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Abstract: CGANs are generative models that depend on Deep Learning and can generate images that meet given con-
ditions. However, if a network has a deep architecture, conditions do not provide enough information, so
unnatural images are generated. In this paper, we propose a facial image generation method by introducing
weighted conditions to CGANs. Weighted condition vectors are input in each layer of a generator, and then
a discriminator is extend to multi-tasks so as to recognize input conditions. This approach can step-by-step
reflect conditions inputted to the generator at every layer, fulfill the input conditions, and generate high quality
images. We demonstrate the effectiveness of our method in both subjective and objective evaluation experi-
ments.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014) have received great research inter-
ests recently because this method is able to gener-
ate images or sentences using random noise vectors.
Therefore, many methods have been proposed on the
basis of learning techniques of GANs. Conditional
GANs (CGANs) (Mirza and Osindero, 2014)(Reed
et al., 2016) can generate images that fulfil certain
conditions by inputting class labels, text, and so on
as conditions. GANs and CGANs are generally con-
structed by Multi Layer Perceptrons (MLPs), which
causes these have various problems such as unsta-
ble training, making it difficult to generate high-
quality images. High-quality images can be generated
by Deep Convolutional GANs (DCGANs) (Radford
et al., 2016) and by replacing fully connected layers
of CGANs with convolution layers (Conditional DC-
GANs) (Gauthier, 2014). Specifically, DCGANs are
able to make training more stable by adding various
training techniques. Recently proposed methods in-
clude unsupervised learning that can generate images
like CGANs as an auxiliary task (Chen et al., 2016),
and a method to improve the quality of generated im-
ages (Augustus et al., 2017). Moreover, the latest
state-of-the-art method, Progressive Growing GANs
(PGGANs) (Karras et al., 2018), can generate high
quality, natural-looking images by using a hierarchi-
cal training process.

However, CGANs and Conditional DCGANs have a
problem in that inputted conditions vanish near the
output layer, so the generated images become unnat-
ural when deep architecture networks such as PG-
GANs are used because conditions are inputted in
only the first layer. Therefore, in this paper, we pro-
pose a facial image generation method by introduc-
ing weighted conditions to CGANs. The proposed
method generates images that stepwisely reflect con-
ditions by inputting weighted conditions to a gener-
ator. Additionally, to reflect conditions further after
adversarial learning of the generator, a discriminator
expands multi-tasks so as to recognize conditions in-
put to the generator. Furthermore, we construct an en-
coder to extract the feature quantity of the input image
and propose a learning method that can reconstruct
images by inputting the extracted feature quantity to
the generator of the proposed method.

2 RELATED WORKS

2.1 Generative Adversarial Networks

GANs (Goodfellow et al., 2014) are generative mod-
els using Deep Learning that consist of two networks:
a generator and a discriminator. The generator gener-
ates an image that deceives the discriminator by using
noise vectors as input. The discriminator accurately



classifies between inputted real images and generated
images. The objective function of GANs is given as

min
G

max
D

V (D,C) = Exxx∼Pdata(xxx)[logD(xxx)]+

Ezzz∼P(zzz)[log(1−D(x̃xx))], (1)

where zzz ∈ R100 is noise vectors sampled from dis-
tribution p(zzz) such as N (0, I) or U[−1,1], x̃xx is im-
ages generated by the generator, and xxx is real im-
ages. By adversarial learning of the generator and
discriminator, images not included in training sam-
ples can be generated. Also, unlike a Variational Au-
toencoder (VAE) (Kingma and Welling, 2014), GANs
are able to generate images that are not blurry be-
cause they do not calculate error in pixel units. Vanilla
GANs have difficulty generating specific images be-
cause only noise vectors are inputted. CGANs (Mirza
and Osindero, 2014) are able to generate images that
fulfill conditions by using conditions such as class la-
bels and text corresponding to images. The objective
function of CGANs is given as

