
Binary-decomposed DCNN for accelerating computation and compressing model

without retraining

Ryuji Kamiya

Chubu University

Takayoshi Yamashita

Chubu University

Mitsuru Ambai

Denso IT Laboratory

Ikuro Sato

Denso IT Laboratory

Yuji Yamauchi

Chubu University

Hironobu Fujiyoshi

Chubu University

Abstract

Recent trends show recognition accuracy increasing

even more profoundly. Inference process of Deep Convo-

lutional Neural Networks (DCNN) has a large number of

parameters, requires a large amount of computation, and

can be very slow. The large number of parameters also

require large amounts of memory. This is resulting in in-

creasingly long computation times and large model sizes.

To implement mobile and other low performance devices

incorporating DCNN, model sizes must be compressed and

computation must be accelerated. To that end, this paper

proposes Binary-decomposed DCNN, which resolves these

issues without the need for retraining. Our method replaces

real-valued inner-product computations with binary inner-

product computations in existing network models to accel-

erate computation of inference and decrease model size

without the need for retraining. Binary computations can

be done at high speed using logical operators such as XOR

and AND, together with bit counting. In tests using AlexNet

with the ImageNet classification task, speed increased by a

factor of 1.79, models were compressed by approximately

80%, and increase in error rate was limited to 1.20%. With

VGG-16, speed increased by a factor of 2.07, model sizes

decreased by 81%, and error increased by only 2.16%.

1. Introduction

Deep Convolutional Neural Networks (DCNN) real-

ize extremely high recognition accuracy for various tasks

such as general object recognition[17], detection[6][13] and

semantic segmentation[10][18]. Since AlexNet[11] won

the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) 2012, which involved computation of 1,000 cat-

egories, network models with large numbers of layers began

to appear, including VGG-16[16] and Residual Network

(ResNet)[8], producing remarkable increases in speed and

dropping error rates. Recently, there is a continuing trend

Table 1. Comparison of DCNN and Binarized-DCNN

Model
Computations [million] Model size [MB]

Convolutional Fully connected Convolutional Fully connected

ImageNet classification task

AlexNet 10.77 0.55 14.29 237.91

VGG-16 153.47 1.26 56.12 471.63

ResNet 113.96 0.021 223.90 7.81

Proposed AND 6.06 AND 0.31

(AlexNet) bitcount 6.06 bitcount 0.31 2.71 42.14

multiply 0.24 multiply 0.003

Proposed AND 86.33 AND 0.70

(VGG-16) bitcount 86.33 bitcount 0.70 10.62 88.64

multiply 4.88 multiply 0.0033

Proposed AND 63.67 AND 0.012

(ResNet) bitcount 63.67 bitcount 0.012 43.22 1.49

multiply 7.93 multiply 0.00006

Places205 scene recognition task

AlexNet 10.77 0.55 14.29 211.20

VGG-16 153.47 1.20 56.12 459.20

Proposed AND 6.06 AND 3.12

(AlexNet) bitcount 6.06 bitcount 3.12 2.71 39.79

multiply 0.24 multiply 0.003

Proposed AND 6.06 AND 3.12

(VGG-16) bitcount 6.06 bitcount 3.12 10.62 71.91

multiply 0.24 multiply 0.003

toward increasing recognition accuracy by increasing the

number of layers, as was done with VGG-16 and ResNet.

As recognition accuracy increases in this way, models are

becoming more complex, and increasing computation time

and model size is becoming an issue. Table 1 shows the

amount of computation and model sizes for AlexNet, VGG-

16 and ResNet, which are de facto standards for DCNN net-

work models. The network model for AlexNet, which won

ILSVRC 2012, is composed of five convolutional layers and

three fully-connected layers. The network model for VGG-

16, which placed second in ILSVRC 2014, is composed

of 13 convolutional layers and three fully-connected layers.

