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Abstract—We propose a scale-aware semantic segmentation
method specifically for small objects. The contributions of this
method are 1) to feed the features of a small region by using
multiple skip connections, and 2) to extract context from multiple
receptive fields by using multiple dilated convolution blocks. The
proposed method has achieved high accuracy in the Cityscapes
dataset. In comparison with state-of-the-art methods, it has
achieved a comparative performance in category IoU and iIoU
metrics.

I. INTRODUCTION

Convolution neural networks (ConvNets) [1] achieve very
high accuracy in object recognition [2] [8] [16]. In addition,
these types networks can also be employed for object detection
[5] and semantic segmentation [9] [10] [11] [12] [13]. Se-
mantic segmentation is the task of recognizing object classes
in an image pixel-by-pixel. In an earlier study, a bottom-up
method was proposed in which clustering is performed using
hand-crafted features, such as color or gradient histograms,
and regions that have similar features are concatenated [3].
Advanced methods such as the Fully Convolutional Neural
Network (FCN) [9] and encoder–decoder architectures such
as Segnet [11] have improved the performance of semantic
segmentation. Various encoder-coder-based methods have been
proposed [12][18] [20] [21].

Semantic segmentation can be applied to pedestrian or
vehicle region extraction for autonomous driving systems,
including the self-driving robot system. One critical problem
is the variation of object size. Objects of the same class can
have different sizes and appearances depending on the position
of the object relative to the camera. To address this problem,
we have proposed using multiple dilated convolution blocks to
deal with various object sizes. Dilated convolution convolves
elements separated by a certain distance in the convolution
process. We also propose using multiple skip connections to
obtain robustness against appearance changes. The use of mul-
tiple skip connections is inspired by those used in the Residual
Network (ResNet) [16], which achieves high accuracy in object
recognition tasks. One method that has skip connections is U-
Net, which connects the correspond layers from the encoder
to decoder. Our multiple skip connections consist of 1) a
skip connection in the encoder like ResNet, 2) a skip and
concatenate output of multiple dilated convolution blocks, and
3) a skip connection like U-Net. The proposed method, which
employs multiple dilated convolution blocks and multiple skip

connections, is able to extract fine segmentation results of
small objects.

II. RELATED WORKS

Highly accurate network structures have been proposed for
object recognition by deep learning through ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). AlexNet,
which is composed of 5 convolution layers and 3 fully
connected layers, is a pioneering network [2]. It employs
a rectified linear unit (ReLU) as an activation function and
Dropout to improve generalization. In addition, the network
uses GPUs to learn deep network structures in practical time.
VGG16 is a deeper network composed of 13 convolution layers
and 3 fully connected layers [8]. In this network, the filter
size of each convolution layer is set to 3× 3, and the pooling
layer is placed after convolution layers. By fixing the small
filter size, it is possible to reduce the number of parameters
despite having a deeper structure than AlexNet. GoogleNet
has 22 layers in which there are 9 inception modules that
perform convolution processing with different filter sizes in
parallel[6]. In an Inception module, by combining feature maps
obtained by convolving filters of 1 × 1, 3 × 3, or 5 × 5,
different features of the region of interest can be captured
at the same time. ResNet has 152 layers and a very deep
network structure [16]. For very deep network structures, there
is a risk of error disappearance and explosion and a lack
of accuracy improvement. In ResNet, a skip connection that
bypasses multiple layers can propagate errors back to near the
input layer. Also, at the time of inference, fine information near
the input layer can be propagated forward by skip connections.
Semantic segmentation learns network that recognizes class
labels for each pixel end-to-end. A network used for this task
is based on these object recognition network structures. A fully
convolutional network (FCN) used a fine-tuned pre-trained
VGG16, which learned object recognition using Imagenet [9].
To accommodate different input data sizes, the fully connected
layers are replaced with convolution layers which have a 1×1
filter. To capture global information of the entire image and
local information of each class, skip connection is adopted.
Layers close to the input layer of the network structure capture
fine information of the image. However, by repeating the
pooling, the feature maps become small in size and lack
fine information. The skip connection concatenates output
feature maps and intermediate feature maps to obtain fine
class labels. Segnet has a encoder–decoder network structure
[11]. The encoder has convolution and pooling layers based



Fig. 1. Network architecture of our semantic segmentation. The colored boxes denote convolution (blue), pooling (gray), upsampling (yellow), dilated convolution
(orange), and skip connection (green) layers. The network is based on encoder - decoder structure. The multiple dilated convolution layers are arranged between
encoder and decoder. skip connection are introduced at them.

on the VGG16 structure and extracts features from the input
image. The decoder has a structure paired with the encoder that
consists of deconvolution and upsampling layers. In addition,
the pooling indices are recorded, and the feature value is
substituted to the recorded position in the upsampling layer,
with 0 being substituted for the other positions. Thus, detailed
class labels can be recognized from the decoded features. CRF-
RNN is a post-process network that inputs the probability
map of each class obtained by FCN or SegNet and performs
more detailed segmentation[10]. It repeatedly performs error
correction of local segmentation considering the probability
distribution of each class between neighboring pixels. The
CRF-RNN can be learned end-to-end with the network that
outputs the probability map of each class. While CRF-RNN fo-
cuses on neighboring pixels, dilated convolutions take account
of global information [15]. Dilated Convolutions perform the
convoluting position sparsely. Consequently, it is possible to
perform convolutions over a wide region.

