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Abstract

We propose a method for estimating multiple-hypothesis
affine regions from a keypoint by using an anisotropic
Laplacian-of-Gaussian (LoG) filter. Although conventional
affine region detectors, such as Hessian/Harris-Affine, iter-
ate to find an affine region that fits a given image patch,
such iterative searching is adversely affected by an initial
point. To avoid this problem, we allow multiple detections
from a single keypoint. We demonstrate that the responses
of all possible anisotropic LoG filters can be efficiently com-
puted by factorizing them in a similar manner to spectral
SIFT. A large number of LoG filters that are densely sam-
pled in a parameter space are reconstructed by a weighted
combination of a limited number of representative filters,
called “eigenfilters”, by using singular value decomposi-
tion. Also, the reconstructed filter responses of the sampled
parameters can be interpolated to a continuous representa-
tion by using a series of proper functions. This results in
efficient multiple extrema searching in a continuous space.
Experiments revealed that our method has higher repeata-
bility than the conventional methods.

1. Introduction
Keypoint matching is a fundamental task in applications

such as object recognition, image mosaicking, large-scale

image searching and 3D reconstruction. It involves find-

ing the correspondence between keypoints in a set of im-

ages, each having a different viewing angle, and other imag-

ing conditions. A common matching technique that is ro-

bust across conditions is scale-invariant keypoint detection

and matching [10, 11, 12, 14, 2]. Scale-invariant keypoint

detectors, such as Laplacian-of-Gaussian (LoG) [10, 11]

and Difference-of-Gaussian (DoG) [12], estimate scale by

determining the parameters at which the response value

of the LoG or DoG becomes an extremum from a scale

Figure 1. Comparison of multiple affine region estimation results.

Left column: detection from binary image. Central column: key-

point localization offsets. Right column: detection from grayscale

image.

space constructed by Gaussian kernels of different sizes.

The Hessian-Laplace and Harris-Laplace keypoint detectors

[14] also estimate scale using the same Gaussian scale space

as LoG and DoG. In addition, the Speeded-Up Robust Fea-

tures (SURF) [2] keypoint detector approximates second-

order derivative filters by using box filters. The drawback

of these scale-invariant methods, however, is that they lose

their invariance once anisotropic transformations occur. To

overcome this limitation, detecting keypoints that are invari-

ant under projective transformations are needed.

Affine region estimation, which detects a region invari-

ant to projective transformations, determines affine parame-

ters (σx, σy, θ) by convolving anisotropic Gaussian or LoG

filters. The Hessian-Affine and Harris-Affine methods [15]

estimate an affine region by using the iterative convolution

processing of an anisotropic Gaussian filter. This process-

ing often fails, however, to detect corresponding affine re-

gions between a pair of images when one of them suffers

from image deformation or keypoint offset. Furthermore, in

many cases, image textures can give multiple affine regions

for a single keypoint. Conventional affine region detectors
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are designed to find only one affine region, even if multiple

regions exist and would fail to match keypoints properly be-

tween a pair of images.

A solution to this problem is to detect all affine re-

gions for each keypoint by exhaustively convolving the LoG

filters with all keypoints. The naive implementation of

this scheme is intractable for most cases, though, because

anisotropic LoG filters have three parameters (σx, σy, θ).
In this study, we efficiently calculate the response values

of the anisotropic LoG filter by using the spectral SIFT [7].

The spectral SIFT detector solves eigenvalue problems for

Gaussian scale space and LoG space and decomposes each

set of filters into compact linear combinations of eigenfil-

ters. It enables scale-continuous filter responses to be calcu-

lated from only a few of the eigenfilter convolution results.

Spectral SIFT formulates the eigenproblem in the form of

a continuous integral equation and solves it by approximat-

ing a discrete filter decomposition without an unreasonable

amount of error. To approximate a large number of filters,

the separable filter [24] uses tensor decomposition. In our

proposed method we simply apply singular value decom-

position (SVD) to the affine space, which is composed of

several thousand different anisotropic LoG filters. We show

that the affine space is well reconstructed from few (dozens)

eigenfilters. This makes it tractable to compute all possible

LoG filter responses. Furthermore, our proposed method

can estimate multiple affine regions for a single keypoint

by finding the multiple extrema of anisotropic LoG filter re-

sponses. We successfully estimated multiple affine regions

under varying image conditions, as shown in Fig. 1.