The network model for ResNet, which won ILSVRC 2015,

is composed of 152 convolutional layers and one fully-

connected layer. Table 1 shows that convolutional layers ac-

counted for more than 90% of computation in AlexNet, and

more than 99% in VGG-16 and ResNet. Although fully-

connected layers accounted for roughly 90% of the AlexNet

and VGG-16 model sizes, ResNet had roughly the same

model size as AlexNet, even though it had 152 layers. This

shows that the convolutional layers contribute more to the

amount of computation, and the fully connected layers con-

tribute more to model size. It is imperative to increase the

11095

speed of recognition processing and to decrease model size

in order to use these methods in environments with limited

resources, such as embedded and mobile devices. To re-

solve this issue, research on accelerating computation and

compressing model sizes has been proposed.

BinaryNet[4], Binarized Neural Networks[9] and

XNOR-Net[12] are proposed methods to simultaneously

accelerate processing and reduce memory use by binarizing

DCNN. Both networks express activation values and

weights as binary values and express parameters as single

bits to reduce memory size and perform high-speed inner

products. These methods are able to increase speed and

effectively decrease memory use, as is needed, but they

require retraining, so they cannot be applied to existing

network models. As such, our research proposes Binary-

decomposed DCNN, which is able to accelerate inference

computation and compress model size for existing network

models, without requiring retraining. Binary-decomposed

DCNN accelerates recognition processing and compresses

models for existing network models by converting feature

maps and weightings, which are used in recognition

computations in each layer, to binary values and using ap-

proximate inner-product computations. The contributions

of this method are as follows:

1. Simultaneously accelerates recognition computation

and compresses models without the need for re-

training by using many binary values and a small num-

ber of real values to approximate real-valued parame-

ters.

2. Converts real-valued feature maps to binary feature

maps in real time by introducing a quantization sub-

layer.

3. Can be applied to large-scale network models without

great loss of accuracy, unlike BinaryNet and XNOR-

Net.

2. Related work

VGG-16 and ResNet achieved high recognition perfor-

mance in ILSVRC, but models with many layers are com-

plex, so long computation times and large model sizes were

issues. To use such models in environments with limited re-

sources, such as embedded devices and smartphones, it will

be essential to accelerate recognition processing and com-

press model sizes. Various research has proposed ways to

accelerate processing and compress models, solving these

issues.

2.1. Compressing model size by eliminating param
eters

Deep Compression[7] and SqueezeNet[2] are research

on compressing model size. Deep Compression combines

branch pruning, quantization and Huffman encoding to

compress model size by approximately 1/50, while increas-

ing performance. It first eliminates connections in a trained

model by setting all weight below a certain threshold to

zero. This enables the dense weight matrix to be handled

as a sparse matrix. The model can then be effectively com-

pressed further using storage methods such as Compressed

Sparse Row (CSR) or Compressed Sparse Column (CSC).

Similar weights can also be shared by applying clustering to

the sparse weight matrix. Finally, the model is compressed

using Huffman encoding. The distribution of shared weight

indices is uneven so this also improves efficiency of mem-

ory use. SqueezeNet introduces Fire modules, compress-

ing models by approximately 1/50 while achieving perfor-

mance comparable to AlexNet. A Fire module is composed

of a Squeeze layer, which replaces 3× 3 weight filters with

1× 1 weight filters, and an Expand layer, which uses multi-

ple 1× 1 and 3× 3 weight filters. Using the Squeeze layer

at the first stage reduces the dimensionality of the weight

filters, and reduces the number of channels needed in the

Expand layer. SqueezeNet uses schemes such as introduc-

ing the Expand layer and down-sampling in the lower layers

preserve inference performance.

