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Abstract: Path prediction methods with deep learning architectures take into account the interaction of pedestrians and
the features of the physical environment in the surrounding area. These methods, however, process all pre-
diction targets as a unified category and it becomes difficult to predict a path suitable for each category. In
real scenes, it is necessary to consider not only pedestrians but also automobiles and bicycles. It is considered
possible to predict the path corresponding to the type of target by considering the types of multiple targets.
Therefore, aiming to achieve path prediction in accordance with individual categories, we propose a path
prediction method that represents the target type as an attribute and simultaneously considers the physical
environment information. The proposed method inputs feature vectors in a long short-term memory that rep-
resents i ) past object trajectory, ii) the attribute, and iii) the semantics of the surrounding area. This makes
it possible to predict a path that is proper for each target. Experimental results show that our approach can
predict a path with higher precision. Also, changes in accuracy were analyzed by introducing the attribute of
the prediction target and the physical environment information.

1 INTRODUCTION

Path prediction, one of the challenging tasks in the
field of computer vision, estimates how a target ob-
ject like a pedestrian or an automobile will move
and on what path. Path prediction is expected to
have a wide range of applications, such as prevent-
ing car accidents (Schneider et al., 2013)(Keller and
Gavrila, 2014)(Kooij et al., 2014) or autonomously
controlling robots (Ziebart et al., 2009)(Karasev et al.,
2016)(Vemula et al., 2017)(A. Vemula and OhSo-
cial, 2017). Therefore, it has received much attention
and various prediction methods have already been
proposed (Rehder and Kloeden, 2015)(Huang et al.,
2016)(Xie et al., 2013)(Walker et al., 2014)(Park
et al., 2016)(Su et al., 2017). In recent years, because
of advancements in deep leaning, prediction meth-
ods utilizing a convolutional neural network (CNN)
(Lecun et al., 1989) or a long short-term memory
(LSTM) (S.Hochreiter, 1997) have also been de-
veloped (A. Vemula and OhSocial, 2017)(Yi et al.,
2016)(Alahi et al., 2016)(Lee et al., 2017)(Fernando
et al., 2017b)(Fernando et al., 2017a)(Gupta et al.,
2018). To predict paths accurately, several factors
are introduced. For instance, the interactions between
pedestrians (Alahi et al., 2016)(Lee et al., 2017)(Hel-
bing and Molnar, 1995)(Yamaguchi et al., 2011)(Ro-

bicquet et al., 2016)(Ma et al., 2017) are modeled
to predict and avoid collisions. Scene semantics are
also introduced for reliable prediction (Lee et al.,
2017)(Kitani et al., 2012)(Ballan et al., 2016). How-
ever, these approaches have a problem that all target
objects are considered to be in the same class. In prac-
tical scenes, it is necessary to predict the path of a tar-
get object in an environment where there are a vari-
ety of prediction targets, not only pedestrians but also
cars and bicycles. This means that the speed, trav-
eling distance, and area may differ depending on the
type of target object. If we simultaneously predict the
paths of multiple target objects, it would be difficult
to predict them in accordance with the type of target.
Although a naive solution for this problem is creating
models for each object type and making predictions
accordingly, it would be impractical.

In this paper, we propose a method to simulta-
neously predict paths of different types of target ob-
jects such as pedestrians and bicycles (see Figure 1).
Specifically, our method leverages three pieces of in-
formation: the type of target object, the physical envi-
ronment surrounding the target, and a past object tra-
jectory. We define the target object type (i.e., pedes-
trian, bicycle) as an attribute and represent it as a one-
hot vector. For the physical environment, a feature
vector is extracted from semantic scene labels (e.g.,



pavement, grass, and building) via convolutional lay-
ers. The past object trajectories correspond to co-
ordinates at each time step. We obtain a coordinate
of the next time step from the output of the network
by inputting these vectors of current time step into
an LSTM. At the time of prediction, we can make a
prediction that takes the past object trajectory into ac-
count by sequentially inputting the network output to
the input of the next time step. Simultaneously in-
troducing the target attribute and semantic label en-
ables us to predict a path considering the difference
in the speed of each target and the area where the tar-
get tends to move preferably. Also, we use a relative
coordinate, that is, direction and magnitude obtained
from the difference between two successive coordi-
nates. Introducing relative coordinates prevents the
prediction results from depending on the trained scene
and enables us to predict paths over multiple different
scenes.

