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Abstract—A part-based object detection method called de-
formable part models (DPMs) is known as a robust method
for detecting objects that have detection method for posture
variation. In the detection stage, the DPMs assume that all
parts are visible. If some parts of people are partially occluded
by an object such as a table or wall, detecting them becomes
difficult. This paper proposes a robust method for detecting
occluded humans to regress scores with a reduced influence of
occlusion. We apply 3D raster scanning to depth images for
finding occluded regions. We compute occlusion rates in each part
of humans as the occlusion rate from regions. We regress from the
DPM detection scores, DPM root scores, DPM part scores, and
occlusion rates as explanatory variables to enable detecting the
scores of humans with no occlusion. Using these detection scores
makes detecting humans easier. Experimental results show that
the precision of the proposed method was improved by almost
20% compared with that of conventional DPMs.

I. INTRODUCTION

Dalal et al. have proposed a method combining histograms
of oriented gradients (HOG) features and a support vector
machine (SVM)[1]. This method has been applied to object
detection in other categories as well as to human detection,
and is widely used. HOG features are local ones that focus on
the luminance gradient. There is a characteristic that absorbs
fluctuations in lighting and local position. Therefore, various
method of HOG-based object detection have been proposed
to achive high accuracy[2][3][4]. Among them, Felzenszwalb
et al. proposed deformable part models (DPMs)[5]. DPMs
are a part-based approach. This method captures appearance
features that include not only a person’s whole body but
also such parts as the hands and feet. DPMs are highly
accurate for human detection because they obtain robustness
against posture variation by learning the positional relationship
between the respective parts. Learning the models of DPMs
assumes that all of the parts of all can be observed. However,
a problem occurs when parts of the human body are occluded,
making detection by DPMs difficult.

Methods of adjusting the identification according to the
occlusion region by determining the occlusion area have been
proposed[4][6][7]. Wang et al. proposed a method to switch
the part detector that is applied according to the occlusion
region by clustering the regions[4]. Enzweiler et al. proposed
a method of assigning weights using the occlusion rates for the

Fig. 1. Visualization of the DPMsl

part-based classifier by detecting the occlusion region from the
distance information and movement information[6]. Ikemura
et al. proposed a method to assign weights against the weak
classifiers of Real AdaBoost using the occlusion rates obtained
from extractions of the occlusion area[7]. However, these
methods that assign weights for the scores of the discriminator
may not be detected correctly due to decreases in the detection
score that occur when the occlusion rate is high.

In this paper, we propose a score calculation method to
reduce the effect of occlusion using support vector regression
(SVR)[8] with occlusion rates and DPM scores as explanatory
variables. In this method, we get the occlusion rates and DPM
scores from depth images. Thus, even if occlusion occurs in
many areas of a person, an output close to the original score
can still be obtained.

II. DEFORMABLE PART MODELS [5]

DPMs are an object detection method that is part-based
and that corresponds to posture variation. In this chapter, we
describe the DPM discriminant function and the problem of
occlusion.



A. The discriminant function in DPMs

As shown in Figure 1, the DPM approach is composed of
a root filter, part filter, and spatial model. As shown in Figure
1(a), the root filter portrays the appearance features of the
human body. As shown in Figure 1(b), the part filter captures
the appearance features that enable discrimination of humans,
such as the head and legs. As shown in Figure 1(c), the spatial
model represents the positional relationship between the parts.
The deformation cost provided by the spatial model increases
if parts move from the reference positions.

Detection scores of DPMs with n parts are obtained from
the identification function shown in (1) by using these three
kinds of models.

score(p0) = F ′
0 · ϕ(H, p0)+

n∑
i=1

max
xi,yi

(F ′
i · ϕ(H, pi)− di· ϕd(dxi, dyi)) + b (1)

The first term is the score of the root filter, the second term
is the score of the part filter, and the third term is bias. F ′

i

(i = 0, ..., n) is the weight vector of each filter, and ϕ(H, pi)
(i = 0, ..., n) is the feature vector of the detection window
corresponding to each filter. Inner product F ′

i · ϕ(H, pi) (i =
0, ..., n) of these two vectors is the score in each filter. i is the
root filter when i = 0 and the part filter when i > 0. (dxi, dyi)
is the amount of movement from the reference position of each
part, as shown in (2).

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (2)

In addition, (dxi, dyi) is a quadratic function representing
the movement direction and amount of the part movement, as
shown in (3).

ϕd(dxi, dyi) = (dxi, dyi, dx
2
i , dy

2
i ) (3)

ϕd(dxi, dyi) is used in the calculation of the deformation
costdi · ϕd(dxi, dyi).

