific layer. This allows training of
both low- and high-level features in shared layers and
corresponding task-specific layers.

3.2 Training procedure

Separation Multi-task Networks extract features com-
mon to all tasks and task-specific features in each
task, simultaneously. First, the method needs to
train only shared layers to extract common features,
and then, it focuses on training task-specific features.
Therefore, we use a two-stage training procedure.
Stage 1. First, multiple tasks are trained simulta-
neously using a conventional multi-task learning ap-
proach based on hard parameter sharing such as in
Figure 1(a). The parameters of shared layers that ex-
tract common features among all tasks are trained in
advance. These parameters are updated by using the
training loss of each task. For example, training tasks
are Task A and Task B when training losses are ETaskA
and ETaskB, respectively. The training loss Eall of the
whole network is defined in Equation (1). At this
time, the training loss is obtained by the mean square
error function when the training task is the regression.
On the other hand, the training loss is obtained by
softmax cross entropy loss function when the training
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Figure 3: Channel-wise Convolution.

task is the recognition.

Eall = ETaskA +ETaskB (1)

Stage 2. In second stage, as shown in Figure 2, the
proposed method newly constructs task-specific lay-
ers in parallel with the shared layers. At this time,
the parameters of shared layers obtained in stage 1
are fixed in the training in stage 2. The method only
trains the parameters of each task-specific layer. As
a result, only task specific features are extracted from
task-specific layers. The parameters of the network in
stage 2 are optimized by the training loss function of
each task as in stage 1.

3.3 Channel-wise Convolution

The number of channels of the feature maps fed into
each task-specific layer increases, because the pro-
posed method concatenates the feature maps of shared
layers and each task-specific layers. Thus, each task-
specific layers can not fine-tuning a pretrained model
such as VGGNet(Simonyan and Zisserman, 2015)
and ResNet(He et al., 2016). We introduce 1×1 con-
volution (Channel-wise Convolution) after concate-
nating the feature maps as shown in Figure 3. This
allows adjustment of the number of channels of the
feature maps fed into each task-specific layers and
fine-tuning of each task-specific layer.

4 EXPERIMENTS

We evaluate the effectiveness of our proposed method
and compare it with related methods. For multiple
tasks, we perform facial landmark detection and fa-
cial attribute estimation on the CelebA dataset. For
the comparison method in facial landmark detection,
multi-task learning based on hard parameter sharing

Table 1: Details of the network architecture of Separation
Multi-task Networks used in this experiment.

TaskA Shared TaskB
Input size = 128×128, channels = 3

Conv1-1 ksize = 3×3, channels = 64, pad = 1Conv1-2
max pooling ksize = 2×2

Conv2-1 ksize = 3×3, channels = 128, pad = 1Conv2-2
max pooling ksize = 2×2

Conv3-1
ksize = 3×3, channels = 256, pad = 1Conv3-2

Conv3-3
max pooling ksize = 2×2

Conv4-1
ksize = 3×3, channels = 512, pad = 1Conv4-2

Conv4-3
max pooling ksize = 2×2

Fc 2048 2048
Output 10 80

is used (baseline). This network architecture is same
as that in Stage 1. of Sec. 3.2. In facial attribute esti-
mation, we compare our proposed Separation Multi-
task Networks with FaceTracer(Kumar et al., 2008),
PANDA-w(Zhang et al., 2014a), PANDA-l(Zhang
et al., 2014a), and LNets+ANet(Liu et al., 2015),
which is described by Liu et al. (Liu et al., 2015).

We implement three training models, 1) the two-
stage training model, 2) the two-stage training model
with channel-wise convolution, and 3)the two-stage
training model based on fine-tuning from shared lay-
ers. Furthermore, we evaluate the variation of the
network architectures with different numbers of task-
specific layers.

