
KUROKAWA, ET AL: ACCELERATING COMPUTATION OF EXEMPLAR-SVM 1

Accelerating Computation of Exemplar-SVM
by Binary Approximation based on Matrix
Decomposition

Takato Kurokawa1

kuro@vision.cs.chubu.ac.jp

Yuji Yamauchi1

yuu@vision.cs.chubu.ac.jp

Mitsuru Ambai2

manbai@d-itlab.co.jp

Takayoshi Yamashita1

yamashita@cs.chubu.ac.jp

Hironobu Fujiyoshi1

hf@cs.chubu.ac.jp

1 Machine Perception And
Robotics Group,
Chubu University
Aichi, JPN

2 Denso IT Laboratory, Inc.
Sibuya cross tower 28th Floor
2-15-1 Shibuya Shibuya-ku
Tokyo, JPN

Abstract

The Exemplar-SVM (E-SVM) is a learning method based on exemplar that uses only
one positive sample and a substantial number of negative samples. In the detection stage,
it is possible to detect the location of the target object and estimate the attribute by trans-
ferring the attribute of the nearest exemplar. The use of E-SVM classifiers leads to very
high computational cost because it is necessary to compute the inner products of weight
vectors for multiple classifiers and an input feature vector. For accelerating the com-
putation of E-SVM, we propose binary approximation based on matrix decomposition.
First, we stack the E-SVM’s weight vectors as a matrix. Then, we decompose the matrix
into common binary basis vectors and real-valued coefficient vectors for computing the
approximated inner products by logical operation. We also introduce early rejection by
cascade structure classifier into the proposed method. The evaluation experiments show
that the computation time of the proposed method is lower by a factor of 200 than that of
the conventional E-SVM.

1 Introduction
For robust object detection in the various appearances, Exemplar SVM [11] trains classi-
fiers such that each instance sample (exemplar) is discriminated from the other samples.
The E-SVM classifier has the capability of estimating the attributes of detected objects by
transferring the attributes of the nearest exemplar. The E-SVM is also used for 3D object de-
tection from point-cloud data in order to estimate 6D object pose [15]. Kobayashi proposed
the optimization of the cost parameters for the highly accurate classification of the E-SVM
[9]. Also, Modolo proposed an efficient optimization method for calibration by joint calibra-
tion [12]. In the training stage of E-SVM, it is necessary to construct classifiers individually
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Figure 1: Relationship between the computation time and the number of exemplar.

Figure 2: Weight vector decomposition in the E-SVM classifier.

for each positive sample as exemplar. In the detection stage, we apply a raster scanning
manner to all trained E-SVM classifiers to compute the classification score. This is why the
E-SVM-based object detection needs high computational cost. The computational cost of
the E-SVM are increases with increasing number of exemplars as shown in Fig. 1.

Our aim with this study is to accelerate the score computation of the E-SVM. Our
work was inspired by recent researches on binary approximation such as binary hashing
[7][17], binary descriptors [14][10][2] and vector decomposition [8][1][19]. We stack the
weight vectors wi (i = 1,2, . . . ,E) of each linear SVM to obtain a weight matrix W =
(w1,w2, . . . ,wE) and then decompose the matrix into binary basis vectors that are common
to all exemplars and scaling coefficient vectors, as shown in Fig. 2(b). If the feature vector is
binary, it can be approximated by calculating of the inner product of the binary basis vectors
and the real-valued coefficients. The inner product of the binary feature vector and binary
basis vectors is computed by using logic operations and bit counting. This makes it possible
to calculate the classification score in a very short time. Also, from the inner product with a
coefficients that have a small number of elements, the error relative to the classification score
can be reduced while maintaining accuracy. Furthermore, introducing early rejection into the
classification process reduces the number of calculations and achieves high-speed E-SVM
object detection. Our method can significantly reduce the computation time as shown in Fig.
1. The computation time of the proposed method is independent of the number of exemplars
in the case of that exemplars have a high correlation to each weight vectors.

