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Abstract—Autonomous driving system switches over to a
manual driving mode by human when the system is not able
to drive itself. The system has to constantly monitor whether
the driver can drive the vehicle by the driver ' s posture and
face orientation. Conventional methods for estimating posture
and face orientation perform feature extraction and recognition
for each task, and thus require an appreciable amount of
processing time. In this paper, we propose a method that performs
multiple tasks by Deep Convolutional Neural Network (DCNN)
with heterogeneous learning, by sharing the feature extraction
process. The body posture and face orientation estimation can
be performed simultaneously. In evaluation, we have achieved
a high accuracy of 98% in body posture estimation, and 91%
in face orientation estimation. The processing time for a single
image has been 2.6 ms when the we employ a GPU, and 34.1 ms
in CPU. We confirm that proposed method can perform body
posture and face orientation estimation in real time.

I. INTRODUCTION

When the autonomous driving system is unable to continue
driving itself by any reason, it switches over to a manual
driving mode by human. To perform this turn over process,
it has to constantly monitor whether the driver can drive the
vehicle. The body posture and face orientation estimation is
important methods to realize driver monitoring system. Con-
ventional methods for measuring posture and face orientation
perform feature extraction and recognition for each task, and
it requires an appreciable amount of processing time. In this
paper, we employ heterogeneous learning[2] into a training
of DCNN. It is possible to perform body posture and face
orientation estimation in a single DCNN. It shares the feature
extraction process for the body parts and face orientation
estimation and it can be performed simultaneously. In the
heterogeneous learning of the proposed method, the regression
values of coordinates of body posture and face orientation
are output from the output layer in DCNN. As a result, the
proposed method results in a compact network architecture
and can perform processing in real time, even on a CPU.

II. RELATED WORKS

Shotton et al. proposed a method that employs the random
forests method [6] to detect the body posture from depth
images and detect the center of gravity of each part [4]. This
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method constructs random forests from depth images with
learning samples where each part is correctly labelled with
a different color, and branches to the left or right according
to a threshold value using the differences in distance of two
separate pixels as feature quantities. The body posture is then
ascertained by finding the center of gravity for each part label.
Fanelli et al. proposed a method that uses regression forests[7]
to estimate face orientations from depth images [5]. In this
method, large quantities of depth images depicting a variety
of face orientations and expressions were produced artificially
and used as input. Since their method used depth images, it
could accommodate differences between individual subjects,
and since it used artificially generated images, it was also
robust against changes of face orientation and expression.
Toshev proposed a method that performs skeleton detection
using DCNN from RGB images [3]. Human beings can infer
the positions of hidden joints based on their movements and
positional relationships to other parts. The convolution and
pooling processes in DCNN can obtain an overall grasp of
the skeleton’ s positional relationships. This makes it possible
to roughly estimate the positions of hidden joints. DCNNs
with the same structure are connected in series to obtain
a rough estimate of the entire skeleton, after which each
estimated point can be used as input to obtain a more accurate
skeleton estimation. Body posture estimation performed using
the machine learning methods like [5][6] can be used as a
natural user interface in video games. But, it is not robust
to self-occlusion. Since face orientation estimation requires a
large face image, it can be difficult to estimate from whole-
body image. The method based on DCNN like [3] is efficient
for these tasks. However, handling multiple DCNNs leads to
increased processing costs. Therefore, independent DCNNs
for body posture and face orientation estimation are very
inefficient process from the viewpoint of real-time processing.

III. PROPOSED METHOD

We employ heterogeneous learning[2] into a training of
DCNN. It is possible to perform body posture and face
orientation estimation in a single DCNN. We introduce the
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Fig. 1. Structure of DCNN incorporating heterogeneous learning.

DCNN architecture and heterogeneous learning method in this
section.

