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Abstract— T3D edge detection from a depth image is an 

important technique of 3D object recognition in preprocessing. 

There are three types of 3D edges in a depth image called jump, 

convex roof, and concave roof edges. Conventional 3D edge 

detection based on ring operators has been proposed. The 

conventional ring operator can detect three types of 3D edges by 

classifying the response of Fourier transforms. Since the 

conventional method needs to apply Fourier transforms to all 

pixels of a depth image, real-time processing cannot be done due 

to high computational cost. Therefore, this paper presents a fast 

and reliable method of detecting three types of 3D edges by 

using a decision tree. The decision tree is trained under 

supervised learning from numerous synthesized depth images 

and labels by capturing depth relations between candidate 

pixels and pixels on a ring operator to classify 3D edges. The 

experimental results revealed that the proposed method has 25 

times faster than the conventional method. This paper also 

presents some examples of 3D line and 3D convex corner 

detection based on results obtained with the proposed method.  

I.  INTRODUCTION 

The detection and localization of edges and corners are 
important tasks for robot vision in preprocessing. Corner and 
edge detection are used as the first step in simultaneous 
localization and mapping (SLAM) [1] [2] [3] and 3D object 
detection [4]. Depth information obtained from new ranging 
sensors such as time-of-flight TOF cameras [5] is widely used 
in computer vision and they have enabled breakthroughs in 
several tasks [6]. Our research is concerned with detecting 3D 
edges in a depth image. 3D edges are also helpful for robot 
navigation. There are three types of 3D edges called jump, 
convex roof, and concave roof edges. Fig. 1 outlines three 
types of 3D edges of a cube in a depth image. A jump edge can 
be observed in Fig. 1 (b) on the boundary between the object 
and background. A convex roof edge and a concave roof edge 
can be observed on the boundary between two surfaces. Fig. 1 
(c) shows edges detected by a Laplacian edge detector, which 
is widely used for gray-scale images. As can be seen from Fig. 
1 (c), it is hard to detect both convex and concave roof edges 
because the gradient of neighboring pixels in the depth image 
is small. A ring operator that detects three types of 3D edges in 
a depth image has been proposed by Inokuchi et al. [7] to 
overcome this problem. First, the ring operator, which is a 
circle of 32 pixels around the edge candidate, is applied by 
using spectral analysis of waveforms such as fast Fourier 
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transform (FFT). Then, the criterion operates that results in 
spectral analysis to classify waveforms into three types of 3D 
edges or planes. Since the ring operator needs to apply FFT to 
all pixels in a depth image by raster-scanning, real-time 
processing cannot be done due to the high computational cost 
of FFT. Real-time processing is required since 3D edge 
detection in a depth image is used in preprocessing. Features 
from the Accelerated Segment Test (FAST) have been used 
for high-speed corner detection to detect corners in gray-scale 
images [8], [9]. A machine learning approach has been 
introduced in FAST to identify corners. 

We applied a machine learning approach to the 3D edge 
detector in a depth image because we were inspired by the 
work done with FAST. We propose a fast and reliable method 
of detecting three types of 3D edges by using a decision tree in 
this paper. The decision tree is trained under supervised 
learning using many synthesized depth images and edge labels 
by capturing the depth relation between an edge candidate and 
pixels on the ring operator in order to classify the 3D edges. 
The remainder of the paper is organized as follows. Section II 
discusses related work. Section III introduces the proposed 
method. Section IV presents the experimental results. Section 
V presents some applications based on the proposed method, 
and the paper is concluded in Section VI. 

II.  RELATED WORK 

This section briefly describes the definition of 3D edges in 

a depth image and related work. 
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Fig. 1. 3D edges in a depth image. 
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Fig. 2. Ring operator and properties of 3D edges. 

A. Definition of 3D edges in depth image 

A depth image contains information relating to the 
distance of surfaces of objects in a scene from the viewpoint of 
the camera. Since each pixel in a depth image has a distance 
similar to the intensity of a gray-scale image, it is easy to apply 
conventional image processing techniques such as edge and 
corner detection. However, a depth image has another aspect 
of properties related to 3D structures compared to gray-scale 
images. Edges in a gray-scale image are observed at pixels in 
which the gradient of neighboring pixels is high. There are 
three types of edges in a depth image.  

 Jump edges Jump edges are observed on the 
boundary between an object (surface) and the 
background (non-surface). The value of the gradient 
on the jump edge is high, as shown in Fig. 2 (a), which 
represents depth discontinuities. 

 Convex Roof edges Roof edges are observed on the 
boundary between two surfaces. Convex roof edges 
have convex shapes on the cube shown in Fig. 2 (b). 