1.1 Related works

The methods proposed for increasing classification processing speed include two approaches:
reducing the number of calculations and approximation. The first approach includes face
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detection with a cascade classifier structure, which was proposed by Viola et al. [16].
The other approach, approximation, includes binary hashing [5] and binary approximation
[8][1][3][19]. Dean et al. have proposed a binary hashing-based method that restricts the
classifiers to which extracted features are input [5]. Hare et al. proposed binary approxima-
tion of classifier calculations by decomposing the weight vector of the classifier to binary
basis vectors and scaling coefficients [8]. This method approximates the inner product cal-
culations in the classification process to achieve faster processing. Cheng et al. proposed
high-speed object detection at 300 fps using binary approximation [3]. Efficient methods
of vector decomposition for binary and ternary approximation have been proposed [19][1].
Yamauchi et al. proposed a method of vector decomposition by exhaustive search [19]. This
achieves an even lower error in decomposition than that of Hare et al. [8]. Ambai et al.
introduced a ternary approximation and data-dependent decomposition [1].

These vector decomposition methods described above are also easily applied to E-SVM
as shown in Fig. 2(a). Since the vector decomposition is applied to each exemplar, the
number of calculations of the inner product with the feature vector increases in proportion
to the number of exemplars. The proposed method called matrix decomposition can reduce
the number of calculations by using common binary basis vectors for E-SVM classification
as shown in Fig. 2(b). Furthermore, we build cascade structure by successive matrix de-
composition and apply early rejection by cascade structure in the raster scan manner at the
detection stage.

1.2 Contributions
In this paper, we propose a method for decomposing a matrix for accelerating computation
of Exemplar-SVM. The proposed method has three key features as summarized below.

1. Matrix decomposition: The weight matrix W of E-SVM as shown in Fig.2(b) is
decomposed into a coefficient vectors and a binary basis vectors that are common to
all exemplars.

2. Grouping of highly correlated weight vectors: Because the binary basis vectors ob-
tained by matrix decomposition are common to all of the exemplars, there is little
effect for reducing of permissible error when there is no correlation among the exem-
plars. Therefore, the highly correlated weight vectors are grouped together to achieve
reduction of the permissible error by matrix decomposition. This makes it possible to
reduce the number of calculations for the inner product of the binary basis vectors and
input feature vector.

3. Early rejection by cascade structure: A classifier cascade is constructed by suc-
cessive matrix decomposition. Introducing a rejection decision at each stage in the
cascade reduces the computation for the non-target class in the detection processing.

2 Binary approximation based on vector decomposition
The classification score of linear SVM is computed by

F(x) = sign[wTx+b], (1)

where x∈ {−1,1} is a binarized feature vector such as B-HOG, and w∈RD is a weight vec-
tor of the linear support vector machine (SVM) [4]. The B-HOG features are computed by
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thresholding real valued-HOG features. The papers[1, 18] reported that the B-HOG features
have almost same classification performance as that of real-valued HOG features. Gener-
ally, the linear classifier classifies the detection object classes and the non-detection object
classes by thresholding the output of the classification function F(x). Linear SVM takes a
lot of time to classify the classes because it needs to calculate the inner product between
the input feature vector and weight vector. For such problems, binary decomposition that
decomposes the weight vector into binary basis vectors and coefficient vector to accelerate
classification by approximating the inner product has been proposed [8][19][1].

Binary approximation decomposes the weight vector w of classification function F(x)(Eq.
(1)) into binary basis vectors M = (m1,m2, · · · ,mk) ∈ {−1,1}D×k and coefficient vector
c = (c1,c2, · · · ,ck) ∈ Rk. The classification function F(x) can be approximated by

F(x) ≈ sign[cTMTx+b] (2)

:= sign

[(
k

∑
i=1

cimT
i x

)
+b

]
, (3)

where x is the binary vector x ∈ {−1,1}D. k is the basis number. Increasing k improves
the approximation of the classification score F(x). Because the calculation for the inner
product of binary vectors can be replaced by calculation of the Hamming distance, high-
speed calculation is possible.

Training for classifiers by Exemplar-SVM builds a weak classifier for the number of
exemplars E. In the detection stage, we compute all scores by inputting the feature vector
into each classifier. The exemplar of the classifier that has the highest score is then selected
as the final result. If the scores of all of the classifiers are low, the non-target class is output
as the final result. When the vector decomposition method is applied to E-SVM classifier,
the binary base vectors M are calculated for each class (Fig. 2(a)). Accordingly, the number
of times the inner product of feature vector x and Mc is calculated increases by a factor of
the number of exemplars in E for E-SVM classification.