A. Body posture and face orientation estimation

To obtain robustness against illumination change such as a
vehicle is driven into a building or tunnel, or when driving
at night, we introduce IR and depth images as input. These
images are obtained using a camera mounted near the interior
rear view mirror with a full view of the driver’ s seat and front
passenger seat. The camera produces images with a resolution
of 640 x 480 pixels. In the proposed method, the vicinity of
the driver’s seat is first cropped and resized to a 96 x 120 pixel
image that is input to the DCNN as shown in Figure 1. The
DCNN consists 3 convolution layers and 2 fully connected
layers. The 1st convolution layer has 16 filters. The filter size
is 7 x 5. The activation function is maxout. After applying
this Ist layer, the output feature maps are 8 and the size is
114 x 92. These feature maps feed to pooling process. Feature
maps is down sampling to 57 x 46 by maxpooling. The 2nd
convolution layer receives this feature maps and convolve 32
filters with 8 x 5. The number of output feature maps in this
layer are 16 with 50 x 42. These feature maps are also applied
maxpooling. The size of feature maps is 25 x 21. The feature
maps are flattened to input fully connected layer. The fully
connected layer has 200 units. The activation function of this
layer is ReLU. There are 17 output units, comprising 8 x 2
part positions and one face orientation angle. The driver part
positions correspond to the x and y coordinates of 8 body
parts: head, neck, right shoulder, right elbow, right hand, left
shoulder, left elbow and left hand. The face orientation angle
corresponds to the orientation of the driver’ s head in the left-
right direction (yaw angle), with an angle of zero indicating
that the driver is looking straight ahead. From the driver ’ s
point of view, positive angles are to the right, and negative
angles are to the left.

B. Heterogeneous Learning

Heterogeneous learning is a learning and recognition
method that can handle multiple tasks in a single network.
In general, when performing multiple recognition tasks, the
number of DCNN that has to be constructed is proportional to
the number of tasks. This is inefficient for real applications.
In heterogeneous learning, multiple tasks can simultaneously
train and run by a single network, and so the computational
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Fig. 2. Evaluation of body posture estimation.

cost does not increase greatly when the number of tasks in-
creases. In the heterogeneous learning of the proposed method,
the regression values of the coordinates of body parts and face
orientation estimation are output from the output layer. We
define error functions for each task as follows.

1) Error function of the skeleton detection task: Since the
body posture estimation outputs the x and y coordinates of 8
body positions, the learning error F; is given by Equation (1):

N
Eo =) [|Ln—Onll e)
n=0

where L,, is a teacher signal, O,, is an output value, and N
is the number of body part positions.

2) Error function of the face orientation estimation: Since
there is only one output unit corresponding to the face orien-
tation, the learning error E is given by Equation (2):

E,=(L-0)? 2)
Therefore, the total error E is given by Equation (3):
E=aFE,+(1-a)E, 3)

where « is a weighting factor for the body posture and
face orientation estimation learning errors that can be used
as a parameter to determine which of these tasks is to be
prioritized. We set a value of a« = 0.5, giving the two
tasks equal weighting. We created mini-batches by selecting
multiple learning samples from the learning data set. In the
mini-batch learning method, which is widely used in DCNN
learning, M learning samples are selected at random from the
learning samples and input to the DCNN. The error E' from
these samples is determined, and the error back-propagation
of Equation (4) is used to update the parameter of DCNN w.
Here, 7 is a learning coefficient, and for this study we set a
value of n = 0.001.
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IV. EXPERIMENTS
A. Evaluation metrics

We evaluated the body parts estimation by using a Euclidean
distance and the percentage of correct parts (PCP) metric as
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Fig. 3. Evaluation of each part in body posture estimation.

Fig. 4. Example of Body posture estimation.

used by Toshev and Szegedy [3]. First, to evaluate Euclidean
distances, we determined the Euclidean distance between the
output value and the correct label, recording a successful
detection if this distance was less than a threshold value, and
a failed detection otherwise. We varied the threshold value
from O to 10 pixels, allowing us to confirm the change in
accuracy. For the PCP evaluation, we focused on the positions
of two neighboring body parts, and the detected position was
collected as successful when the estimation error for each
body part was less than half the Euclidean distance between
these parts. In face orientation estimation, we determined the
difference between the correct label and the output value, and
collected a successful estimation when the difference between
these angles was less than a threshold value, or an unsuccessful
estimation otherwise. We varied the threshold value from O to
20 degree to compare the results obtained with varying levels
of accuracy. The data set we used consisted of 32,914 sample
images from 12 test subjects, of which 30,000 were used for
learning, and 2,914 were used for evaluation. We concentrated
on scenes with a variety of posture variations, such as where
the driver was looking away from the road or using a smart
phone, opening the sun visor, or touching his or her face.