 Concave Roof edges Concave roof edges have 
concave shapes in which the boundary is usually 
observed between the surface of the floor and the cube 
shown in Fig. 2 (c). 

It is useful to detect these three types of edges separately to 
identify the 3D structure of a scene. However, conventional 
edge detector based on Laplacian filter can not classify these 
three types of edges. 

B. Edge detection methods based on surface normal 

There are already methods of edge detection based on 

surface normal for depth images [10], [11], [12], [13]. Puili et 

al. [10] proposed surface normal-based edge detector from a 

depth image. Jiang et al. [11] split each line of the image into 

a set of quadratic polynomials. Approaches using 

mathematical morphology operators have also been 

developed [12]. Ye et al. proposed a robust edge detector with 

a Singular Value Decomposition (SVD) filter to smooth 

object surfaces [13].  

 
Fig. 3. Overview of proposed method. 

 

These surface normal-based edge detectors are used for object 
detection via 3D geometry [14] and image segmentation [15]. 

C. Ring operator 

Inokuchi et al. proposed a method of classifying 3D edges 

by spectral analysis along a ring operator [7], as seen in Fig. 2. 

Fig. 2 shows 3D edges have different properties in the form of 

waveform signals converted from a circle of 32 pixels. 

Inokuchi et al. applied spectrum analysis (FFT) to waveforms 

by taking advantage of these different properties. They could 

classify them into jump edges, convex roof edges, concave 

roof edges, and planes by using three thresholds and the first 

and second components of the Fourier spectrum. Fig. 2 (b) 

shows an example of a 3D edge detected by Inokuchi et al. [7]. 

Real-time processing cannot be done since the ring operator 

needs to apply FFT to all pixels of a depth image by 

raster-scanning. It takes the ring operator approximately 0.7 

sec to detect a 3D edge in a depth image with a VGA size of 

640 by 480 pixels. The size of the ring operator needs to be set 

to two exponents for processing with FFT. 

III.  PROPOSED METHOD 

We applied a machine learning approach to a 3D edge 
detector for a depth image. This section describes a fast and 
reliable method of detecting three types of 3D edges by using a 
binary decision tree and a ternary decision tree. Fig. 3 
overviews the proposed method.  

A. Training sample 

The proposed method can deal with changes in viewpoints. 
As training samples that represented many different 
viewpoints were generated, we placed a virtual cube at the 
center to generate a depth image with computer graphics (CG) 
rendering from a viewpoint whose Euler angle rotation 
parameters, φ and θ, were set at equal intervals, as shown in 

Fig. 4. The rotation ranges for the parameters were φ∈ [0, 45], 

and θ ∈ [0, 90] in this work, and the interval for φ and θ was 

11.25. The distance from the viewpoint to the center position 
of the cube was set from 1.5 m to 3.0 m. We added Gaussian 
noise to the generated depth image of a training sample to 
simulate a real depth image obtained with a TOF camera. We 
also created edge labels for all pixels in the generated depth 
image, in which the labels belonged to one of four classes of 
jump edges, convex roof edges, concave roof edges, or planes. 
These four classes were determined by applying a ring 
operator [7]. We correctly manually labeled pixels with the 
ring operator. We generated 180 depth images by doing so and 
used them to train the decision tree. 
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Fig. 4. Generation of training samples. 

B.  Training of binary decision tree 

Fig. 5 (a) outlines the structure of the binary decision tree 
we used to classify jump edges, convex roof edges, concave 
roof edges, or planes into four classes. 

1) Training of binary decision tree: We used the ID3 
learning algorithm [16] for tree generation to construct a 
binary decision tree using generated depth images and edge 
labels. First, all 32 pixel rings in Fig. 6 were extracted from a 
set of depth images to build an edge detector. Pixels positioned 
relative to p, denoted by p → x, can have one of two states, Far 

and Near, for each location on the ring, x∈{1,...,32}: 
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where Dp is the depth value at edge candidate pixel p, x 
denotes the location of the ring, Dp→x is the depth value at 
pixel x, and t is a threshold. Here, F means that pixel x is far 

from pixel p and N means that pixel p is near it. Let P be the set 
of all pixels in all training samples. We trained the binary 
decision tree with the training samples. These two states 
derived from (1) are used to find the optimal split function at 
each node of the decision tree while training. We search by 
selecting x at each node while training, which yields the most 
information about whether candidate pixels are edges or not, 
measured with the information gain at node i: 

),()()()( NF PHPHPHPG         (2) 

where P is the number of training samples that reach the node, 
PF is the number of training samples classified as “Far” at the 
left child node, and PN is the number of training samples 
classified as “Near” at the right child node. Entropy H is 
measured by 
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where j, cv, cc, and p correspond to the number of samples 
belonging to jump edges, convex roof edges, concave roof 
edges, and planes. We create new nodes until the information 
gain derived by (3) becomes zero. Then, nodes are established 
as leaf nodes that store edge labels in which the number of 
samples at the node is maximum. 