3 Proposed Method
If there is high correlation among the exemplar weight vectors w, we can consider that the
binary basis vectors, M, are also similar. Therefore, we propose a matrix decomposition
method in which the weight vectors of all the classes are represented as a single matrix, W,
and that matrix is decomposed into a binary basis vectors M that are common to all of the
exemplars and coefficient vectors C. By using the common binary basis vectors, it is possible
to obtain the inner product of the input feature vector x and M in a single calculation, so
high processing speed can be achieved. A further increase in processing speed is achieved
by introducing early rejection based on a cascade E-SVM classifier architecture.

3.1 Matrix decomposition
First, a classifier for each class is trained by SVM to obtain a weight vector w. Next,
the weight vectors for all of the exemplars in E are stacked to construct a weight matrix
W = (w1,w2, · · · ,wE) ∈ RD×E as shown in Fig. 2(b). The constructed weight matrix W is
decomposed into binary basis vectors M = (m1,m2, · · · ,mk) ∈ {−1,1}D×k and coefficient
vectors C = (c1,c2, · · · ,cE) ∈ Rk×E . We design a cost function P for the matrix decomposi-
tion. In the decomposition processing, M and C are optimized to minimize cost function P.
Cost function P is the difference between the weight matrix W and MC. The decomposition
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method is explained in detail below.
Matrix decomposition optimizes the binary basis vectors M and coefficient vectors C to

minimize Eq. (4).
P = ||W−MC||2F . (4)

The matrix decomposition algorithm is shown in Algorithm 1 which mutually optimizes M
and C to minimize Eq. (4). C is optimized by applying Eq. (5), which is obtained by the
least squares method, fixing M constant.

C = (MTM)−1(MTW). (5)

When C is fixed, the value of M is determined to minimize P that updated by testing binary
pattern. Then, the number of combinations required for one iteration is D× 2k because M
can be optimized at each dimension. This procedure is repeated until there is convergence
of the value of the cost function P. In this optimization, M and C are iterated at L times by
changing the initial value of M, in order to avoid the dependency on the initial value of M.
Algorithm 1 Matrix decomposition.

function matrix_decomposition (W, L, k)
for l = 1 to L do

Initialize Ml to a random choice from {-1,1}
Initialize Cl to a random real number.
repeat

C = (MTM)−1(MTW)
for i = 1 to D do

mi = arg min
a∈{−1,1}k

∥wi−aC∥2
F

end for
P = ||W−MC||2F

until P converges
end for
From {Ml} and {Cl}, the binary basis matrix and coefficient vectors for which the cost function P is minimum
are taken as M̂ and Ĉ
return M̂, Ĉ

3.2 Grouping of weight vectors in accordance with correlation
The matrix decomposition is most effective for weight vectors that are close to each other
because all of the exemplars are represented by single binary basis vectors M. In practice,
the vector distances for the weight matrix W that is to be decomposed are not necessarily
close for all exemplars. Also, the distance of the weight vector w before decomposition may
be close to the distance after decomposition. Therefore, the vectors that are to be decom-
posed are grouped in accordance with correlation as shown in Fig. 3 when decomposition
is performed. Here, the proposed method is characterized by two different points between
dictionary learning[13]. First in our method, the decomposed matrix M is a binary. Second,
in our method, coefficient vectors C within each group are not sparse. The method for con-
structing the cascade by grouping and matrix decomposition is described in Algorithm 2,
where the number of matrix decompositions equals to the number of basis k are performed
for each group. A normalized value for the distance between vectors is used in the grouping.
The normalization of the distance between vector wi(i = 1,2, . . . ,E) and vector w j( j =
1,2, . . . ,E) is shown in Eq. (6) and Eq. (7).

z = max{||wa|| a = i, j}. (6)

d = −
(
||wi−w j||

z
−1
)
. (7)
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Figure 3: Matrix decomposition with grouping: Colors indicate grouping of elements in
coefficient vectors.

Because the distance d is a real value of −1 ∼ 1, the weight vectors wi and w j are the
same when d = 1 and have the opposite directions when d = −1. In the grouping process,
the threshold value thcorre and d are used to group the vectors such that vectors for which
|d| > thcorre are placed in the same group. The vectors in the same group g are stacked
as matrix Wgroup

g . So, weight matrix will be W = (Wgroup
1 ,Wgroup

2 , · · · ,Wgroup
G ) ∈ RD×E .

Therefore, all numbers of basis K are G× k.