B. Problem due to occlusion

DPMs learn a model on the assumption that all the parts can
be observed. For that reason, if the occlusion occurs in part
of the human body, the detection becomes difficult. Therefore,
we investigated the effect of occlusion in DPMs. Figure 2(a)
shows a position of the root filter and part filter detected by
DPMs. When performing detection against Figure 2(a), the
detection score of the DPMs is 1.519. Then, the detection
score of the DPMs when artificial occlusion occurs as shown
in Figure 2(b), is -0.361. Table I shows each part scores,
including these detection scores. As shown in Table I, the
score of the root and parts 4-6 where occlusion has occurred
greatly decreases, and it can be seen that the detection score is
low. Thus, the detection score of DPMs significantly decreases
when occlusion occurs in the part area.

root
part 1
part 2
part 3
part 4
part 5
part 6

(a) no occlusion (b) occlusion

Fig. 2. Generated of the pseudo occlusion

III. PROPOSED METHOD

Herein, we describe the proposed method for score cal-
culation using regression with DPM scores and occlusion
rates. Figure 3 shows the flow of the method. It learns
the DPM approach, and weights and biases of SVR. In the
discrimination, we get explanatory variables from the input
depth image and obtain scores that decrease the effect of
occlusion using SVR.

A. Learning of DPMs and SVR

In the learning of the proposed method, we obtain the model
of DPMs and weights and biases of SVR.

1) Learning of DPMs: Because of the simultaneous need
to learn the weight vector of each filter F ′

i (i = 0, ..., n), a
four-dimensional vector that defines the deformation cost di
(i = 1, ..., n) and bias b, DPMs learn by using a latent support
vector machine (LSVM). The LSVM obtains β that minimizes
the objective function LD(Z)(β). (4) defines objective function
LD(Z)(β).

LD(Z)(β) =
1

2
∥ β ∥2 +C

n∑
i=1

max(0, 1− yifβ(xi)) (4)

In (4), the first term is optimized, and the second term is
the loss function. As shown in (5), β is a set of parameters
obtained by learning.

β = (F ′
0, ..., F

′
n, d1, ..., dn, b) (5)

D(Z) is a set of learning samples (xi, yi).
2) Learning of SVR: In the method, the response variables

are detection scores with no occurrence of occlusion, and the
explanatory variables are each of the scores and the occlusion
rates. Therefore, the learning of SVR needs two scores: one
where occlusion occurred and one where it did not. Thus, as
shown in Figure 4, we generate a learning sample by applying
an artificial occlusion. The explanatory variables are composed
of the detection scores, root scores, part scores, and occlusion
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Fig. 3. Flow of the proposed method

TABLE I
CHANGES IN THE SCORE OF DPMS DUE TO OCCURRENCE OF OCCLUSION

detection score root part1 part2 part3 part4 part5 part6
(head) (right shoulder) (left shoulder) (right foot) (left foot) (bottom foot)

no occlusion 1.519 1.535 0.984 0.494 0.343 0.265 0.313 0.340
occlusion -0.361 0.651 0.984 0.494 0.343 -0.018 -0.025 -0.057

(a) before generation

(b) after generation

Fig. 4. Images where occlusion occured

rates. (6) shows the explanatory variables in the case of DPMs
with 6 parts.

x = (score(p0), F
′
0 · ϕ(H, p0),

F ′
1 · ϕ(H, p1)− d1 · ϕd(dx1, dy1), ...,

F ′
6 · ϕ(H, p6)− d6 · ϕd(dx6, dy6),

O(p1) ∗ (F ′
1 · ϕ(H, p1)− d1 ·ϕd(dx1, dy1)), ...,

O(p6) ∗ (F ′
6 · ϕ(H, p6)− d6 ·ϕd(dx6, dy6))) (6)

pi is a variable that contains the coordinates (xi, yi) and size
(widthi, heighti) of the upper left corner of the parts filter.
We obtain the occlusion rate O(pi) of i parts using the (7).

O(pi) =

yi+heighti∑
k=yi

xi+widthi∑
l=xi

α(k, l)

widthi ∗ heighti
(7)

α(k, l) is a function that represents the presence or absence
of occlusion occurring on the coordinate (k, l). The output of
α(k, l) is 1 when occlusion occurs and 0 when it does not.

The learning of the SVR is to determine the weights and
biases for the objective function so that it is minimized. (8)
shows the expression for minimizing the objective function
[9].

arg min
w,b

C
N∑
i=1

E(ti − f(xi)) +
1

2
|w|2 (8)

E(ti − f(xi)) is an error function, as shown in (9).

E(α) =

{
0 (α ≤ th)
α− th (α > th)

(9)
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Fig. 5. 3D raster scanning

th is a threshold value of the allowable error.

B. 3D raster scanning[7]

In this study, we ran 3D raster scanning because of the use
of depth images. As shown in Figure 5, detection windows
were placed in 3D space and scanned along the floor (Yw = 0).
3D raster scanning performs efficient detection and does not
work against the agonistic position. Herewith, improvement in
the detection accuracy can be expected.

In 3D raster scanning, the detection window placed on a
three-dimensional space needs to be projected onto an image.
(10) shows a conversion equation from world coordinate 　
(Xw, Yw, Zw) to　 local coordinate (u, v).

 u
v
1

 = A[R|T]


Xw

Yw

Zw

1

 (10)

Extrinsic parameter [R|T] is composed of rotation matrix R
and translation matrix T. In this study, the position and height
of the camera are fixed. The position of the camera is fixed so
that the world coordinate and camera coordinate are parallel.
Therefore, the rotation matrix is a unit vector. In addition, for
the origin of the world coordinate and the floor surface of
the camera position, the translation matrix is [0,−height of
camera, 0]T . Thus, the extrinsic parameter of the camera in
this study is (11).