B. Performance of body posture estimation

Figure 2 shows the body posture estimation results. it was
possible to achieve the same level of detection accuracy as
with a single DCNN. Also, when the input of each method
was provided as IR images or IR+depth images, we found that
better precision was achieved using IR images. Figure 3 shows
the evaluation results for each body part. In all methods, with
a threshold value of 2 pixels, the lowest accuracy (about 60%)
occurred at the head. This is probably because the correct label
for the head is at its center, and there was some variation in
the correct labels for this part. Figure 4 shows some examples
of skeleton detection results obtained by the proposed method
from IR input images. The red points are the correct labels, and
the green points are the output values. As this figure shows,
The DCNN trained by heterogeneous learning enables estimate
the head position, albeit with an offset from the correct label
of the head, so there was no major loss of accuracy. It can also
be seen that the posture was correctly estimated even the part
occurs self-occlusion, such as the shoulders, neck and hands.

Furthermore, better accuracy was achieved for parts on the
right side of the body in all methods. This is because the way
the camera was positioned meant that the parts of the driver
on the left side appeared larger and thus tended to depart from
the correct label positions by a larger margin. Table 1 shows
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Fig. 6. Estimation rate of face orientation at each angle.

the results of PCP evaluation to assess the skeletal results
without the effects of apparent size in the camera image. In
all methods, similar detection accuracies were achieved for
the left and right sides. Also, in all methods, the accuracies
were better for the upper arms than for the lower arms. This
is because, as can be seen in Figs. 3 and 4, the hands moved a
lot more, making it harder to detect their positions compared
with the elbows and shoulders.

C. Performance of face orientation estimation

Figure 5 shows the face orientation estimation evaluation
results. With a threshold value of 10 degree, the recognition
rate was about 10% lower than when using a single DCNN.
Figure 6 shows the recognition rate achieved when evaluating
the face angle in 5 degree increments with the threshold value
set to 10 degree. The vertical axis shows the recognition rate,
and the horizontal axis shows the face angle. This figure shows
that the accuracy was lower at face angles greater than 70
degree, between 0 degree and 30 degree, and below —90
degree. Figure 7 shows some images of angles for which
low accuracy was achieved. First, when the face angle is
greater than 70 degree or less than —90 degree, the driver
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Fig. 7. Example of Body posture estimation.

is performing movements that deviate significantly from the
usual posture as shown in Fig. 7(a) and (c), and for which there
are few learning samples. Also, when the face angle is between
Odegree and 30 degree, the driver performed movements such
as leaning forwards while continuing to look to the front as
shown in Fig. 7(b), or shifting the body forwards or backwards,
resulting in changes of other angles besides the yaw angle that
was recognized in this experiment. It is therefore expected that
better accuracy could be achieved by considering other angles
besides the yaw angle in samples that depart significantly from
the usual forward-facing posture.

D. processing time

Table 2 shows the time taken to process a single image. For
the GPU, we used a GTX 1080, and for the CPU, we used
an Intel Core i7-4790 3.60 GHz. According to this table, the
total processing time per image for a single DCNN would be
4.4 seconds on a GPU or 67.0 ms on a CPU. On the other
hand, the processing time of proposed method is 2.6 ms on
a GPU and 34.1 ms on CPU. With the proposed method, we
reduced these times to 1.8 ms on a GPU and 32.9 ms on a
CPU. Even when run on a CPU, the proposed method is fast
enough to perform real-time processing at 30 fps.

V. CONCLUSION

We have proposed introducing DCNN into heterogeneous
learning to perform skeleton detection and face orientation
estimation of vehicle drivers. By introducing heterogeneous
learning, the proposed method results in a compact network
architecture and can perform processing in real time, even on a
CPU. In the future, we will study methods for driver behavior
recognition that make use of the results obtained by estimation.
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