min
G

max
D

V (D,C) = Exxx∼Pdata(xxx)[logD(xxx|yyy)]+

Ezzz∼P(zzz)[log(1−D(x̂xx|yyy))], (2)

where x̂xx is G(zzz|yyy) obtained by inputting the noise
vector zzz and conditions yyy to the generator. Vanilla
GANs or CGANs have difficulty generating clear im-
ages because of the way the MLP is configured. To
overcome this problem, DCGANs (Radford et al.,
2016), Conditional DCGANs (Gauthier, 2014), and
PGGANs (Karras et al., 2018) in which Deep Convo-
lutional Neural Network (DCNN) (Yann et al., 1998)
that have a convolutional layer and Batch Normaliza-
tion (Sergey and Christian, 2015) are introduced have
been proposed and are able to generate high-quality
images. In particular, PGGANs can stably gener-
ate high-resolution natural images by first generating
global information, gradually adding a convolutional
layer to the network, generating detailed informa-
tion, and imposing a penalty for errors called Wasser-
stein GANs Gradient Penalty (WGANs-GP) (Gulra-
jani et al., 2017).

2.2 Reconstruction Input Images

Many methods have been proposed that reconstruct
input data with an encoder such as VAE. A Con-
ditional Adversarial Autoencoder (CAAE) (Zhang
et al., 2017) extracts rich feature vectors after in-
putting high-dimensional facial images to an encoder.
Then, by inputting the condition of age in addition to
the extracted feature vector to the generator, CAAE
can change the input facial image to various ages.
Bidirectional GANs (BiGANs) (Donahue et al., 2017)

Figure 1: Generator adopted in proposed method

Figure 2: Discriminator adopted in proposed method

use a learning method that inputs not only generated
images and real images but also the noise vector in-
putted to the generator in addition to features ob-
tained from the encoder. α-GANs (Rosca et al., 2017)
are similar to BiGANs but are separating networks
that recognize the noise vector and the output of the
encoder. Also, α-GANs add the L1 norm between
the training data and generated data as reconstruction
loss. These methods are able to generate clear images
by adversarial learning.

3 PROPOSED METHOD:
WEIGHTED CONDITIONS AND
MULTI-TASK LEARNING

In this paper, we propose a facial image generation
method that inputs weighted conditions to the genera-
tor and recognizes conditions in the discriminator. We
also propose a method that reconstructs inputted im-
ages by using the encoder and the generator in the pro-
posed method. First, we describe the learning man-
ner of the generator in 3.1 and leaning manner of the
multi-task discriminator in 3.2. Then we present the
learning algorithm using the encoder and generator in
3.3.

3.1 Introduced Weight: Learning of
Generator

In previous CGANs, conditions vanish near the out-
put layer because the conditional vector yyy ∈ {0,1}
is only in the input layer. Thus, the generator in the



proposed method inputs conditions to a hidden layer
other than the input layer in like a skip connection.
This approach can certainly reflect conditions until
the near the output layer. In addition, previous fa-
cial image generation methods directly input the bi-
nary condition vector to the generator. On the other
hand, the proposed method applies 1×1 convolution
process and sigmoid function to the condition vector
yyy expressed in binary and inputs its output to the gen-
erator. Therefore, we represent a continuous value yyy
from 0 to 1 as a condition vector. Moreover, each
condition can be weighted because the filter size of
the convolutional process is 1×1. By weighting con-
ditions, the proposed method is able to stepwisely re-
flect conditions in such a way as to whole the gener-
ator because the most suitable conditions can be re-
flected at the time of generation in each layer. Fur-
thermore, we use Pixelwise Normalization instead of
Batch Normalization. Pixelwise Normalization is a
normalization method used in PGGANs that is able
to improve the quality of generated images. Pixelwise
Normalization is represented as

bx,y =
ax,y

1
N ∑N−1

j=0 (a
j
x,y)2 + ε

, (3)

where N is the number of feature maps, ax,y and bx,y is
the feature vector before and after and ε = 10−8. This
series of processes is indicated in Figure 1.