[R|T] =

 1 0 0 0
0 1 0 −1.4
0 0 1 0

 (11)

Intrinsic parameter A is composed of the focal length
represented in pixels (fx, fy) and the center coordinate of the
camera (cx, cy), as shown in (12).

A =

 fx 0 cx
0 fy cy
0 0 1

 (12)

(13) shows substituting the (11) and (12) with (10).

 u = Xw
Zw

fx + cx

v = Yw − 1.4
Zw

fy + cy
(13)

We conduct perspective projection conversions from the
detection window set at any of the world coordinates to image
coordinates by (13).

C. The judgment of occlusion and calculation of the occlusion
rate

If occlusion occurs in the detection object, obstacles exist in
front of the detection target. Therefore, if the value of the target
pixel is less than the distance of the detection window, we
can determine obstacles exist. The expression of performing
occlusion judgment of target pixel (k, l) is the following.

α(k, l) =

{
1 (Zw − z(k, l)) > t
0 (Zw − z(k, l)) ≤ t

(14)

z(k, l) is the distance value of coordinate (k, l), and Zw is a
distance value from the camera to the detection window. t is
a threshold, and it is 30 cm in this study. The occlusion rate
is obtained using the same expression as when learning.

D. Regression by SVR at the time of detection

Explanatory variables to be input into the SVR are 14-
dimensional parameters, as shown in (6). The occlusion rate
is obtained from each part detection window in the 3D raster
scanning. The score reduced effect of occlusion is determined
by the identification function f(x) of (15).

f(x) = x ·w + b (15)

w is the weight vector of the SVR, and b is the bias term.
From the aforementioned, we obtain the score reduced effect
of occlusion using regression.

IV. EVALUATION EXPERIMENT

We conducted evaluation experiments to compare DPMs
and proposed method. We evaluated the effectiveness of the
proposed method in two experiments using image generated
pseudo occlusion and actual images.

A. Evaluation of robustness to occlusion

We evaluated the performance against occlusion of the
proposed method and the conventional one.



Fig. 7. Detection example of conventional method and proposed method

1) Overview of the experiment: In this experiment, we
evaluated the detection rates when the occlusion rates changed.
The threshold used for detection was a value obtained by learn-
ing the DPMs. Image-generated pseudo occlusion and depth
images taken with Kinect V2 were used in the experiment.
We used 905 positive samples and 1008 negative samples for
DPM learning. Positive samples for DPM learning were depth
images obtained by cutting the human area where occlusion
did not occur. We used 1209 positive samples that generated
pseudo occlusion and 1300 negative samples for SVR learning.
We used the generation pattern and frequency of occlusion
from [10] to generate of occlusion. We used 800 positive
samples with generated pseudo occlusion for the evaluation.

2) Results of the experiment: Figure 7 shows the compar-
ison results of the detection rate for each occlusion rate. The
two methods do not have a big difference in the detection rate
until 10% occlusion. The proposed method obtained a 10%
higher detection rate than the conventional method at more
than 20% occlusion.

B. Evaluation of detection performance due to actual images

We evaluated in the actual images where occlusion occurred.
1) Overview of the experiment: In this experiment, we

compared the detection rates and false detection rates using
an evaluation dataset containing images of people where
occlusion occurred. The threshold used for detection was a
value obtained by learning the DPMs.

The DPMs and SVR for learning used a dataset of Section
IV-A1. We used 649 depth images obtained by KinectV2 in
the evaluation dataset. There was a 1088 human area in this
evaluation dataset.

2) Results of the experiment: We evaluated the real images
where occlusion occurred, as shown in Figure II. The false
detection rate of the proposed method was a little higher
than that of conventional method, but the detection rate of
the proposed method was almost 20% higher than that of
conventional method.

Figure 6 shows examples of the conventional method’s and
the proposed method’s detection.



Fig. 6. Comparison of detection rate with increasing occlusion area

TABLE II
PERFORMANCE COMPARISON WITH THE OCCLUSION AREA

detection rate[%] false detection rate[%]
conventional method 46.67 0.31
proposed method 65.62 4.47

As shown in Figure 6(a), the proposed method can detect
a person that cannot be detected by the conventional one.
However, as shown in Figure 6(b), false detection that does
not occur in the conventional method occurs in the proposed
method. The scores of the target that are false positive are
higher than the threshold, but they are lower than the scores
of the target that are true positive. Therefore, we can decrease
the occurrence false detections by changing the threshold.

V. CONCLUSION

This paper proposed a score calculation method that reduces
the effects of occlusion using regression. The method can
detect occluded humans using not only DPM scores but also
occlusion rates in explanatory variables. In future research, we
plan to enable achieving higher accuracy of detection perfor-
mance by reviewing the learning samples and parameters.
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