2. Related works
A variety of corner detection methods have been pro-

posed, including Moravec corner detection [17], Harris cor-

ner detection [5], Good Features to Track [23], Smallest

Univalue Segment Assimilating Nucleus (SUSAN) [25],

and Features from Accelerated Segment Test (FAST) [21].

Scale-space filtering has been studied since the 1980s

[3]. Perona introduced the approximation of rotational

and scale-space filters by SVD [20], which is based on

the Steerable filter that uses a linear combination of ro-

tation filters [4]. Scale-invariant keypoint detectors that

generate isotropic support regions to compute descriptors

have also been designed, such as LoG [10, 11], DoG [12],

Hessian/Harris-Laplace [14] and SURF [2]. While these de-

tectors compute scale-invariant keypoints using scale-space

theory, some more recent methods simply build an image

pyramid and apply a corner detector for each layer to cope

with scale change [9, 22, 1, 6], which results in extremely

fast keypoint detection. While there has been much research

on estimating isotropic and scale invariant local regions,

little work has been directed at estimating affine regions

since the proposal of the Hessian/Harris-Affine method in-

troduced by Mikolajczyk et al. [15]. In the following, we

review conventional affine region estimation methods and

present our method for estimating multiple affine regions.

2.1. Affine region detectors

Affine-invariant keypoint detection can be thought of as

a generalization of scale estimation. The edge-based region

(EBR) detector from Tuytelaars and colleagues treats a par-

allelogram region as an affine region in which each vertex

is the point common to two edges crossing a corner deter-

mined by the Harris detector [26]. Tuytelaars et al. [27] also

proposed the intensity extrema-based region (IBR) detector

using intensity information in the periphery of a keypoint.

The IBR method observes intensity values along rays em-

anating from a keypoint and determines the difference be-

tween those values and the intensity value of the keypoint.

An affine region is determined by fitting an ellipse to the

shape that joins the positions where that difference takes

on a maximum value on each ray. The Maximally Stable

Extremal Regions (MSER) approach [13] is another region

estimation method, which uses a watershed algorithm to de-

termine connected regions having similar intensity values

within an image. It estimates affine-invariant regions by fit-

ting ellipses to the regions so determined. Obdrzalek and

Matas [19] extended the MSER approach to extract multi-

ple regions based on parameters such as outline, curvature

and so on.

Mikolajczyk et al. proposed Hessian-Affine and Harris-

Affine [15] methods, which extend isotropic regions de-

tected by Hessian/Harris-Laplace to affine regions. The pro-

cedure involves calculating a second-moment matrix with

respect to an isotropic region detected by Hessian/Harris-

Laplace. They determine an affine region by performing

convolution operations on the keypoint while repeatedly

varying the shape of an anisotropic Gaussian filter accord-

ing to the second-moment matrix.

Affine SIFT (ASIFT) [18] generates a set of sample

views of the initial image patches, obtained by varying the

orientation of the two camera axes. Next, it applies the SIFT

descriptor to all images thus generated. The method of Lep-

etit and Fua [8] also generates a set of all possible appear-

ances under different viewing conditions; it trains random-

ized trees, using the set to recognize keypoints.

Each of the above methods determines only a single

affine region per keypoint. This limitation often results in

low repeatability; see Fig. 1. If the Hessian-Affine method

(shown in the top row) starts from different initial points, as

shown in the upper left and center of this figure, the affine

estimation results converge to different locations. In con-

trast, our idea is to allow multiple affine regions, which

can improve repeatability even in difficult situations, such

as noisy localization and complicated shading, as shown in

the bottom row of Fig. 1.
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In this study, we propose a method for determining mul-

tiple affine regions by using the anisotropic LoG filter. A

major challenge of this idea is that a very large number of

anisotropic LoG filters must be convolved with a given im-

age patch to exhaustively search the multiple extrema of fil-

ter responses. This requires a massive amount of computa-

tional time. Our finding is that the responses of all possible

anisotropic LoG filters can be efficiently computed by fac-

torizing them in a similar manner to spectral SIFT.