2.2. Acceleration and model compression using bi
nary parameters

BinaryNet[4], Binarized Neural Networks[9] and

XNOR-Net[12] are methods that simultaneously accelerate

computation and compress memory use by Binarizing

DCNN feature maps and weights. BinaryNet expresses

activation and weight values as binary values, expressing

parameters as single bits to reduce memory size, and en-

abling fast inner product computations. BinaryConnect[5]

is used to binarize activation values and weights. When

updating parameters, real-valued parameters rather than

the binarized parameters are updated. Although binarizing

activation and weight values achieves both faster computa-

tion and model compression, parameters cannot be updated

through back-propagation of error. As such, BinaryNet

computes updated weights by replacing some parameters

only when performing parameter clipping and gradient

computation. XNOR-Net improves on the accuracy of

BinaryNet by introducing scaling coefficients. To do so,

both binary filters and scale factors are approximated to

minimize the approximation error due to each weights in

the BinaryConnect binarization method. To compute the

parameter updates, a method similar to BinaryNet is used.

There are also regions during convolution computations

where inner product computations are duplicated. This

efficiency is improved by computing the average absolute

value in the channel direction and convolving that output

with the binary filter.

21096

3. Proposed method

Our proposed method simultaneously accelerates infer-

ence computation and compresses models for DCNN by

transforming feature maps and weights to binary values.

The proposed method consists of two parts: (1) decompos-

ing real-valued vector of weights to binary basis vectors, (2)

quantization sub-layer.

3.1. Decomposing realvalued vector to binary basis
vectors

To use binary inner product operations, real-valued

parameters must be converted to binary values. One

method for converting parameters to binary is vector

decomposition[15][19][1]. Vector decomposition breaks

down a weight vector, w ∈ R
D, into a binary basis matrix,

M ∈ {−1, 1}D×k, and a scaling coefficient vector, c ∈ R
k.

Here, k is the number of basis vectors, or basis rank, and D

is the input dimensionality. By applying vector decomposi-

tion to the weight vectors, inner products between two real

values can be replaced with inner products between binary

values when an input vector, x, is binarized. Inner products

between binary values can be done quickly using logical

operations and bit counting. Two algorithms for optimiz-

ing vector decomposition are the greedy algorithm[15] and

the exhaustive algorithm[19]. In this section, we describe

decomposition using an exhaustive optimization algorithm

which is better than the greedy algorithm.

3.1.1 Exhaustive algorithm [19]

Decomposition by the exhaustive algorithm computes a bi-

nary basis matrix, M, and scaling vector, c, that minimize

the cost function in Eqn. 1 on the weight vector, w. The

decomposition is very slow, optimizing M through exhaus-

tive search, but it can provide a decomposition with better

approximation performance than the greedy algorithm. The

decomposition algorithm is shown in Algorithm 1. First,

M is initialized to random values from {−1, 1}, and c is

initialized to random real values. Then, M and c are opti-

mized. It is difficult to optimize both M and c simultane-

ously, so they are each optimized alternately. M is fixed,

and c is optimized by minimizing Eqn. 1 using the least

squares method. Then, c is fixed and M is optimized by

exhaustive search. This process is repeated until the value

of the cost function, Eqn. 1, converges. Note that the accu-

racy of approximation of the vector decomposition depends

on the initial values, so we take the values of M and c that

minimize Eqn. 1 after changing the initial values L times as

the basis decomposition result.

E = ||w −Mc||2
2

(1)

Algorithm 1 Decomposition algorithm

Require: w, k, L

for i to L do

Initialize Mi by random values on {−1, 1}
repeat

ci = (MT

i Mi)
−1(MT

i w)
Mi = arg min

Mi∈{−1,1}D×k

||w −Mici||
2

2

until ||w −Mc||2
2

converges

M̂, ĉ = arg min
M,c

||w −Mc||2
2

end for

return M̂, ĉ

3.1.2 Applying vector decomposition to the convolu-

tion layers

First, consider application of vector decomposition to the

mth weight filter associated with the nth feature map in the

lth layer, wl
n,m ∈ R

H×H . Vector decomposition applies to

vectors, so it cannot be applied directly to the weight filter,

which is a matrix. As such, we apply vector decomposi-

tion by expressing the weight filter as a vector. Expressing

the weight filter as a vector results in a vector of dimension

H ·H . With network models as in VGG-16 and ResNet, the

weight filter for each layer is usually very small, so this does

not reduce the amount of computation using approximate

inner-product computations has little effect. Thus, rather

than decomposing a single weight filter, filters in the chan-

nel direction are expressed as a vector. With M as the num-

ber of input feature maps, the decomposed weight vectors

can be defined as . Then, the dimension of Wn is M ·H2, so

approximate inner-product computations have more effect.