We have two contributions. i ) To the best of our
knowledge, this is the first attempt to predict paths
of different kinds of prediction targets with a unified
framework. ii ) We contribute a scene label dataset
that is annotated for the path prediction dataset pub-
lished by Robicquet et al. (Robicquet et al., 2016).

2 RELATED WORK

Over the last decade, several approaches have
been proposed to solve the path prediction prob-
lem. One classical approach is a method based on
Bayesian models (Schneider et al., 2013)(Kooij et al.,
2014)(Ballan et al., 2016). Schneider et al. (Schnei-
der et al., 2013) proposed a path prediction method
based on an extended Kalman filter to predict the
walking path of a pedestrian captured by an onboard
camera. Kooij et al. (Kooij et al., 2014) predicted the
movement of pedestrians crossing a pavement using
a Dynamic Bayesian Network (DBN)(Robinson and
Hartemink, 2009). They use the pedestrian’s head
direction, the distance between the pedestrian and a
car, and the distance the pedestrian to the curb as ob-
servations of the DBN and estimate a mode show-
ing whether the pedestrian stops or crosses the street.
These Bayesian prediction methods focus on pedes-
trians while our approach handles multiple kinds of
target objects simultaneously.

In recent years, a path prediction method has
been proposed that uses deep learning architec-
tures, particularly LSTMs (Alahi et al., 2016)(Lee
et al., 2017)(Fernando et al., 2017b)(Fernando et al.,
2017a). Alahi et al. (Alahi et al., 2016) proposed
a method to predict paths of multiple pedestrians

in a scene. They aimed to predict collision avoid-
ance behaviors between pedestrians and proposed a
pooling layer called Social Pooling (S-Pooling). S-
Pooling encodes hidden states of other pedestrians
along with the spatial relationships. Lee et al. (Lee
et al., 2017) proposed a path prediction method us-
ing a RNN encoder-decoder (Cho et al., 2014) and a
conditional variational auto-encoder (Kingma et al.,
2014). This method achieved high prediction per-
formance by considering the semantic scene context
of the surrounding area in addition to the interac-
tion between the targets as with S-Pooling. However,
they focused on predicting pedestrian targets or tar-
gets considered to be the same types of objects. In
contrast, our approach inputs the attribute of a predic-
tion target itself in addition to the surrounding physi-
cal environment.

Attempting to develop a method that takes into ac-
count the attribute of a target object, Ma et al. (Ma
et al., 2017) proposed a method to predict pedestrian
paths from a single image on the basis of an inverse
reinforcement learning framework. Assuming that
the walking speed of the pedestrian differs depend-
ing on age and gender, they first estimate the pedes-
trian attributes and then predict the paths of multiple
pedestrians. This method makes predictions for envi-
ronments where there are only pedestrians and does
not use environmental data. Our method, however,
predicts paths by simultaneously considering the at-
tribute of the target object and the environmental data
of the surrounding area.

3 PROPOSED METHOD

As mentioned in the previous sections, we focus on
predicting paths of multiple kinds of target objects.
We use the attribute of a target object and the sur-
rounding physical environment information as inputs
in addition to the past object trajectories.

Figure 1 illustrates the overview of our proposed
network. First, to represent the object type, the at-
tribute is embedded as a one-hot vector. Then, we
extract a feature map via a convolutional neural net-
work (CNN) to describe the environment around the
target. A static scene label is used as an input for the
CNN, focusing on the target object in the scene. The
one-hot and feature vector are concatenated with the
past object trajectory and input in an LSTM. We ob-
tain the coordinates of the target object for the next
time step as an output of the LSTM.