2.2. Contribution

We propose a method for accurately detecting affine re-

gions from an image keypoint by using a combination of the

eigenfilters of anisotropic LoG filters. Our method has the

following features.

1. Compaction of filter parameters by replacing
anisotropic LoG filters with major eigenfilters
At the detection stage, only a small set of filters—

which we call ‘eigenfilters’—is used to convolve

an image, instead of a large number of different

anisotropic LoG filters.

2. Accurate affine parameter interpolation
The eigenfunctions, produced by SVD of anisotropic

LoG filters, are fitted by continuous functions, which

can be used to interpolate accurate affine parameters.

3. Detection of multiple affine regions
Even when two or more affine shapes are superim-

posed, the method accurately estimates the affine pa-

rameters for each shape, as is demonstrated in Fig. 1.

Multiple region detection has not been very successful

to date, although overlapping elliptical shapes occurs

frequently in natural images.

3. Proposed method
We propose a method for estimating multiple affine re-

gions based on Koutaki et al.’s [7] idea of spectral SIFT.

Spectral SIFT derives eigensolutions for Gaussian space

and LoG space expressed by

LoG(σ) =
(

∂2

∂x2
G(σ) +

∂2

∂y2
G(σ)

)
σ2

=
x2 + y2 − 2σ2

2πσ6
σ2 exp

(
−x2 + y2

2σ2

)
,(1)

G(σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
. (2)

Equations (1) and (2) represent isotropic filters and thus

cannot be used to estimate affine regions. Therefore,

we employ anisotropic filters to determine affine regions.

Determining the eigenfilters and eigenfunctions (i.e., the

eigensolutions) of the anisotropic filters by SVD is an ef-

ficient means of defining the affine regions.

Figure 2. Approximation of anisotropic LoG filters by SVD. The

LoG filter is defined by a linear combination of eigenfilters and

eigenfunctions.

3.1. Approximation of anisotropic LoG space by
SVD

We generate anisotropic LoG filters beforehand using:

LoG(σx, σy, θ) =
∂2

∂x2
G(Σ) +

∂2

∂y2
G(Σ), (3)

G(Σ) =
1

2π
√

detΣ
exp

(
−xTΣ−1x

2

)
, (4)

Σ =
[

cos θ sin θ
− sin θ cos θ

] [
σ2

x 0
0 σ2

y

] [
cos θ − sin θ
sin θ cos θ

]
, (5)

where G(Σ) denotes an anisotropic Gaussian filter and

x denotes the position(x, y) from the center of the fil-

ter. The filter parameters are set as follows: scale σx

in the x direction {1.6, 1.7, · · · , 3.2}, scale σy in the y
direction {1.6, 1.7, · · · , 3.2}, and filter rotational angle θ
{0◦, 5◦, · · · , 175◦}. The filter size D of an anisotropic LoG

filter is 361 (19× 19) and the number of different filters N
is 4,913. These 4,913 anisotropic LoG filters can be decom-

posed into three matrices by applying SVD,

L = USVT, (6)

where matrix L ∈ R
D×N consists of the above 4,913

LoG filters L(σx, σy, θ) ∈ R
D vectorized to form each

column, matrices U ∈ R
D×D and V ∈ R

N×N are D-

dimensional and N -dimensional orthogonal matrices, re-

spectively, and matrix S ∈ R
D×N is a rectangular diag-

onal matrix having singular values. Fi ∈ R
D and Pi ∈

R
N are i-th column vectors of U = [F1,F2, · · · ,FD]

and V = [P1, P2, · · · ,PN ] respectively. This SVD of

anisotropic LoG filters is shown in Fig. 2. Now, denoting

the row vectors of the product SVT as {φ1, φ2, · · · , φD},
the anisotropic LoG filter L(σx, σy, θ) for affine parameters

(σx, σy, θ) can be defined as
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Figure 3. Singular values of diagonal matrix S. From indices 15

and above, the singular values are very close to zero.