In convolutional layers, W only has N output maps. Vec-

tor decomposition using Algorithm 1 is applied to each W,

decomposing them into and . In convolutional layer infer-

ence processing, these and are used for approximate inner

product calculations.

3.1.3 Applying vector decomposition to the fully-

connected layers

Next, consider application of vector decomposition to con-

nection weights in the nth unit of the lth fully-connected

layer, w
l
n ∈ R

M . The weights used to get the output

from the nth unit of a fully connected layer are an M -

dimensional weight vector. Also a fully connected layer

has values equaling the number of output units, N . Vector

decomposition using Algorithm 1 is applied to each weight

vector, wl
n, to decompose into the binary basis matrix, M̂,

and the scaling coefficient vectors, ĉn.

31097

Weight filters
Connected weights

Figure 1. Weights decomposition in DCNN layers

3.2. Quantization sublayer

Quantization can convert to binary rapidly, but it applies

to a fixed range, so real and negative values cannot be quan-

tized. Thus, we introduce a quantization sub-layer able to

binarize real values, including negative values, rapidly. The

quantization sub-layer is able to quantize real values includ-

ing negative values by changing the quantization range.

Before quantizing a feature map, the quantization bit-

depth, Q, is decided. The approximation accuracy of quan-

tization increases with larger Q, but the amount of com-

putation required for approximate inner products also in-

creases, making computation slower. Conversely, as Q be-

comes smaller, the amount of computation decreases, so in-

ference computations become faster, but approximation ac-

curacy decreases due to quantization. First, Eqn. (2) is used

to find the quantization range, ∆d，between the maximum

and minimum values in feature map. ∆d depends on the

maximum and minimum values in the feature map, so the

value is different for each feature map.

∆d =
max (x)−min (x)

2Q − 1
(2)

Next, Eqn. (3) is used to shift the minimum value of the

feature map to 0. Here, 1 represents the unit vector. Shift-

ing the feature map enables quantization of even negative

values, which normally could not be quantized.

x
′ =

x− 1min(x)

1Q
(3)

Finally, x′ is quantized. Quantizing x
′ generates a binary

code, B ∈ {0, 1}D×Q. The binary code from the quantiza-

tion sub-layer can be recovered using Eqn. 4.

x ≈ Br+ 1min(x) (4)

3.3. Inference processing

Binary-decomposed DCNN accelerates forward compu-

tation of network using approximate binary inner product

computations. To perform operations on two binary values,

the quantization sub-layer is introduced to binarize feature

maps B. Feature map values and feature vectors in each

layer depend on the input samples, so in contrast to vector

decomposition of the weights, quantization cannot be done

ahead of time. The ability of the quantization sub-layer to

rapidly binarize real values is used to perform this quanti-

zation during inference computations.

41098

3.3.1 Computation in convolution layers

For ordinary convolution computations, the n-th feature

map un,i,j is obtained as the sum of products of the lo-

cal area of feature mapping xi,j , and weight filter wT

n . In

our method the output is computed by replacing the sum of

products of real values with binary operations. Input feature

maps are first quantized by the quantization sub-layer. This

generates binary feature maps, B ∈ {0, 1}MH2×Q. Then

the convolution is computed using the binary feature maps

and binary weight filters, M
T

n and c
T

n , obtained through

vector decomposition. The output ui,j,n is given by Eqn.