Our prediction method is relatively simple com-
pared with other recent LSTM-based prediction
methods (A. Vemula and OhSocial, 2017)(Alahi
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Figure 1: The overview of the proposed method. Our method uses the attribute of a prediction target, a relative coordinate,
and the surrounding physical environment of the target as input for the network. The target attribute is embedded as a one-hot
vector and a feature vector is extracted from semantic scene labels via convolutional layers. These vectors and the relative
coordinate of the current time step are input to an LSTM and the relative coordinate of the next time step is output.

et al., 2016)(Lee et al., 2017)(Fernando et al.,
2017b)(Fernando et al., 2017a). Instead of model-
ing complex architectures, we focused on reconsider-
ing the information that can be useful for prediction.
In the following subsections we describe the method
used to represent the input data and how the data is
input in the network.

3.1 Attribute

To predict paths of multiple kinds of target objects, we
need to introduce some additional information repre-
senting object type as an input. We assume the ob-
ject type as an inherent attribute included in the tar-
get and represent the attribute as a one-hot vector (see
Figure 2). Specifically, given target attributes (e.g.,
pedestrian or car), these attributes are embedded into
Nattr-dimensional vectors, where Nattr is the number
of attributes being considered. The element corre-
sponding to the input attribute is set to 1 and the oth-
ers are set to 0. Inputting this vector enables us to
predict a unique path with respect to speed and turn.
Moreover, the area where the target tends to move is
also considered by combining the one-hot vector with
the feature vector representing physical environmen-
tal information.

3.2 Object trajectory

We use relative coordinates as has been men-
tioned. Specifically, we calculate the travel distance
(∆xt ,∆yt) from the past location data and the current

location data, that is, the difference in the absolute co-
ordinates. By using the relative coordinates as input
to the LSTM, we obtain the relative coordinates of the
next time step. Using relative coordinates enables us
to always set the current location of the target object
as the base point, i.e., (xt ,yt) = (0,0), and to make
a prediction without depending on implicit scene in-
formation derived from coordinates of training data.
Therefore, we can predict paths in multiple scenes.

3.3 Environment

The environmental information is also essential to im-
prove prediction performance. Accordingly, we ex-
tract a feature map that represents the surrounding en-
vironment by using semantic scene labels added to a
scene from a sidewalk, building, etc. Figure 3 shows
the procedure for extracting input data for the pro-
posed network from a whole semantic scene label.
First, we extract a label map by trimming the label
of the area (100×100 [pixels]) - focused on the target
object - from the scene label. Then, we convert the
extracted label map to a binary map whose channels
correspond to each semantic object (e.g., building and
sidewalk). The feature map for the surrounding envi-
ronment is extracted from this binary map via a CNN.
Inputting the environmental data enables us to make
path predictions in which any existing obstacles or ar-
eas are taken into account in accordance with the at-
tributes of the target objects.
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Figure 2: The representation of the attribute of a target ob-
ject. This shows that the attribute is a pedestrian.
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Figure 3: The representation of the physical environment
surrounding a prediction target. We first extract a label map
by trimming the area centering around the target object from
the scene label. The trimmed label map is converted into a
binary map. A feature map is extracted from this binary
map via convolutional layers.

3.4 Method to input data in the network

By inputting the attributes, environmental feature
map, and relative coordinate in the LSTM, we ob-
tain the location of the target object in the next time
sequence. Specifically, we use the data of the target
object as the observation data and make a prediction.
We use the true value that the target object actually
moves as the observation data. We input the obser-
vation data sequentially in the frames until we start
predicting. When we make a prediction, we sequen-
tially input the prediction value (i.e., an output of the
LSTM) to the next time sequence. We carry out the
process until the prediction ends so we can make a
prediction.