L(σx, σy, θ) =
D∑

n=1

φn[σx, σy, θ]Fn

≈
14∑

n=1

φn[σx, σy, θ]Fn. (7)

After examining the singular values of matrix S (shown in

Fig. 3), we take the major 14 eigenfilters only because the

cumulative sum of their singular values reaches 96.7% of

the total. This means that an anisotropic LoG filter can be

adequately approximated by 14 eigenfilters. In the above,

φn[σx, σy, θ] denotes the scalar value of the vector φ of the

parameters σx, σy, θ. It is referred to here as an eigenfunc-

tion. In addition, Fn can be treated as a two-dimensional

filter and is therefore an eigenfilter. All 14 eigenfilters and

eigenfunctions are shown in Fig. 4. An eigenfunction is a

value in the (σx, σy, θ) 3D space. The eigenfunctions shown

in the figure are for θ = 45◦.

3.2. Calculation of response value of an anisotropic
LoG filter

We now calculate the response value R of an anisotropic

LoG filter using eigenfilter Fn and eigenfunction φn[·]. The

response value R of an anisotropic LoG filter can be calcu-

lated by performing a convolution operation between Eq.

(7) and patch image I , which is the image corresponding to

the keypoint neighborhood (19 × 19). Here, the result of

convolution between the patch image and an eigenfilter is

given by qn = I ∗ Fn. Applying the distributive law to Eq.

(8) gives

R(σx, σy, θ) ≈ I ∗
14∑

n=1

φn[σx, σy, θ]Fn (8)

≈
14∑

n=1

φn[σx, σy, θ]qn. (9)

Convolution between the patch image and the 14 eigenfil-

ters can be performed in advance as in Eq. (9). The re-

sponse values for a desired filter can be easily calculated by

simply changing eigenfunction values. In our approach, the

Figure 5. Workflow of the anisotropic LoG filter response calcula-

tion; parameter values: σx = 1.4, σy = 1.6, θ = 45◦.

Figure 6. Examples of eigenfunctions with fixed parameters. The

upper plots are the eigenfunction values for each θ. The eigen-

functions for fixed σx, σy are shown in the lower plots.

computationally expensive convolution processing only has

to be performed 14 times, making it efficient. The workflow

for calculating the response value of an anisotropic LoG fil-

ter for parameters σx = 1.4, σy = 1.6, θ = 45◦ is shown in

Fig. 5.

3.3. Continuous function fitting of eigenfunctions

The response values of 4,913 filters can be approximated

by 14 eigenfunctions using Eq. (9). These eigenfunctions,

however, take on discrete values, thus the response values

can only be approximated for the 4,913 combinations of fil-

ter parameters generated before decomposition. We con-

sider the fitting of eigenfunctions to continuous functions

to solve this problem. As shown in Fig. 4, eigenfunction

φ[·] is a value in a 3D parameter space. The task, therefore,

is to solve the error minimization problem between eigen-

function φ[·], obtained by SVD, and the fitting model ϕ(·),
based on a 3D function. The fitting model uses a continu-

ous function in power series form for the scale parameters

in question. However, the eigenfunction for rotational angle

θ is a periodic function waveform that considers the shape

of the eigenfilter. Numerical values of eigenfunction φ5 are

shown in Fig. 6. Eigenfilter F5 changes shape according to

the filter’s rotational angle θ. This causes the eigenfunction
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Figure 4. Eigenfilters and eigenfunctions. The eigenfunctions have θ = 45◦.

values also to change according to θ (upper part of Fig. 6).

Furthermore, the eigenfunctions become periodic when fix-

ing parameters σx, σy (lower part of Fig. 6). For this reason,

the eigenfunction fitting model uses a continuous function

consisting of trigonometric functions of θ. Accordingly, fit-

ting model ϕ(·) takes the form

ϕ(σx, σy, θ)

=
e∑

i=0

f∑
j=0

g∑
k=1

(αijkσi
xσj

y sin kθ + βijkσi
xσj

y cos kθ), (10)

where α and β are unknown coefficients for which the square
error E between the fitting model ϕ(·) and discrete eigen-

function φ[·] (obtained by SVD) is minimal;

E =
∑
σx

∑
σy

∑
θ

(φ[σx, σy, θ]− ϕ(σx, σy, θ))2. (11)

Fitting eigenfunctions in this way enables the filter response

value R to be represented as a continuous function,

R(σx, σy, θ) ≈
14∑

n=1

ϕn(σx, σy, θ)qn. (12)

This makes it possible to calculate filter response values

for any parameters (σx, σy, θ). By applying the gradient

method, it is possible to search for the extrema of response

values efficiently because the continuous function of the

eigenfunction ϕ(·) is differentiable. The process of search-

ing for the extrema is described next.