5.

un,i,j = w
T

nxi,j

≈ ĉ
T

nM̂
T

n (Bi,jri,j + 1min(x))

= ĉ
T

nM̂
T

nBi,jri,j + ĉ
T

nM̂
T

n1min(x) (5)

Here, wT

n ∈ R
DH2

is the weighting used when generat-

ing the n-th feature map, and xi,j ∈ R
DH2

is the feature

map used when generating the unit at coordinates i, j in the

output feature map.

3.3.2 Computation in fully-connected layers

The i-th output ui, from fully-connected layers are com-

puted by inner products between real-valued feature vec-

tors, x, and connection weights, wi. To accelerate inner-

product calculations in fully-connected layers, real values

are replaced with binary values, as in the convolutional lay-

ers. This generates binary feature matrix B ∈ {0, 1}D×Q

from the input feature vector x ∈ R
D. Then, the output i is

approximated by Eqn. 6 from the binary feature matrix and

the binary weight vectors decomposed beforehand.

ui = w
T

i x

≈ ĉ
T

i M̂
T

i (Br+ 1min(x))

= ĉ
T

i M̂
T

i Br+ ĉ
T

i M̂
T

i 1min(x) (6)

where, M̂T ∈ {−1, 1}k×D and B ∈ {0, 1}D×Q are bi-

nary, so it can be computed using logical operators and bit

counting, as in Eqn. 7. The computation can be done at

high speed, counting bits using the POPCNT function im-

plemented in the Streaming SIMD Extension (SSE) 4.2.

m̂
T

i bj = 2× POPCNT(AND(m̂T

i ,bj))− ∥bj∥
2

1
(7)

4. Experiments

In testing, we evaluated recognition performance, pro-

cessing time and model size when applying the proposed

method to several network models. Quantization bit depth,

Q, of 4, 6 and 8 were used for approximations, and simi-

larly, basis rank of 4, 6, and 8 were used. Quantization bit

depths and basis rank less than 4 were not used because er-

ror rates increased to a great degree. Similarly, with quan-

tization bit rate and basis rank greater than 8, the drop in

error rate had peaked, so they were not included. To evalu-

ate model size in testing, the total memory occupied by the

network model, including weights, W, binarized basis ma-

trix, M, and scaling coefficient vector, c, were compared.

Published trained models were used as parameters for each

network model, with no fine tuning. Top-5 accuracy was

used to evaluate recognition performance. Top-5 accuracy

is a method that counts cases where the training signal is

included among the five most probable inferred classes, as

success. We used an Intel Core i7-4770 3.40-GHz proces-

sor.

4.1. ImageNet classification task

Testing was done using the AlexNet, VGG-16, and

ResNet-152 network models. The ImageNet data set used

in the ILSVRC 2012 [14] classification task was used. Im-

ageNet is a very large object recognition dataset, contain-

ing 1,200,000 training samples, 100,000 test samples, and

50,000 validation samples. Each sample is classified into

one of 1000 categories. In testing, evaluation was done us-

ing the 50,000 validation samples.

4.1.1 Model 1: AlexNet

AlexNet is composed of 5 convolutional layers and 3 fully-

connected layers. A comparison of recognition accuracy,

processing time, and error-rate increases when using ap-

proximate inner-product calculations is shown in Figure 2.

Here, k indicates the basis rank used for weight decompo-

sition. Comparing the same basis rank for quantization bit-

depths of 6 and 8, almost no increase in the error rate is

shown. In this case, the lower quantization bit-depth of 6 is

better, requiring less computation. Figure 2(b) shows that

memory compression does not change between quantiza-

tion bit depths of 4 and 6 using the same basis rank, so we

can say quantization bit-depth does not affect reduction of

memory use. The error rate also does not change greatly

when comparing basis ranks of 6 and 8. This is similar to

the trend in Figure 2(a). For both quantization bit-depth

and basis rank of 6, speed increased by a factor of 1.79, and

model size decreased from 237.91 MB to 44.85 MB. Here,

error rates increased by 1.20%.

