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Abstract
Random Forest, a multi-class classifier based on statis-

tical learning, is widely used in applications because of its
high generalization performance due to randomness. How-
ever, in applications such as object detection, disparities
in the distributions of the training and test samples from
the target scene are often inevitable, resulting in degraded
performance. In this case, the training samples need to be
reacquired for the target scene, typically at a very high hu-
man acquisition cost. To solve this problem, transfer learn-
ing has been proposed. In this paper, we present data-level
transfer learning for a Random Forest using covariate shift.
Experimental results show that the proposed method, called
Transfer Forest, can adapt to the target domain by transfer-
ring training samples from an auxiliary domain.

1. Introduction
A Random Forest [3], a multi-class classifier based on

statistical learning, is widely used in applications because
of its high generalization performance due to randomness.
In the field of computer vision, Random Forests are used in
image classification [14], semantic segmentation [14], real-
time keypoint recognition [10], and human detection and
action recognition [20]. However, in certain applications
such as object detection, disparities in the distributions of
the training and test samples from the target scenes are of-
ten inevitable, resulting in degraded detection performance.
In such a case, the training samples need to be reacquired
for the target scenes, albeit at a very high human acquisition
cost. For the target scene, sample acquisition must be cor-
rect without object position and scale variations of the im-
ages. Therefore, it is natural to re-use previously acquired
data and expensive detectors.

Next, we address a problem. This study focuses on learn-
ing for two source samples, and learning is less for one
source that supplementarily uses another. To overcome the
problem, transfer learning has been proposed [18, 5, 11].
Transfer learning methods retrain the data efficiently by ac-
quiring a small number of new samples from target scenes
and the previously acquired training sample data to detect
pedestrians in scenes with different camera-tilt and illumi-

nation. Therefore, we introduce a new Random Forest for
transfer learning to the Random Forest family, which was
organized into the following categories by Criminisi et al.
[4]: classification forest, regression forest, density forest,
manifold learning forest, and semi-supervised learning for-
est.

In this paper, we present transfer learning for Random
Forests using covariate shift. Our experimental results show
that our proposed method can adapt, with low cost, to target
scenes by transferring training samples.

2. Transfer learning using covariate shift
Transfer learning is defined as the problem of retaining

and applying the knowledge learned in one or more tasks to
develop an effective hypothesis for a new task [12]. The re-
lated research can be roughly divided into three categories
in accordance with the level of transfer knowledge. Model-
level transfer learning estimates the hyper prior of a model’s
parameters from several tasks, and then transfers this hy-
per prior to similar tasks [9, 2, 19, 13]. Data-level transfer
learning discovers useful samples from the auxiliary tasks,
and then uses these together with the target samples for
learning [5, 15]. Feature-level transfer learning searches for
shared features with sufficient performance in two domains
[1, 8, 16].

In data-level transfer learning, the training dataset is di-
vided into target and auxiliary training samples, where all
selected Dt and Da, respectively, are found by the sam-
pling sources. Although the auxiliary distribution of sam-
ple x, pa(x), generally differs from the target distribution
pt(x), the conditional probability distribution can be con-
sidered equal: i.e., pa(y|x) = pt(y|x), where y is the class
label for two-class problems y ∈ −1, 1. The auxiliary sam-
ple must become the next target. Therefore, this auxiliary
sample, which is not too close to the target, is assumed to be
noise. Thus, data-level transfer learning with covariate shift
is a weighting auxiliary sample using covariate loss that es-
timates both domains [11, 15]. Covariate loss λ is given by
Eq. (1):

λ =
pt(y|x)
pa(y|x)

. (1)
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Figure 1. Overview of the Transfer Forest.