3.4. Estimation of multiple affine regions

Given that multiple affine regions exist in an input im-

age, there will also be multiple instances of the parameter

combination (σx, σy, θ) at which a filter response value is

an extremum. It is therefore necessary to detect multiple

extrema in filter response values in the 3D parameter space.

For the ellipsoidal patterns in Fig. 1, one affine region is de-

termined with respect to the scale directions σx, σy . In the θ
direction, however, the existence of multiple affine regions

can be considered. For this situation, therefore, we deter-

mine one affine region in the σx, σy directions and estimate

multiple affine regions in the θ direction. The method used

here to search for extrema is illustrated in Fig. 7. First, af-

ter discretizing the θ axis, Newton’s method is employed to

search for different θ in the extrema in the 2D space (σx, σy)

(denoted by a black×-mark in the figure). Next, using these

2D extrema for different θ, extrema are detected in the 3D

space (σx, σy, θ) (denoted by a blue ◦-mark in the figure).

When there are more than one extremum in 3D space, all

extrema with a response value that is close to the largest ex-

tremum are adopted as the affine regions of the keypoint. In

the example of Fig. 7, three extrema exist in 3D space but

only two extrema are used as the affine regions. The results

of keypoint affine estimation using our proposed method are

shown in Fig. 8. These results demonstrate that the pro-

posed method determines multiple affine regions for a sin-

gle keypoint. It is also clear that these affine regions are the

same as for a pair of images.

3.5. Simple pattern testing

In Fig. 9, the left part of the simple test pattern in each

subfigure depicts ellipses and intersecting ellipses drawn in

black, while the right part depicts the same shapes after gra-

dation processing. The parameter range of each ellipse is

25-30 pixels for the major axis, 16-19 pixels for the minor

axis, and 0◦−60◦ for the rotational angle. As shown in Fig.
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Figure 7. Searching for a multiple-hypothesis affine region.

Figure 8. Result of affine regions estimation with the proposed

method. Red affine regions are estimated to be the same region in

each of two images.

Figure 9. Results of the affine region estimation for a simple test

pattern. The input pattern depicts simple ellipses and intersecting

ellipses drawn in black and gradation.

9(a), the Hessian-Affine method can detect simple ellipses

but cannot correctly detect intersecting ellipses. Thus, for

several elliptical shapes, this method detected different el-

lipses between the left and right parts of the test pattern. The

MSER method, by comparison, fits ellipses using region

partitioning and therefore predicted elliptical patterns sur-

rounding the combined shapes. It is insensitive to changes

in intensity and consequently failed in detecting the ellipti-

cal patterns in the right part of the test pattern (Fig. 9(b)).

The proposed method, however, detected all ellipses—even

those in an intersecting pattern, as it is designed to estimate

multiple affine regions. The regions that it detected in the

left part of the test pattern were thus the same as those in

the right part, as shown in Fig. 9(d). The results of esti-

mating affine regions by using the original LoG filter prior

to SVD are shown in Fig. 9(c). It can be seen that these

results agree with those produced by the proposed method,

thus the proposed method approximates the original LoG

filter.

4. Experiments
This experiment evaluates the repeatability of affine-

region detection between two images and compares the re-

sults of the proposed method, Hessian-Affine, MSER, and

DoG.

4.1. Datasets

For this evaluation experiment, we used conventional

Affine Covariant Regions Datasets1 and Spectrum maga-

zine datasets created by us. The Affine Covariant Regions

Datasets consist of image datasets covering eight scenes

(Graffiti, Wall, Boat, Bark, Bikes, Trees, Leuven and UBC).

Each scene comprises six images, each of which repre-

sents a certain type of change in the appearance of that

scene. These changes in appearance are summarized in Ta-

ble 1. The Spectrum magazine datasets consist of image

Table 1. Change in appearance for each scene type.