4.1.2 Model 2: VGG-16

VGG-16 is composed of 13 convolutional layers and 3 fully

connected layers. The dimensions of the weight filter and

number of input feature maps for the first convolutional

layer are very small, so approximating inner-product com-

putations may not produce significant effect. For this rea-

son, approximations were introduced on all but the first

51099

(a) error vs acceleration (b) error vs memory compression (c) process time

Figure 2. ImageNet performance evaluation for AlexNet

(a) error vs acceleration (b) error vs memory compression (c) process time

Figure 3. ImageNet performance evaluation for VGG-16

(a) error vs acceleration (b) error vs memory compression (c) process time

Figure 4. ImageNet performance evaluation for ResNet-152

layer for testing. Recognition accuracy, processing time,

and model size with approximate inner-product computa-

tions are shown in Figure 3. With a quantization bit-depth

of 6 and basis rank of 6, speed increased by a factor of 2.07

and the model size reduced from 527.74 MB to 99.26 MB.

In this case, the error rate increased by 2.16%.

4.1.3 Model 3: ResNet-152

ResNet-152 is composed of 151 convolutional layers and

1 fully connected layer. Recognition accuracy, processing

speed and model size using the approximate inner product

calculations are shown in Figure 4. ResNet has 152 con-

volutional layers, which account for approximately 96% of

the model size. Clearly, reduction in model size can also

be gained for models like ResNet, which have very many

convolutional layers. With a quantization bit-depth of 6 and

basis rank of 6, speed increased by a factor of 1.77 and the

model size reduced from 229.08 MB to 44.71 MB. In this

case, the error rate increased by 1.86%.

Table 2. Comparison of performance with methods based on

AlexNet
Model Top1 Top5 acceleration compression

AlexNet 56.8 80.0 - -

Deep Compression 56.8 79.9 1.00 35

XNOR-Net 44.2 69.2 58.0 32

proposed 55.1 78.8 1.79 5

4.1.4 Comparison with other methods

In this section, we compare the top-1/5 accuracy, accelera-

tion scale factors and model compression ratios of the pro-

posed method with those of three other methods (AlexNet,

Deep Compression and XNOR-Net). The proposed method

involves applying vector decomposition to a model with

61100

(a) error vs acceleration (b) error vs memory compression

Q
SP
D
F
T
T
�U
JN
F
�<
N
T
>

�

����

����

����

����

����

����

����

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

D
P
O
W
�
@�
@%

4FH/FU
1SPQPTFE�.FUIPE

(c) process time

Figure 5. Cityscapes dataset performance evaluation for SegNet

input image label image SegNet Proposed
quantization bit rate=4

basis=8

Proposed
quantization bit rate=6

basis=6

Proposed
quantization bit rate=8

basis=4

Figure 6. Semantic segmentation results in Cityscapes

a quantization bit depth of 6. The comparison results are

shown in Table 2. Although Deep Compression had excel-

lent compression performance, its recognition computation

was no faster. XNOR-Net had superior acceleration scaling

performance and compression performance, but its recogni-

tion accuracy was much lower. The proposed method had

worse acceleration scaling and compression performance

than the other methods, but maintained its recognition ac-

curacy while simultaneously achieving a high acceleration

scale factor and model compression.

4.2. Cityscapes semantic segmentation task

We performed an evaluation of semantic segmentation

using the Cityscapes Dataset[3]. The Cityscapes Dataset is

a very large segmentation dataset. In this experiment, we

performed the evaluation using the 500 verification sam-

ples. For the network model, we used SegNet[18]. For

the model parameters, we used published learned param-

eters, and fine tuning was not performed. Figures 5 and 6

show the recognition performance when using Cityscapes.