4.1 Experiments details

The CelebA dataset used in this experiment consists
of about 200,000 facial images. Annotations are 5 fa-
cial landmarks (eyes, nose, and mouth corners) and 40
facial attributes such as ”hat,” ”black hair,” and ”smil-
ing.” In training and evaluation, 162,770 samples are
used as training data, and 19,962 samples as evalua-
tion data.

In these expriments, the baseline and our pro-
posed Separation Multi-task Networks use a network
model that improved VGG16(Simonyan and Zisser-
man, 2015). Table 1 lists the details of the network
architecture of our Separation Multi-task Networks
used in these experiments, where Task A is facial
landmark detection and Task B is facial attributes esti-
mation. In addition, the activation function of the net-
work uses ReLU. To optimize both the baseline and
our proposed Separation Multi-task Networks, Mo-
mentumSGD was used. The learning rate is 0.0001



Table 2: Accuracy of facial landmark detection with baseline and our proposed Separation Multi-task Networks [%].

Channel-wise Fine-tuning Left eye Right eye Nose Left mouth Right mouth AverageConvolutioin corner corner
97.7 98.0 87.5 94.9 94.7 94.6

Ours ✓ 96.9 97.0 82.2 93.1 93.0 92.4
✓ ✓ 96.1 96.0 50.6 85.4 85.1 82.6
Baseline 96.3 96.5 54.0 92.0 91.9 86.1
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Figure 4: Example of facial landmark detection by baseline and our Separation Multi-task Networks.

and momentum is 0.9. The iterations of training is
100 epochs and mini-batch size is 32. Input image
size is 128×128.

Evaluation metrics of Facial Landmark Detection.
The evaluation metrics of facial landmark detection
in this experiments determines that detection is suc-
cessful when Equation (2) is satisfied in each facial
landmark. In Equation (2), xi and yi are the annota-
tion labels, x′i and y′i are the detection results, L is the
distance between both eyes, and α is the threshold.
In these experiments, threshold α is set to 0.1, and if
the error between the annotation label and the detec-
tion result is within 10% of the distance between both
eyes, the detection is successful.

√
(xi − x′i)2 +(yi − y′i)2

L
≤ α (2)

4.2 Results for proposed Separation
Multi-task Networks

Facial Landmark Detection. Table 2 shows ac-
curacy of facial landmark detection for the baseline
and our Separation Multi-task Networks. From Table
2, the average detection accuracy of our Separation
Multi-task Networks is 94.6%, while baseline method
is 86.1%. It is higher than the accuracy of baseline.
Also, our Separation Multi-task Networks achieves
high detection accuracy than the baseline for all facial
landmarks. Specifically, our Separation Multi-task
Networks accurately detected about 87.5% of nosed
whereas the baseline is about 54.0%, a 33.5% dif-
ference. This shows the effectiveness in facial land-
mark detection of simultaneously extracting features
shared among all tasks and task-specific features for
each task. The two-stage training model introducing
channel-wise convolution into our Separation Multi-
task Networks outperformed the baseline but it was



Table 3: Accuracy of each method on 40 facial attributes [%].
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outperformed by the model that did not introduce it.
Similarly, the model that fine-tuned each task-specific
layers by introducing channel-wise convolution with
shared layers has lower accuracy than the baseline.

Figure 4 shows an example of facial landmark
detection results with the baseline and our Separa-
tion Multi-task Networks. Red points are annotation
label and green points are detection results. Simi-
larly to Figure 4, our Separation Multi-task Networks
achieves higher detection accuracy than the baseline.
Also, for profile face, it deviations happen at all fa-
cial landmarks when the baseline is used. However,
our Separation Multi-task Networks mostly solve this
problem.