4 EXPERIMENT

This section demonstrates the effectiveness of the pro-
posed path prediction method.

4.1 Dataset

For the evaluation, we used the Stanford Drone
Dataset (SDD) (Robicquet et al., 2016). The SDD
consists of eight different prediction scenes and each
scene contains several video clips filmed on different
days and/or times, consisting of a total of 60 video
clips. In the SDD, six classes of target objects (i.e.,
bicycle, pedestrian, cart, car, bus, and skateboarder)
are given and these are added to annotated paths. In

Table 1: Training and test data details

train test
No. of scenes 52 8

bicycle 2,369 545
pedestrian 2,696 500

cart 71 15
attribute car 75 5

bus 17 2
skateboarder 137 15

our experiments, we used the six object classes as at-
tributes. We observed the coordinates of the path used
in our experiments every 20 frames. Because the SDD
clips are filmed at 30 fps, each time step corresponds
to about 0.66 [s]. During the test time, we observed
a path for the first five frames (i.e., 3.3 [s]) and then
predicted the following eight frames (i.e., about 5.3
[s]).

The proposed method leverages semantic scene
labels to extract the feature map of the physical en-
vironment. However, the SDD does not include
such scene semantics. We therefore annotated se-
mantic scene labels for every 60 prediction scenes
with respect to the following three movable region
classes and four obstacle classes: sidewalk, pavement,
grass, bicycle storage, tree, building, and roundabout.
Figure 4 shows examples of annotated scene labels.
These scene labels do not reflect only the visual ap-
pearance from bird’s eye view images but also the
ground where prediction targets move. It should be
noted that the SDD contains a lot of incorrect and/or
inaccurate annotated paths; examples are shown in
Figure 5. In these examples, lost, occlusion, and in-
terpolation flags are annotated in addition to the co-
ordinates. However, as far as we were able to con-
firm, target objects corresponding to incorrect paths
do not exist in the original video clips even if we take
the flags into account (see Figure 5 (a, b, c). Fig-
ure 5(d) provides an example of an inaccurately an-
notated path. Using such paths for training and evalu-
ation decreases the prediction performance and makes
fair comparisons difficult. Hence, we carefully se-
lected only the accurate and correct annotations. As a
result, the number of target objects selected was 5,365
for learning and 1,082 for evaluation. Table 1 shows
the details of the data being used. This our annotated
dataset will be publicly available after acceptance.

4.2 Evaluation metrics and baselines

In these experiments we used two metrics for quanti-
tative evaluation. The first is final displacement error,
which is a Euclidean distance for the ground truth tra-
jectory and the predicted trajectory in the last predic-
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Figure 4: Examples of annotated scene labels in the SDD. For each sub-figure, the left shows an original scene image from
a bird’s eye view and the right shows the corresponding semantic scene labels. We annotated scenes into seven classes in
accordance with the ground rather than with the visual appearance of the scene images. These labels will be made publicly
available after acceptance.
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Figure 5: Examples of incorrect annotations in the SDD.
The green lines show the annotated paths.

tion time steps. The second is average displacement
error, which is the average of Euclidean distances be-

tween the ground truth trajectory and the predicted
trajectory in every prediction time step.

We compare our method with Kalman filter
(KF)(Kalman, 1960) and Social LSTM(S-LSTM) as
a baseline prediction approach.

4.3 Learning details

Table 2 shows the details of the network architec-
ture. We trained our model with RMSprop optimizer
(Tieleman and Hinton, 2012) with the initial learn-
ing rate of 0.01, α = 0.99, and ε = 10−8. All predic-
tion models were trained for 100 epochs with a batch
size of 10. During the training, we input ground truth
coordinates as past object trajectories through every
time step, i.e., from the beginning of observation to
the end of prediction. All the LSTM-based prediction
models were implemented using the Chainer frame-
work and trained with the Nvidia Titan Xp graphics
card in an end-to-end manner.