III. PROPOSED METHOD

We propose a network that can segment the details of small
objects. The proposed network structure is shown in Figure I.
The basis network is an encoder–decoder structure. Multiple
skip connections are introduced at the encoder, decoder, and
between them to keep local information. To perceive global
information, multiple dilated convolution blocks are arranged
between the encoder and decoder. The skip connection of the
encoder is inspired by that of the ResNet. The skip and input
feature maps are input with the feature maps of the following
layers into the multiple dilated convolution blocks. These
blocks also have skip connections that merge each block ’s
feature map. Furthermore, so that the detailed information of
the object is propagated to the decoder, the feature maps of
the encoder are connected to the layer on the decoder which
is paired. Each skip connection performs convolution of 1×1.
The multiple dilated convolution blocks consist of multiple
dilated convolution layers. In addition, each convolution layer
performs batch normalization [14], which reduces variations
in data between batches in mini-batch learning. It accelerates
the convergence of learning and becomes robust to variations
such as brightness.

TABLE I. STRUCTURES OF EACH LAYER. THE NETWORK HAS 10
LAYERS IN THE ENCODER, 5 LAYERS IN MULTIPLE DILATED

CONVOLUTION BLOCKS AND 3 LAYERS IN THE DECODER.

Layer Filter size # of filters Activation function Pooling
1 3 × 3 32 ReLU –
2 3 × 3 32 ReLU max pooling
3 3 × 3 64 ReLU –
4 3 × 3 64 ReLU max pooling
5 3 × 3 128 ReLU –
6 3 × 3 128 ReLU –
7 3 × 3 128 ReLU max pooling
8 3 × 3 256 ReLU –
9 3 × 3 256 ReLU –

10 3 × 3 256 ReLU –
11 3 × 3, s=2 512 ReLU –
12 3 × 3, s=4 512 ReLU –
13 3 × 3, s=8 512 ReLU –
14 3 × 3, s=16 512 ReLU –
15 3 × 3, s=32 512 ReLU –
16 3 × 3 256 ReLU upsampling
17 3 × 3 128 ReLU upsampling
18 3 × 3 # of classes ReLU upsampling

A. Basis network

As shown in Figure I, the encoder side consists of 10
layers of convolution layers and the decoder side consists of
3 deconvolution layers. Filter sizes and number of filters for
each layer are shown in Table I. The filter size in each layer
is 3× 3, and the number of filters is doubled after 2× 2 max
pooling. The decoder performs deconvolution for the number
of times of pooling. For each deconvolution, the feature map
is upsampled by a factor of 2 and convolution is performed.
The filter size of the decoder is 3 × 3. Segnet has the same
number of convolution layers as the encoding side at each
deconvolution. Unlike the structure of Segnet, our network
has only one convolution layer at each deconvolution. ReLU
is applied as the activation function of each layer in both the
encoder and decoder.

B. Multiple dilated convolution blocks

Multiple dilated convolution blocks that capture the global
features are arranged between the encoder and the decoder.
Dilated convolution is a process that separates elements to be
convoluted with stride, as shown in Figure 2. When 3 × 3



Fig. 2. Conventional convolution and dilated convolution. Filters are applied
densely to elements in conventional convolution and applied sparsely with
stride s to those in dilated convolution.

filter convolves to input maps, conventional convolution is
performed on a dense 3×3 region as shown in Figure 2(a). The
input value and the filter value are multiplied for each element
to obtain the corresponding value. On the other hand, dilated
convolution has stride, which is an interval between convolved
elements. When it is set to 1 as shown in Figure 2(b), 3 × 3
filter is applied to a 5 × 5 region. When stride is set to 2,
the convolution is performed on a 7 × 7 region as shown in
Figure 2(c). The dilated convolution is a sparse connection to a
wider region than that of conventional convolution. We stack 5
dilated convolution layers with different strides. Although the
dilated convolution has the same filter size as the conventional
convolution, it is able to perceive a wider range to capture
global context by stacking them,

C. Multiple skip connections

In the ResNet, errors can be propagated close to the input
layer even in a deep network structure by introducing skip
connections. In FCN and U-Net, high-resolution segmentation
results are obtained using the feature map of the middle layer.
This idea can also be regarded as a kind of skip connection. In
our network, the skip connection of the ResNet is introduced
to the encoder. The skip connection of the FCN, which is
connected between the encoder and decoder, is also introduced
to our network. In the skip connection of the encoder, the value
of each element of the feature map is added. When the number
of channels of the feature map is inequivalent, the convolution
with 1×1 is performed a number of times based on the number
of channels of the upper layer to adjust the number of channels.
In the case of adding the 32-channel feature map in the 2nd
layer to the 64-channel feature map in the 4th layer, 64 of the
1 × 1 filters are applied to the channel feature maps in the
2nd layer to obtain a feature map of 64 channels. In the skip
connection of FCN, the feature map of the encoder is added
to the feature map of the decoder for each element. While
skip connections such as those in the ResNet concatenate
feature maps, it is known that concatenation is equivalent
to addition are [19]. By performing a skip connection by
adding, it is possible to suppress the amount of memory
usage without increasing the number of feature maps. Through
these skip connections, detailed information on the object
can be propagated through two paths. We also introduced
skip connections that merge the feature maps of each dilated
convolution layers. It is possible to input feature maps that
capture information in various respective regions.