Algorithm 2 Matrix decomposition by grouping weight vectors in accordance with correla-
tion.

function matrix_decomposition_with_grouping (W, L, k)
Calculate the distances between the weight vectors in the weight matrix W with Eqs. (6) and (7).
Grouping weight vector
{Wgroup

1 ,Wgroup
2 , · · · ,Wgroup

G }←W
for g = 1 to G do

Optimize M̂g and Ĉg by calling matrix_decomposition (Wg, L, k)
end for
return {M̂}, {Ĉ}

3.3 Faster classification by approximated inner product calculation
and early rejection

Our method uses the early rejection approach in the classification process to reduce the num-
ber of approximate inner product calculations needed for the non-target class. We therefore
describe a method for constructing a cascade of successive matrix decompositions and an
early rejection method using a cascade of classifiers in the following sections.

At the detection stage, we calculate the inner product of x and MC in the detection stage.
Here, we must use all basis vectors for approximating the computation of inner product be-
cause M and C are optimized by the exhaustive algorithm. Therefor, the approximation
calculation cannot be aborted by using each basis vectors. The algorithm is shown in Al-
gorithm 3., where M1 and C1 are calculated by applying the matrix decomposition method
to the weight matrix W in the first stage. In the second and subsequent stages, the matrix
decomposition method is applied to the residual matrix R. The residual matrix R calculate
by difference between Mn−1Cn−1 of the previous stage and W.

We performed exemplar classification with a cascaded classifier constructed with Algo-
rithm 3. The cascaded classifier calculates the approximated classification score by using
the sum of the inner product between a binary feature x and the MC at each stage as shown
in Fig. 4. The approximation error can be reduced by increasing the number of stages N.
However, for some of the calculations, it is possible to classify sufficiently determination of
negative sample when cascade n(n = 1,2, . . . ,N) is less than N. For early rejection, we need
to terminate the approximated score calculation at less than stage N. Rejection of non-target
classes is decided by threshold processing of a score sn, that is calculated from the approx-
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Figure 4: Early rejection in the cascade structure

imate inner product at each stage n. Here, the threshold t ∈ RE adopts a value that ensures
the calculated score at the N stage will not be less than -1 because E-SVM is determined to
be negative when the score is less than -1.

Algorithm 3 Algorithm for constructing a cascaded classifier by matrix decomposition
method.
Require: W, k, N，L

R←W
for n = 1 to N do

Optimize M̂n and Ĉn by calling matrix_decomposition_with_grouping (R, L, k)
R← R−M̂nĈn

end for
return {M̂}, {Ĉ}

4 Evaluation experiments
To test the effectiveness of the proposed method, we compared it with the conventional vector
decomposition methods [8][19].

4.1 PASCAL VOC 2007 evaluation
We evaluate computation time and classification accuracy for detection task with dataset in
PASCAL VOC 2007[6] in these categories: bicycle, car, and train. For comparing the time
required for classification, a personal computer equipped with an Intel Xeon CPU X7542
running at 2.67 GHz. We use the number of basis of the proposed method without grouping
that is 11. The basis of the proposed method with grouping is 8.

We first investigate the relationship between the computation time and the number of
exemplars. The details of the number of basis vectors and cascade stages we used in the ex-
periments are as follows: bicycle: proposed method(W/O grouping) # of cascade stage=20,
# of basis=11. proposed method (with grouping) # of cascade stage=25, # of basis=8. car:
proposed method(W/O grouping) # of cascade stage=50, # of basis=11. proposed method
(with grouping) # of cascade stage=50, # of basis=8. train: proposed method(W/O group-
ing) # of cascade stage=40, # of basis=11. proposed method (with grouping) # of cascade
stage=32, # of basis=8. Fig. 5 shows the computation time for conventional E-SVM, vector
decomposition [8][19], and the proposed method with changing the number of exemplars.
The number of basis vectors and cascade stages was selected to maintain the original classi-
fication accuracy. We evaluate the computation time when the false positive rate is 0.01 with
true positive rate is within 0.05. Fig. 5(a) on the top shows a comparison of E-SVM, and the
proposed method, which is matrix decomposition with grouping, when category is bicycle.
The proposed method is about 130 times faster than E-SVM when the number of exemplars
is 80. Fig. 5(b) on the top shows a comparison of E-SVM and the proposed method, which
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Figure 5: Result of number of exemplars vs. computation time: Figure on the top shows a
comparison of E-SVM and the proposed method. Figure on the bottom shows a comparison
of the conventional vector decomposition method and proposed method