4.4 Results

Table 3 shows the quantitative results of prediction
methods and Figure 6 shows examples of prediction
results. Because past trajectories are only considered



Table 2: The detailed network architecture of the proposed
method. Convolutional layers are applied for the input with
respect to the environment. The feature map via the convo-
lutional layers and other inputs (i.e., attributes and coordi-
nates) are input to an LSTM.

layer kernel size output size remarks

input (attribute) 6
input (coordinate) 2

input (environment) (100, 100, 7)
conv1 (5, 5) (48, 48, 16) ReLU, stride=2
norm1 (48, 48, 16) batch norm.
pool1 (2, 2) (24, 24, 16) max pool.
conv2 (5, 5) (20, 20, 32) ReLU, stride=1
norm2 (20, 20, 32) batch norm.
pool2 (2, 2) (10, 10, 32) max pool.
conv3 (5, 5) (6, 6, 32) ReLU, stride=1
pool3 (2, 2) (3, 3, 32) max pool.
concat 296
LSTM 128
output 2

as observations with KF, with this method the pre-
diction results follow the same direction as the obser-
vations and thus linear predictions without obstacle
regions are provided. The LSTM-based method pro-
vided similar prediction results when a trajectory is
used (Figure 6 (d)). However, in other cases its pre-
diction results were poorer than those of KF (Figure 6
(a, c, g)). S-LSTM does not outperform our method
and even KF. Although we have carefully selected pa-
rameters to reproduce the result, we could not obtain
reasonable results. The obtained prediction results of
S-LSTM were catastrophic. Therefore, for the sake
of visibility, we do not show prediction results for S-
LSTM in Figure 6. The same problem is reported in
(Gupta et al., 2018).

As can be seen in Table 3, introducing other in-
formation into the LSTM improves the prediction ac-
curacy. In particular, introducing physical environ-
ment information makes it possible to predict paths
accurately while avoiding obstacles (Figure 6 (h)).
However, the improvement is relatively small from
the viewpoint of quantitative evaluation and the errors
differ from the KF errors. Meanwhile, our proposed
method, trajectory + attribute + environment, outper-
forms the other methods. The proposed method was
able to predict paths close to the ground truth in Fig-
ure 6 (a, b, c, g).

Figure 6 (b, c) shows the trajectory of the bicycle;
the ground truth is moving while avoiding obstacles.
However, it has been confirmed that when only KF,
object trajectory, and attribute information are intro-
duced as input, a target will go straight ahead with-
out avoiding obstacles. In addition, when introducing
environmental information, it predicts the trajectory

to take to avoid obstacles, but this confirms that pre-
dictions different from the ground truth can be made.
However, when both attribute and environmental in-
formation are introduced, a trajectory similar to the
ground truth is predicted. Figure 6(d, e, f) shows the
trajectory of the pedestrian. The results obtained in
this case showed that all the path prediction methods
traced a path close to the ground truth. This is proba-
bly because the path of the pedestrian can be predicted
easily because the movement intervals are narrower
than those for the bicycle. Figure 6(g) shows the tra-
jectory of the car, where the object to be predicted
along the roadway. However, when only KF, object
trajectory, and environmental information are intro-
duced as input, the prediction result is that it will go
straight ahead. When attributes are introduced in the
environment, it can be seen that a trajectory similar
to the ground truth is predicted. However, as shown
in Figure 6(h, i), when environmental information is
introduced the prediction results show a trajectory dif-
ferent from the ground truth.

The above results confirmed the proposed method
has the highest accuracy among the path predic-
tion methods compared. Although the conventional
method KF predicts linear trajectories well, it is dif-
ficult for it to predict nonlinear trajectories such as
those made in obstacle avoidance cases. To predict
paths more accurately, it is necessary to introduce
attributes and environmental information into object
trajectories.