Facial Attribute Estimation. Table 3 shows results
for state-of-the-art method in addition to the baseline
and our Separation Multi-task Networks on 40 facial
attributes. From Table 3, our proposed method out-
performs the comparison methods in average estima-
tion accuracy. Also, our proposed method achieves
the highest estimation accuracy in specific tasks such
as “Bald,” “Eyeglasses,” and “Pale Skin.” The model

that introduces channel-wise convolution into our
Separation Multi-task Networks had the same estima-
tion accuracy as the model without it. However, the
model that fine-tuned each task-specific layers by in-
troducing channel-wise convolution with shared lay-
ers achieves the highest estimation accuracy with an
average estimation accuracy about 90%. Similarly
to facial landmark detection, our proposed method is
also efficient at facial attribute estimation. Thus, it is
considered that the features shared between tasks im-
proves the accuracy for the problems such as facial
attribute estimation.

4.3 Comparison of the network
architecture

In our Separation Multi-task Networks, both shared
layers and task-specific layers use the same network
architecture, and images are simultaneously inputs
into each networks. In these experiments, the feature
maps of shared layers are fed into each task-specific
layers instead of the input image as shown in Figure
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Figure 5: Example of the change of network architecture of
Separation Multi-task Networks.

Table 4: The accuracy due to variation of the network ar-
chitectures [%].

Branch point
Conv1-2 Conv2-2 Conv3-3

Facial Landmark Detection 92.9 95.5 95.2(Baseline)
Facial Landmark Detection 80.4 79.5 78.8(Changed Ours)
Facial Attribute Estimation 89.9 89.8 89.9(Baseline)
Facial Attribute Estimation 88.8 88.8 88.8(Changed Ours)

5. The network uses the same parameters as in Sec.
4.1, where the start position input to each task-specific
layers from shared layers is taken as the branch point,
and the network model implements three models in
which the branch point is “Conv1-2,” “Conv2-2,” and
“Conv3-3” in Table 1. The comparison method is
multi-task learning based on hard parameter sharing
of the same branch point, in addition to the baseline
and our original Separation Multi-task Networks.

The accuracy due to variation of the network ar-
chitectures are shown in Table 4. From Table 4,
our Separation Multi-task Networks shows the ac-
curacy lower than the baseline in both tasks. Also,
before changing the network architecture, our Sep-
aration Multi-task Networks has the highest estima-
tion accuracy. From this, in multi-task learning, it
is more effective to use the features shared between
tasks more supplementally for each task like our pro-
posed method.

5 DISCUSSION

We input a image to Separation Multi-task Networks
and visualize these feature maps on Conv1-2 layer of
shared layer and task-specific layer as shown in Fig-
ure 6. In shared layer, facial contour features are ex-
tracted. On the other hand, task-specific layer of fa-

cial landmark detection only extracts insufficient fea-
tures from the feature of shared layer such as end-
point of landmark. Similarly, task-specific layer of fa-
cial attribute estimation extracts context features such
as facial wrinkle. Thus, Separation Multi-task Net-
works shows it is able to extract common features for
all tasks and task-specific features in each task, sepa-
rately.

6 CONCLUSION

In this work, we proposed Separation Multi-task Net-
works, a novel multi-task learning method that si-
multaneously extracts features shared between tasks,
and task-specific features in each task. Our pro-
posed method was able to train and inference tak-
ing into account features shared between all tasks and
task-specific in each task. Moreover, by introducing
channel-wise convolution, our proposed method was
able to adjust the number of channels of the feature
maps input to each task-specific layers and fine-tune
each task-specific layers. In experiments, our Sep-
aration Multi-task Networks performed facial land-
mark detection and facial attribute estimation on the
CelebA dataset and outperformed the existing meth-
ods in both tasks. Then, in multi-task learning, we
showed that it is effective to use features shared be-
tween tasks more supplementally for each task.

Future tasks include applying Separation Multi-
task Networks to images other than facial image. In
addition, our proposed method separates shared fea-
tures shared between tasks and task-specific features
in each task by two-stage training. Therefore, it is
considered that Separation Multi-task Networks can
be improved to train with end-to-end training while
separating these two features. By improving the net-
work model of our proposed method, it is considered
the number of parameters can be reduced by changing
the activation function to CReLU(Shang et al., 2016).
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