With a quantization bit depth of 6 and a basis rank of 6, we

achieved an acceleration scale factor of approximately 1.73

and compressed the model size from approximately 112.25

MB to approximately 21.23 MB. In this case, the rate of

error increase was approximately 2.75%.

5. Conclusion

We have proposed a method able to accelerate inference

computation while compressing model sizes, using exist-

ing network models without the need for retraining. The

method compresses memory use by converting weightings

from each layer from real-valued parameters to binary pa-

rameters, and accelerates inference computation by replac-

ing real-valued inner product calculations with binary val-

ued inner product calculations using logical operations and

bit counting. Using a quantization bit-depth of 6 and basis

rank of 6, AlexNet model sizes were reduced by approxi-

mately 80%, and speed increased by a factor of 1.79. In

this case, error rates increased by 1.20%. With VGG-16,

model sizes reduced by 81%, and speed increased by a fac-

tor of 2.07. In this case, error rates increased by 2.16%. In

the future, we plan to increase approximation accuracy and

reduce the increases in error rates.

References

[1] M. Ambai and I. Sato. SPADE: Scalar Product Accelerator

by Integer Decomposition for Object Detection. In ECCV,

2014.

[2] F. N. Candela, M. W. Moskewicz, K. Ashram, S. Han, W. J.

Dally, and K. Keutzer. SqueezeNet: AlexNet-level accuracy

71101

with 50x fewer parameters and <1MB model size. arXiv

preprint arXiv:1602.02830, 2016.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[4] M. Courbariaux and Y. Bengio. BinaryNet: Training Deep

Neural Networks with Weights and Activations Constrained

to +1 or -1. arXiv preprint arXiv:1602.02830, 2016.

[5] M. Courbariaux, Y. Bengio, and J. David. BinaryConnect:

Training Deep Neural Networks with binary weights during

propagations. arXiv preprint arXiv:1511.00363, 2015.

[6] R. Girshick. Fast R-CNN. In Proceedings of the Interna-

tional Conference on Computer Vision (ICCV), 2015.

[7] S. Han, H. Mao, and W. J. Dally. Deep Compression:

Compressing Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding. In Proceedings of the In-

ternational Conference on Learning Representations (ICLR),

2016.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016.

[9] I. Hubara, D. Soudry, and R. E. Yaniv. Binarized Neural

Networks. arXiv preprint aiXiv:1602.02505, 2016.

[10] L. Jonathan, S. Evan, and D. Trevor. Fully Convolutional

Networks for Semantic Segmentation. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2015.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 1097–1105. Curran Associates, Inc., 2012.

[12] R. Mohammad, O. Vicente, R. Joseph, and F. Ali. XNOR-

Net: ImageNet Classification Using Binary Convolutional

Neural Networks. European Conference on Computer Vision

(ECCV), 2016.

[13] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:

Towards Real-Time Object Detection with Region Pro-

posal Networks. In Neural Information Processing Systems

(NIPS), 2015.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[15] P. H. T. Sam Hare, Amir Saffari. Efficient Online Structured

Output Learning for Keypoint-Based Object Tracking. In

the Proceedings IEEE Conference of Computer Vision and

Pattern Recognition (CVPR), 2012.

[16] K. Simonyan and A. Zisserman. Very Deep Convolutional

Networks for Large-Scale Image Recognition. In Proceed-

ings of the International Conference on Learning Represen-

tations (ICLR), 2015.

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[18] B. Vijay, K. Alex, and C. Roberto. SegNet: A Deep Convo-

lutional Encoder-Decoder Architecture for Image Segmenta-

tion. arXiv preprint arXiv:1511.00561, 2015.

[19] Y. Yamauchi, A. Mitsuru, S. Ikuro, Y. Yoshida, and H. Fu-

jiyoshi. Distance Computation Between Binary Code and

Real Vector for Efficient Keypoint Matching. Information

Processing Society of Japan Transactions on Computer Vi-

sion and Applications (CVA), 5:124–128, 2013.

81102