4.5 Failure cases

Figure 7 shows examples of failed prediction results
with relative coordinates. Figure 7(a) shows a case
in which the speed of the bicycle suddenly changes
from slow to fast. In such cases, prediction meth-
ods provide a slowly moving path by following the
observations although the ground truth moves faster.
In Figure 7(b), although the ground truth path turned
left, the prediction results are almost straight lines.
In cases where there may be several prediction can-
didates, our method follows the direction of the past
movement. In Figure 7(c), the proposed method pro-
vides paths that move towards the pavement so as
to avoid collisions with obstacles, while the ground
truth takes a different path. The reason is that a car
moves in accordance with specific traffic rules, mak-
ing it necessary to consider common social practice.
Figure 7(d, e, f) are prediction results for a cart and
skateboarders. As shown in Table 1, there was in-
sufficient training data (and also test data) for these
attributes. As a result, the training was insufficient.
Consequently, all the prediction methods predicted in-



Table 3: Quantitative results for prediction methods (unit: pixels). Introducing attribute and environment information im-
proves the prediction performance. Our method, trajectory + attribute + environment, achieves the best performance with
respect to both final displacement error and average displacement error.

Metric KF S-LSTM trajectory trajectory +
attribute

trajectory +
environment

trajectory +
attribute + environment

Final disp. error 174.42 206.22 196.13 173.04 172.12 109.44
Avg. disp. error 116.02 125.41 86.42 76.32 76.01 53.20

(a) bicycle

(d) pedestrian

(g) car

(b) bicycle (c) bicycle

(e) pedestrian (f) pedestrian

(h) car (i) car

trajectory

trajectory + attr. 

ground truthobservation

trajectory + env. trajectory + attr.  + env.

KF

Figure 6: Examples of prediction results with relative coor-
dinates on SDD. From top to bottom row: prediction results
for a bicycle, pedestrian, and car.

correct paths and could not even avoid obstacles (i.e.,
building and roundabout). Hence, achieving efficient
training for cases involving rare attribute targets is a
subject for our future work.

5 CONCLUSIONS

In this paper, we proposed a path prediction method
that takes target object attributes and physical envi-
ronment information into account. The method repre-

(e) skateboarder (f) skateboarder

(a) bicycle

(d) cart

(c) car(b) bicycle

trajectory

trajectory + attr. 

ground truthobservation

trajectory + env. trajectory + attr.  + env.

Figure 7: Selected failed prediction results. Our proposed
method cannot predict paths (a) that change their moving
speed suddenly, (b) that may have multiple candidates, and
(c) that follow common social practice. The bottom row
(d, e, f) shows the results obtained for rare attribute targets.
Trained models with fewer training samples predict incor-
rect paths.

sents the attributes as one-hot vectors and encodes the
physical attributes via convolutional layers. Further-
more, we used relative coordinates as the past motion
history of prediction targets. Sequentially inputting
these data items in a long short-term memory enables
the method to make predictions. Experimental results
obtained using the Stanford Drone Dataset show that
our approach to introducing those factors improves
the prediction performance. Our future work will in-
clude taking the interaction between the target objects
and dynamic environmental changes into considera-
tion.



ACKNOWLEDGMENTS

This work was supported in part by JSPS KAK-
ENHI grant number JP16H06540. And, we grate-
fully acknowledge the support of NVIDIA Corpora-
tion with the donation of the Titan Xp GPU used for
this research.

REFERENCES

A. Vemula, K. M. and OhSocial, J. (2017). Attention: Mod-
eling attention in human crowds. International Con-
ference on Robotics and Automation.

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-
Fei, L., and Savarese, S. (2016). Social Lstm: Human
Trajectory Prediction in Crowded Spaces. In Com-
puter Vision and Pattern Recognition, pages 961–971.

Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., and
Savarese, S. (2016). Knowledge transfer for scene-
specific motion prediction. In European Conference
on Computer Vision, pages 697–713.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares,
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