3.2 Multi-Task Discriminator

The discriminator inputs real or generated images and
simultaneously considers inputted conditions to dis-
tinguish between the real images or generated ones
are inputted to the discriminator, which simultane-
ously considers inputted conditions to distinguish be-
tween the images. The discriminator in our proposed
method improves multi-tasks so as to recognize given
conditions when the generator generates images. Fig-
ure 2 shows a multi-task network. The adversarial
branch and recognition branch in Figure 2 represent
a previous task of GANs and condition recognition,
respectively. In CGANs and Conditional DCGANs,
conditions are also given to the discriminator, but in
the proposed method add the recognition branch. It is
able to be considered alternative input conditions by
minimizing the condition recognition error, which is
computed by using the conditions inputted to the gen-
erator. Minibatch Stddev is the standard deviation for
Mini Batch calibration. This proposed method at PG-
GANs is able to generate diverse images.
Condition recognition error is added to the objec-
tive function of previous CGANs. Thereby, adversar-
ial learning of the generator reflects more conditions.

The objective function of our proposed method is in-
dicated as

min
G

max
D

V (D,G) = Exxx∼Pdata(xxx)[logD(xxx)]+

Ezzz∼P(zzz)[log(1−D(x̃xx)]∧minL, (4)
where L is condition recognition error. If a dataset of
real facial images is used, our proposed method finds
it difficult or impossible to recognize the images by
using the softmax function and cross entropy error be-
cause multiple facial attributes in this dataset are rep-
resented in binary. When mean square error is used,
the recognition branch of the number of attributes to
be recognized is required and calculation cost is high.
Hence, we calculate error by sigmoid cross entropy
because we calculate recognition error of multiple fa-
cial attributes with a one the recognition branch.

3.3 Obtain Feature Vector: Encoder
and Fine-Tunned Generator

Generative methods such as α-GANs and BiGANs
use adversarial learning and an encoder and generate
images without fine-tunned the generator. Therefore,
generative methods frequently generate unclear im-
ages in initial learning. In addition, previous tech-
niques are high cost because they require multiple
networks to be updated. Thus, we propose a way of
learning that uses an encoder and a fine-tuned gener-
ator. Clear facial images can be generated from ini-
tial learning using the fine-tuned generator, and our
method generates images that maintain the identity of
inputted images by inputting features obtained from
the encoder to generator. Algorithm 1 details the pro-
posed learning process, and Figure 3 is illustration of
prior.
Both fff and f̂ff are features output from the Encoder,

but the former is real images, and latter is generated
images. Moreover, all L in Algorithm 1 are Mean
Squared Error, but these errors are different. Lreal
is the error of real images and their reconstructions,
Lnoise is error of the noise vector and embedded fea-
tures of image generated from the noise vector, and
L f ake is error of reconstructed images and image gen-
erated from the noise vector. In our proposed learn-
ing algorithm fixes parameters of the generator and
updates only the encoder.

4 EXPERIMENT

We evaluate the quality of facial images generated
in the proposed method. Moreover, we evaluate
the effectiveness of the multi-task Discriminator and
weighted condition Generator.



Figure 3: Training process using encoder and fine-tuned
generator. (a) Reconstruction process using generated im-
ages from noise vector. (b) Reconstruction process using
real images. Light gray and dark gray circles are feature
vector which embedded real images and fake ones from, re-
spectively.

4.1 Experimental details

In this experiment, facial images generated using
the conventional methods (Conditional DCGANs and
Conditional PGGANs) and DCGANs and PGGANs
using the proposed method (Weighted Condition DC-
GANs and Weighted Condition PGGANs) are com-
pared. We use CelebA Dataset (Ziwei et al., 2015)
which contains at 200,000 facial images during train-
ing of every methods. For the condition, a five-
dimensional condition vector yyy is created using five
attributes (Male, Bangs, Eyeglasses, Goatee, and
Smiling) of 40 kinds of face attributes given to each
image of CelebA Dataset. Moreover, the noise vector
of 512-dimension sampling from a normal distribu-
tion is input to the generator. We compare the quality
of generated images in objective and subjective eval-
uations. In the objective evaluation, Inception Score
and Fréchet Inception Distance (FID) are used. The
Inception Score is the average result of 10 evalua-
tions. In the subjective evaluation, we use 150 images
every method and in 21 subjects evaluate generated
images in terms the quality and condition fulfilment.
We create the simple user interface for the subjective