Pang et al. [11] reformulated the density ratio λ with the
conditional probabilities for the boosting classifier as fol-
lows:

λ =
1 + e−yHa(x)

1 + e−yHt(x)
, (2)

where H is a boosting classifier. Ha is trained on auxiliary
data Da, and Ht is adaptively trained with examples from
both the auxiliary data Da and target data Dt. This reformu-
lation means that covariate loss can estimate both classifier
outputs. We incorporate covariate loss λ into Random For-
est training. Our proposed method in this paper is data-level
transfer learning for Random Forests.

3. Transfer Forest
This section describes our proposed method called

Transfer Forest. We introduce covariate shift loss into a
framework of Random Forests as data-level transfer learn-
ing. Fig. 1 gives an overview of the Transfer Forest.

3.1. Auxiliary and target domains
A distribution disparity is often inevitable between the

pedestrian training samples and test samples from a specific
application scenario [17]. In this study, we define learning
by training sample Xa= {χ1, χ2, ..., χj} as the auxiliary
domain and training samples Xt= {x1, x2, ...,xi} of spe-
cific scenes in an actual installation environment as the tar-
get domain. As the Random Forest in the auxiliary domain
can be learned using offline processing, a large number of
training samples are required.

For the target domain, we used specific scenes taken
from different camera angles. In contrast to the auxiliary-
domain data, target-domain data must be newly obtained,
which means that having as few samples as possible is de-
sirable. In this study, we address the problem of how to
train an efficient Random Forest using a small number of
training samples in the target domain on the basis of a pre-
viously trained Random Forest and training samples from
the auxiliary domain Xa.

In our proposed method, we construct a Random Forest
classifier using target and auxiliary samples. Both samples
were selected with a degree of randomness for constructing
a tree. During training, auxiliary samples are iteratively re-
weighted by evaluating “how far to the target” using the co-
variate loss between the target sample and auxiliary distri-
butions. The covariate loss between the two domains is es-

Figure 2. Training process for the Transfer Forest.

timated from the classification output of the two forests al-
ready constructed: the auxiliary Random Forest and Trans-
fer Forest in learning.

3.2. Training process of the Transfer Forest
Training of the Transfer Forest consists of the following

five steps.

Step 1 First, we create a subset by randomly selecting sam-
ples from both domains Xt and Xa, where the number
of training samples from each is equal.

Step 2 From the subset, we train a decision tree using co-
variate loss λ. Each training sample is weighted by the
covariate loss λ.

Step 3 We include the decision tree trained in step 2 as a
candidate for the Transfer Forest. The covariate loss
λ is updated using the Transfer Forest and Random
Forests previously trained using the auxiliary samples.

Step 4 These steps are repeated until a large number of can-
didates for the Transfer Forest is obtained.

Step 5 The latter half of the candidates were selected as the
Transfer Forest.

The differences in the training processes for the original
Random Forest and the proposed Transfer Forest are 1) the
weighting and updating of the samples and 2) tree selection.

3.3. Training of decision tree using covariate loss
Here, we describe the details of the training algorithm

for the Transfer Forest using covariate loss. First, subsets



Xt of the target training sample and Xa of the auxiliary one,
Xt = xi, ck; i ∈ [1, N ], k ∈ [1, C] and Xa = xj , ck; j ∈
[1,M ], k ∈ [1, C], are created to train the decision trees.
Then, both subsets consist of a randomly selected set of S
sample images from each domain. Accordingly, subset λt

of the covariate loss is partitioned for Xa, Λt = λi; i ∈
[1,M ]. Λ is estimated as follows, which is incorporated in
the Random Forest as Eq. (2):

λj =
1 + ePa(ck|χj)

1 + ePt(ck|χj)
, (3)

where Pa(ck|χj) is the probability of a class label from
the previously trained Random Forest using auxiliary do-
main samples, and Pt(ck|χj) is the probability of a class la-
bel from the Transfer Forest constructed using both domain
samples. When the first tree is being constructed, Pt(ck|χj)
is assumed to be 0, so λj is initialized to 1 + ePa(ck|χj).