Figure 6: Relationship between classification accuracy and number of basis: True positive
rate were plot when the false positive rate = 0.01.

is matrix decomposition with grouping, when category is car. The proposed method is about
200 times faster than E-SVM when the number of exemplars is 250. Fig. 5(c) on the top
shows a comparison of E-SVM, and the proposed method, which is matrix decomposition
with grouping, when category is train. The proposed method is about 136 times faster than
E-SVM when the number of exemplars is 100. Fig. 5 on bottom shows a comparison of the
conventional vector decomposition methods [8][19] and the proposed method. The proposed
method is about eight times faster than vector decomposition based on exhaustive algorithm
[19]. From Fig. 5, the relationship between computation time and the number of exemplars
in E-SVM and the vector decomposition method is linear. Therefore, it takes an immense
amount of computation time for classification, when the number of exemplars is large. On
the other hand, the processing time of the proposed method is independent of the number
of exemplars because the proposed method can save the binary basis vectors. From this, we
can say that the proposed method is effective when the number of exemplars is large.

We evaluate for classification accuracy and number of basis. Fig. 6 shows the relation-
ship between classification accuracy and number of basis. From Fig. 6, the proposed method
has an improvement in classification accuracy compared to vector decomposition when the
number of basis is smaller. This means that the proposed method has a small computation
cost and less memory usage for classification computation.
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Figure 7: Data set for toy problem & Comparison of detection accuracy.

4.2 Toy problem evaluation

In this section, we discuss about the following two points: 1. effectiveness of matrix decom-
position, and 2. effectiveness of grouping of weight vectors.

We varied the correlation in the matrix that is decomposed and compared the approxima-
tion errors of the conventional method and the proposed method (table 1). For a matrix of
1,158 dimensions and 27 classes, the correlation between classes was varied from 0.1 to 0.7.
The mean square errors when the number of bases was 10 for each stage of the cascade in the

Table 1: Approximation errors.
Method correlation between weight vectors

0.10 0.30 0.34 0.50 0.70
Vector decomposition [8] 7.16 7.10 7.17 7.18 7.92
Vector decomposition [19] 6.02 5.97 5.99 6.00 5.99

Proposed method 11.37 7.89 7.14 4.84 1.97

proposed method, and the number of bases per class was 3 are presented in table 1. We can
see that a decomposition accuracy that is the same or higher than that for the conventional
method is possible for correlation values of 0.34 and above. Because the average correlation
of the weight matrix W to be decomposed in the evaluation tests is 0.38, the approximation
error is considered to be lower than that for the conventional method.

In this experiment, we investigate the effectiveness of grouping of weight vectors with
two datasets. Dataset 1 deals with 27 traffic sign images that have similar shapes as shown in
Fig. 7(a). Dataset 2 deals with 27 traffic sign images that include different shapes as shown
in Fig. 7(b). For the positive training samples, we used the traffic sign images modified by
changes in geometry and illumination, addition of noise, and compositing. For the samples,
we used patch images taken from background images. The training was performed with 500
positive samples and 5,000 negative samples. In evaluating the classification accuracy, 5,000
positive samples and 200,000 negative samples from published data sets were used.

We compare the detection accuracy and number of basis of binary basis vectors as shown
in Fig. 7(c) and (d). In dataset 1, the both the proposed methods have an improvement of
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classification accuracy compared to that of vector decomposition when the number of basis
is smaller from Fig. 7(c). In dataset 2, the classification accuracy of matrix decomposition
without grouping was degraded compared to vector decomposition when the number of basis
is smaller from Fig. 7(d). On the other hand, the matrix decomposition with grouping has an
improvement in classification accuracy compared to that of vector decomposition and matrix
decomposition without grouping, when the number of basis is smaller from Fig. 7(d). From
this, the matrix decomposition with grouping is effective when the weight vectors are not
closed to each other like in dataset 2.

5 Conclusion
We confirmed that the proposed method is capable of accelerating Exemplar-SVM by matrix
decomposition and early rejection by cascaded classifiers. For the problem of E-SVM classi-
fication, we have also shown that the proposed method is more effective when the similarity
among classes is higher. In future work, we will aim for fast classification to make early
decisions for target objects as well. The proposed approach can be extended to enable fast
computation of deep convolutional neural network by applying multi-level quantization.
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