Algorithm 1 Training process using encoder and fine-
tuned generator. m is batch size and λ = 0.1.

for Number of training iterations do

• Sampling minibatch of m noise data, training data,
and conditions zzzm ∈ P(zzz), xxxm ∈ P(xxx) and yyym ∈ P(yyy).

if Reconstruction of generated images from noise vec-
tor zzz then

Lnoise =
1
m

m

∑
i=1

[zzz−E(x̂xx|yyy)]2i

L f ake =
1
m

m

∑
i=1

[
G(zzz|yyy)−G( f̂ff |yyy)

]2

i

else if Reconstruction using real images then

CH = {R,G,B}

Lreal = ∑
i∈CH

[
1
m

m

∑
j=0

(xxx−G( fff |yyy))2
j

]
i

end if

L = exp(λ(Lnoise +L f ake +Lreal))

• Updating the encoder by using Adam optimizer.
end for

evaluation.

4.2 Experimental Results

Figure 4 shows facial images generated by each
method. In the visual evaluation, images generated by
all method are able to clearly show faces, and whether
the generated facial images reflected inputted condi-
tions is determined. Figure 4 (a) to (d) show all meth-
ods were able to generate images of the same quality.
Comparing DCGANs in (a) and (c) and PGGANs in
(b) and (d), PGGANs generate facial images that look
more natural. Also, previous methods in (a) and (b)
set the gender to neutral when inputted attributes are
Eyeglasses+Smiling. Additionally, for Male+Goatee,
previous methods reflect smiling in a few images. By
contrast, our method in (c) and (d) is able to generate
images that fulfill indicated conditions.

Moreover, Figure 5 shows Weighted Condition
PGGANs can also generate natural high-quality facial
images that fulfill condition and have higher resolu-
tion. Thus, Weighted Condition PGGANs can gen-
erate high-resolution images with clear facial details.
Figure 6 shows facial images reconstructed by us-



Figure 4: Facial images generated by different methods. Both (a) and (b) are generated by previous methods. (c) and (d) are
generated by our method. (a) and (c) show results for DCGANs. (b) and (d) show results for PGGANs.

Figure 5: Facial images [192×256 pixels] generated by
Weighted Condition PGGANs. Used facial conditions are
Male, Blond Hair, Eyeglasses, No Beard, and Smiling.

ing the proposed algorithm. In this image generation
experiment, we input facial attributes given real im-
ages to the encoder and generator. Reconstructed im-
ages cannot completely maintain real images’identity
but can maintain facial attributes, face direction, and
background color. Therefore, we are able to argue
that the generator of our proposed method can extract
global features of images inputted to the encoder.
The results of evaluating the generated image quan-

titatively are shown in Table 1. Note that gen-
erated image are 128×128[pixels] in all methods.
Weighted Condition DCGANs has a 0.03 lower In-
ception Score and 21.3 lower FID than Conditional
DCGANs. In the subjective evaluation, Conditional
DCGANs scores higher than our Weighted Condition
DCGANs. Conditional PGGANs and our Weighted
Condition PGGANs have similar Inception Scores,

Figure 6: Input images and images reconstructed by our
algorithm.

but our method has higher FID and subjective eval-
uation score. It is possible to confirm Inception Score
is close to real images score when compare PGGANs
and DCGANs. Both Weighted Condition PGGANs
and DCGANs drastically reduce FID, especially PG-
GANs. Therefore, we argue that Weighted Condition
PGGANs can improve the quality of generated im-
ages, but we think that some conditions vanish be-
cause the network of PGGANs is very deep. Thus,
our proposed method effectively generates facial im-
ages that fulfil conditions by using a deep architecture
network.