Nodes are constructed of a split function, a feature, and a
threshold. The split function for the tree is the same as that
for the original Random Forest, and the set In of training
samples at node n is divided into child nodes Il, Ir.

Il = {i ∈ In|f(xi) < t}, (4)
Ir = In \ Il. (5)

For prepared features fm; m ∈ [1,M ] and thresholds
θm, k; k ∈ [1,K], the best combination is selected on the
basis of information entropy calculated as

∆E =
|Il|
|I|

E(Il)
|Ir|
|I|

E(Ir). (6)

Note that E(Il) and E(Ir) denote Shannon entropy for the
samples in each class when taking the left or right branch,
respectively, for a given combination of features and thresh-
olds. Shannon entropy is computed as

E(I) =
C∑

k=1

P (ck) log P (ck), (7)

while P (ck) is the probability distribution for class ck at the
node computed as

P (ck) =
|It,ck | + |Λa,ck |

|It| + |Λa|
, (8)

|Λa,ck | =
∑

j:yj=ck

λj . (9)

|It,ck | denotes the number of target samples for class ck,
|Λa,ck | is the summation λ of auxiliary samples for class ck,
and |It| is the number of target samples for all classes, and
|Λa| is summation λ of all auxiliary samples.

Subsets are partitioned using the features selected as de-
scribed above. Feature values less than the threshold form

Figure 3. Example of covariate loss λ after the training.

the subset for the left child node, while values greater than
the threshold form the subset for the right child node. This
process is repeated at each child node using the newly
formed subsets. Node generation terminates when the num-
ber of training samples is less than a pre-determined depth,
when the training samples comprise only a single class, or
when the nodes have reached a certain depth. Termination
retains the stored probability distribution P (ck|l), which is
computed as Eq. (8).

After the tree is constructed, λ is re-estimated using
Eq. (3) with the updated Transfer Forest, and the next tree
is constructed.

Fig. 3 shows an example of covariate loss λ after the
training. Some training samples of the auxiliary domain
are weighted with small values, which are not close to the
target domain. These training samples are spoiled by the
covariate loss λ for training the Transfer Forest by adapting
to the target domain to prevent performance degrading.

3.4. Tree selection for Transfer Forest
Transferred parameters, such as covariate shift, are

asymptotically approximated in sequential training. Hence,
these values are not reliable when constructing the first tree,
because the distribution estimates are insufficient. TrAd-
aBoost [5] was adopted after T/2 weak classifiers consti-
tuted a strong classifier without a forward constructed T/2.
Based on the experimental results, this method using T out-
performs other classifiers, although this is a weak boosting
classifier that is not independent and chooses the best com-
binations of weak classifiers. If the best feature sets are cho-
sen in the early stage, they contain inadequate numbers of
strong classifiers. As the Random Forest is independent of
each tree, we believe that using the same idea for the latter
half of the forest is more reliable.

3.5. Classification process
Here we present the Transfer Forest classification algo-

rithm, which is the same as the original random tree of the
Transfer Forest. The algorithm begins by inputting an un-
known sample x into each of the decision trees created by



the training algorithm. It then transverses each decision tree
by branching left or right at each node using the splitting
function and output class probability Pt(c|x) saved at the
leaf node previously arrived at. Then, as shown by Eq. 10,
the algorithm calculates the average value of the outputs
from the latter half of the decision tree in the Transfer For-
est.

P (c|x) =
2
T

T∑
t=T/2

Pt(c|x). (10)

Final output ŷ obtained by Eq. 11 determines the class with
the highest probability.

ŷ = arg max
c

P (c|x). (11)

4. Experiments
The proposed method has been evaluated on both syn-

thetic and real datasets. Using the real dataset, we per-
formed two experiments on pedestrian detection to show the
effectiveness of the proposed method in terms of binary and
multi-class classification.