D. Learning of our network

The proposed network is able to learn using the end-to-
end approach. Unlike conventional ConvNet-based semantic

segmentation methods, it does not use a pre-trained network.
This makes it possible to flexibly change the network structure.
The mini-batch size is 16. Adam [7] is used for the learning
optimization method. A cropped region with a fixed size from
a random image is input during the learning process. It is
possible to consider various scenes and augment variation of
the learning data. The input size is 720×720, which is cropped
from 0.75 times to 1.25 times of the size and is resized. Our
method is implemented by the Chainer framework and learned
with the NVIDIA DGX-1. Because the memory size of the
Tesla P100 in the DGX-1 is 16 GB, the mini-batch size that
can be processed with one GPU is 2. Therefore, mini-batch
learning is performed in data-parallel by using 8 GPUs.

IV. EXPERIMENTS

We evaluated the proposed network using the Cityscapes
dataset [17]. This dataset is composed of images taken in 50
cities in Europe during the day in fine weather and the 30
classes. Some classes frequently occur, therefore, 19 classes
were used for evaluation. The Annotation includes fine and
coarse annotations. While fine annotations are annotated in
detail in 5000 images, the coarse ones are rough annotations
that surround the area in 20000 images. In this experiment, we
used fine-annotation data. It includes 2975 images for learning,
500 images for validation, and 1525 images for testing. The
annotation data for the image used for testing is not published.
Testing results can be obtained by upload the result. Therefore,
in this experiment, comparison experiments are performed
using a validation dataset.

V. COMPARISON OF NETWORK STRUCTURES

TABLE II. COMPARISON RESULTS ON VALIDATION DATASET.
Multiple Dilation Multiple Skip Class[%] Category[%]

Convolution Blocks Connections IoU iIOU IoU iIoU
none none 54.9 37.8 83.6 73.2
use use 56.1 40.2 84.3 76.1
use none 67.3 45.8 87.8 74.1no skip
use use 72.5 52.5 89.2 78.2no skip
use use 73.0 55.6 89.2 81.9with skip

The evaluation result is shown in Table II. By introducing
skip connections in the encoder and between the encoder and
decoder, accuracy was improved from a plain encoder–decoder
structure from 2% to 3%. By introducing multiple dilated
convolution blocks without skip connection, the average class
IoU increased from 54.9% to 67.3%, and the average class
iIoU improved significantly from 37.8% to 45.8%. When both
multiple skip connections and multiple dilated convolution
blocks were introduced, the average category IoU was 89.2%
and the average category iIoU was 81.9%. These two processes
can greatly contribute to accuracy improvement.

VI. COMPARISON ON TEST DATASET

The comparison result is shown in Table III and Fig-
ure.3. As a result, the proposed method can obtain better
results compared with common segmentation methods, such
as Segnet and FCN, and with the method using dilated con-
volution. When compared with the state-of-the-art methods
(SegModel, ResNet - 38) recorded in the benchmark result



Fig. 3. Result images from test dataset of Cityscapes. First and third columns are input images and second and forth columns are our results.

TABLE III. COMPARISON RESULT ON TEST DATASET OF CITYSCAPES

Method Class[%] Category[%]
IoU iIoU IoU iIoU

SegModel 78.5 56.1 89.8 75.9
ResNet-38 [20] 78.4 59.1 90.9 81.1
Dilation10 [15] 67.1 42.0 86.5 71.1

FCN-8s [9] 65.3 41.7 85.7 70.1
Segnet basic [11] 57.0 32.0 79.1 61.9
proposed method 71.6 49.4 89.3 78.3

of Cityscapes, these methods are better on class IoU and
class iIoU. Our method achieves an equivalent accuracy to
the category IoU and category iIoU. Since the proposed
method can classify at the category level, the multiple dilated
convolution blocks and multiple skip connections can improve
the accuracy of semantic segmentation. The processing time
of our method is 600 ms using a GPU Pascal Titan X. The
movie of our semantic segmentation result are published on
https://vimeo.com/194006277.

VII. CONCLUSION

We proposed a semantic segmentation method with multi-
ple skip connections and multiple dilated convolution blocks.
The skip connections include one in the encoder like that in
ResNet one between the encoder and decoder like FCN, and
these connections merge the feature maps of each dilated con-
volution layer. We achieved segmentation with ahigher perfor-
mance than FCN and Segnet, which are common segmentation
methods, on the Cityscapes dataset. Moreover, compared to the
state-of-the-art methods, our network achieved an equivalent
accuracy on average category IoU and average category. How-
ever, if a class with a low frequency of occurrence appears
large, erroneous segmentation may be performed.
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