4.3 Effective Multi-Tasks and Weighted
Conditions

To evaluate the effectiveness of introducing condition
recognition to the discriminator and weighted condi-
tions to the generator, we built two networks and then
compared objective evaluation results of generated fa-
cial images. In the first network, Recognition Branch
is removed from our discriminator, and in the sec-
ond network, convolutional layers of conditions are
removed from our generator. Table 2 shows evalua-
tion results. According to results, Inception Score was
about 0.1 lower and FID 10.0 higher when the dis-
criminator did not have condition recognition. More-
over, the Inception Score was about 0.1 lower and FID
13.5 higher when the generator did not have weighted



Table 1: Evaluation results for various evaluation methods

Methods Inception Score ↑ FID ↓ Subjective Evaluation (21 people) ↑
Real Images 1.97 - -

Conditional DCGANs 1.70 402.4 53.1
Weighted Condition DCGANs (Proposed) 1.67 381.1 46.9

Conditional PGGANs 1.68 450.4 44.5
Weighted Condition PGGANs (Proposed) 1.73 387.6 55.5

Table 2: Comparison Inception Score and FID with and without conditions recognition and weighted conditions.

Recognized Conditions Inception Score ↑ FID ↓ Weighted Conditions Inception Score ↑ FID ↓
✓ 1.73 387.6 ✓ 1.73 387.6

1.62 397.6 1.65 401.1

conditions. Therefore, high quality and natural im-
ages can be generated by introducing weighted condi-
tions to the generator and Recognition Branch to the
discriminator.

4.4 Discussion

The reason the proposed method generated facial im-
ages that fulfilled indicated conditions is assumed to
be that optimal facial attributes in each layer were re-
flected by weighted conditions. Therefore, we visual-
ize the contribution of weighted conditions to the gen-
erator. Contribution rates are calculated with a weight
filter in each convolutional layer. Contribution rate Ct
is given as

Ct =
1
N

N

∑
n=1

|Wt,n|
∑M

m=1 |Wm,n|
, (5)

where N, M, W and t are the number of filters, num-
ber of attributes, weight filter, and a target attribute,
respectively. Figure 7 shows the contribution rates of
Male, Blond Hair, Eyeglasses, No Beard, and Smiling
to images generated at each resolution by Weighted
Condition PGGANs. Blond Hair + No Beard + Smil-
ing contribute more to middle images. Contribution
rates of Male and Blond Hair are highest in low res-
olution and then tend to decrease as resolution be-
comes higher. The contribution rate of smiling in-
creases from the input layer to hidden layers and then
decreases toward the output layer. Furthermore, the
contribution rates of Eyeglasses and No Beard are
highest in high resolution images. Facial expressions
are clearly generated after the layer where the contri-
bution ratio of Smiling is the highest. Thus, in low
resolution, global facial attributes have higher con-
tribution rates, and in high resolution, detailed facial
attributes have higher contribution rates, so our pro-
posed method seems to be able to generate natural fa-
cial images that fulfill conditions.

Figure 7: Contribution rate and generated image at each
depth

5 Conclusions and Future Works

In this paper, we proposed a facial image gener-
ation method that introduces weighted conditions to
both DCGANs and PGGANs and a new image recon-
struction algorithm with an encoder. Condition can
be stepwisely reflected by inputting weighted condi-
tions. Moreover, conditions inputted to the generator
can be easily reflected by a multi-task discriminator.
The proposed method is able to generate facial im-
ages that fulfil conditions in both DCGANs and PG-
GANs. Evaluation results showed our method is able
to drastically reduce the Fréchet Inception Distance
(FID) score compared with previous methods. The
encoder using our algorithm can obtain effective fea-
tures in input image reconstruction. However, our al-
gorithm has difficulty completely reconstructing input
images. In future work, we will increase the resolu-
tion of the generated images and attempt to stabilize
image generation.
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