4.1. Synthetic data experiments
Fig. 4(a) illustrates the synthetic data experiment on two-

dimensional spiral data. Solid lines in the spiral shape in
Fig. 4(a) show 1,000 auxiliary samples, with a single color
representing a separate class. Wavy lines in Fig. 4(a) show
the training samples of the target domain, which were ro-
tated 30 degrees from the auxiliary domain. We trained the
Transfer Forest with the number of trees set to 50 and the
maximum depth of a tree set to 5.

Fig. 4(b) and (c) shows the decision boundaries of the
Transfer Forest with respect to a varying number of target
samples and those of the original Random Forest using both
the auxiliary and target training samples. When the number
of target samples is reduced, the decision boundary of the
Transfer Forest seems better than that of the original Ran-
dom Forest. With a sufficient number of target samples,
the decision boundaries of the Transfer Forest and original
Random Forest are almost the same.

4.2. Real data experiments for binary classification
In this experiment, we used two different datasets of

pedestrian detection data as a binary classification problem.
To begin with, we pre-trained an Random Forest classifier
on the basis of histograms of oriented gradient (HOG) fea-
tures [6]. For the HOG features, the cell size was set to 8
and block size to 2 with a total of 3,780 dimensions. Our
experiments used two datasets, namely, the INRIA person
and DaimlerChrysler datasets, as the target and the auxil-
iary domains, respectively.

Figure 4. Experimental results using two-dimensional spiral data.

Auxiliary domain Xa: DaimlerChrysler Mono Pedestrian
Detection Benchmark Dataset [7]

This dataset consists of 15,600 images of people for
training, 6,700 background images for training, and 21,800
images, containing 56,500 pedestrians, for evaluation.

Target domain Xt: INRIA Person Dataset [6]
This dataset consists of 2,416 images of people for train-

ing, 1,218 background images for training, 1,135 images of
pedestrians for evaluation, and 453 background images for
evaluation.

We trained a Transfer Forest using both datasets de-
scribed in above. To demonstrate the effectiveness of the
proposed Transfer Forest, we compared it with a Random
Forest (RF1) trained using only training samples of the tar-
get domain and a Random Forest (RF2) trained using both
the auxiliary and target samples. We used the same param-
eters for both the Transfer Forest and Random Forest with
the number of trees set to 50 and the maximum depth of a
tree set to 5.

The detection-error-tradeoff curve while the number of
target samples reduces from 2,414 (full) to 100 is shown in
Fig. 5. From Fig. 5(a), the classification performances are
almost the same for the Transfer Forest (TF), the Random
Forest (RF1) with only the target domain, and the Random
Forest (RF2) with both domains, with a target sample of
2416. When the number of target samples is reduced to 800,
the classification performances deteriorated for the Random
Forest (RF1) using only the target domain and the Random
Forest (RF2) with both domains. This is because the num-
ber of training samples of the target domain had decreased.
In contrast, Transfer Forest (TF) maintains its classification
ability by incorporating a large number of auxiliary samples
with the small number of target samples. When the num-
ber of target samples is reduced to 100, the classification
performance is very low for the Random Forest (RF1) with
only a target domain. This is because 100 images of train-
ing samples are not sufficient to represent the distribution of
training samples in a target domain. The proposed method



Figure 5. Comparison of the performances of Transfer Forest and the conventional method.

performs 11% better than the Random Forest (RF2) under
both domains. Thus, we say that the Transfer Forest can
adopt auxiliary samples to the target domain using a small
number of target samples by the covariate shift approach.

5. Conclusion
In this paper, we proposed a framework for Random

Forests incorporating data-level transfer learning with co-
variate shift. The proposed Transfer Forest can deal with
multi-domain samples using covariate shift in the Random
Forest. Experimental results show that the proposed Trans-
fer Forest has the same or better performance with a small
number of target samples than re-training using all target
samples.

Future work includes incorporating feature-level transfer
learning into the Random Forest framework.
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