Change in appearance Scene

Projective transformation Graffiti, Wall

Rotation and scale change Boat, Bark

Blur Bikes, Trees

Other Leuven, UBC

datasets from three magazines (Spectrum1, Spectrum2 and

Spectrum3). Each magazine has image sets corresponding

to pitch angle rotations of 0◦, 10◦, 20◦ and 30◦, and each

pitch angle set consists of 73 images having rotations in roll

angle. Examples of images in the Spectrum1 dataset are

shown in Fig. 10. Homography matrices H between image

pairs were determined beforehand for the above datasets.

4.2. Repeatability

Repeatability is calculated as the ratio of the num-

ber of corresponding points (corresp. points) in a

pair of images to the minimum number of keypoints

(keypoints1, keypoints2) detected in those two images;

1http://www.robots.ox.ac.uk/˜vgg/data/data-aff.html
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Figure 10. Example from the Spectrum magazine dataset.

i.e.,

Repeatability =
corresp. points

min(keypoints1, keypoints2)
× 100. (13)

When determining corresponding points, we calculate the

error between the two images in the overlapping of the cor-

responding keypoint affine regions [16] by using the ho-

mography matrix H ,

overlap error =
(

1− A1 ∩HT
i A2Hi

A1 ∪HT
i A2Hi

)
× 100, (14)

where A1 and A2 are keypoint affine regions detected in the

two images and Hi is a linear homography matrix. If the

overlap error of corresponding affine regions is less than

the threshold T , the corresponding points are counted. In

this experiment, we set T = 40% and compared repeata-

bility among the proposed method, Hessian-Affine, MSER,

and DoG. To put the evaluations of the proposed method

and Hessian-Affine on equal footing, we used the same key-

points used in the estimation of affine regions in both meth-

ods.

4.3. Experiment results

The repeatability results obtained when using the

Affine Covariant Regions Datasets and Spectrum magazine

datasets are shown in Figures 11 and 12, respectively. The

results show that the proposed method has higher repeata-

bility than do the conventional methods. We attribute this

to the proposed method estimating multiple affine regions,

thereby reducing error in the estimation of affine regions

between a pair of images. Thus the affine region estimation

employed in the proposed method exhibits high accuracy.

For the Affine Covariant Regions Datasets, these results

also show that repeatability improved by using the pro-

posed method even for datasets that did not involve a projec-

tive transformation (namely, Boat, Bark, Bike, Trees, Leu-

ven, and UBC). This indicates that the proposed method

was capable of determining invariant affine regions for var-

ious types of changes in appearance. Examples of keypoint

Figure 13. Examples of keypoint matching by Hessian-Affine and

proposed method.

matching using SIFT descriptors with the Hessian-Affine

and the proposed method are shown in Fig. 13. It is clear

that a high matching rate can be achieved with the proposed

method.

4.4. Computational time

We compare the processing times per image (640× 480
pixels) of the Hessian-Affine, Original LoG, and proposed

method. The computer used in the experiment had a 3.33-

GHz Intel Xeon X5470 CPU and 32 GB of RAM. All code

was written in C++. The results of the experiment are listed

in Table 2. The proposed method was 87.2 times faster

Table 2. Computational time (s) per image (640 × 480 pixels).

Hessian-Affine Original LoG Proposed

Total time 4.091 198.654 2.277

than the Original LoG. This was possible because it approx-

imates the convolution processing of 4,913 filters with only

14 eigenfilters.

5. Conclusion
We proposed a method for estimating multiple-

hypothesis affine regions using anisotropic LoG filters.

This method efficiently calculates the response values of

anisotropic LoG filters by applying singular value decom-

position. We showed that estimating multiple affine re-

gions for each keypoint in an image improves repeatability.

The proposed method also represents filter response values

in continuous function form, enabling response values for

any parameter to be found. These features make for high-

accuracy affine region estimation. In future work, we plan

to increase the efficiency of extrema searching to increase

the speed of high-speed affine region estimation.
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Figure 11. Repeatability of the Proposed, Hessian-Affine, MSER, and DoG methods operating on the Affine Covariant Regions Datasets.

Figure 12. Repeatability of the Proposed, Hessian-Affine, MSER, and DoG methods operating on the Spectrum magazine datasets.
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