2) How to set threshold t: We employed two ways of setting 
the value of threshold t in (1) in this work. 

 Fixed threshold  We set a fixed value as a threshold 
for each node. We set 0.01 as the threshold that was 
searched in advance in this work. 

 Flexible threshold  We search the optimum value for 
the threshold in (1) ranging from the minimum to the 
maximum depth value of the ring operator to 
maximize information gain. 

Fig. 5. Structures of binary decision tree and ternary decision tree. Numbers next to nodes denote neighboring pixel x, which is selected by 

decision tree learning. 
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Flexible thresholds can represent various changes in 3D edges 
by changing the value of the threshold. However, the 
computation time for the traversal decision tree can be more 
than that of a fixed threshold. 

C. Training of ternary decision tree 

The depth of the binary decision tree described above will 
be large due to binary decision. It is important to create a 
decision tree with fewer depths to enable faster 3D edge 
detection. We introduced a ternary decision tree with three 
states to overcome this problem. Fig. 5 (b) outlines the 
structure of a ternary decision tree. Pixels positioned relative 
to p, denoted by p → x, can have one of three states of Far, 

Equal, and Near for each location on the ring, x∈{1,...,32}: 
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F means that pixel x is far from pixel p. N means that pixel x is 
near it. E means that the distance of pixel x is equal to that of 
pixel p. t1 and t2 are thresholds for ternary decision. We search 
by selecting x that yields the most information about whether 
the candidate pixels are edges at each node while training, 
which is measured by information gain: 

),()()()()( NEF PHPHPHPHPG               (5) 

where PF is the number of training samples classified as “Far”, 
PN is the number of training samples classified as “Near”, and 
PE is the number of training samples classified as “Equal”. H 
is the entropy computed with (3). We train the ternary decision 
tree until the information gain derived by (3) becomes zero. 
Leaf nodes store edge labels in which the number of samples 
at the nodes is maximum. 

D. Edge detection by decision tree and non-maximal 

suppression 

1) 3D edge detection by decision tree: Raster scanning of 

the depth image is employed at the detection stage. The 

previous decision tree that was trained distinguishes pixels 

into one of the four classes of jump edges, convex roof edges, 

concave roof edges, or planes by doing tree traversal at each 

pixel. Fig. (7) (a) shows an example of 3D edge detection 

with the proposed method. 

1) Non-maximal suppression: We can see from Fig. (7) (a) 

that pixels around the original edge have also been detected. 

We introduced an approach of non-maximal suppression to 

solve this problem. Since the decision tree does not directly 

compute edge responses, we define a pseudo-edge response 

by 
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where p is the location of a detected 3D edge with the 

proposed method, and x is its location on the ring. We then 

suppress miss-detected pixels in two steps. 

1)     We compute the pseudo-edge responses with (6) for 

all candidate pixels detected by the decision tree.  

2)     The pseudo-edge responses in neighboring pixels (3 

by 3 pixels) in which an edge label of x is the same as 

p are ranked at candidate pixel p according to the 

values of the pseudo-edge responses. If the value of a 

response at pixel p is within the 3rd rank, pixel p is 

finally stored as a 3D edge. If not, pixel p is rejected 

as not being a 3D edge. Please note that we do not 

only use the 1st rank because strong responses are 

observed at neighboring pixels, which are lying on the 

edge. 

3)     Repeat 2) for all candidate pixels detected by the 

decision tree. 

Fig. (7) (b) outlines an example of our non-maximal 

suppression for 3D edges. 

IV.  EXPERIMENTAL RESULTS 

We experimentally compared the proposed method with 

conventional methods to find how effective it was. 

A. Experimental overview 

We compared the ring operator [7], surface normal [10], 

and the proposed method (binary decision tree and ternary 

decision tree) regarding the F-measure obtained by the 

following equations: 
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Fig. 6. Binary decision at node i. 
 

Fig. 7. Non-maximal suppression. 
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The decision trees were trained with 180 depth images. We 

used another 90 depth images with different viewpoints in the 

evaluation test, which were generated by CG and had added 

noise. We have also presented some examples of 3D edge 

detection using a TOF camera below. 

B. Comparison with conventional methods 

The results for the accuracy of detection are presented in 

Table I, where we can see that the highest accuracy was 

achieved by the ternary decision tree, followed by the binary 

decision tree, surface normal, and finally the ring operator. 

Fig. 8 provides some examples obtained with the proposed 

method and the ring operator. The reason for this 

improvement is that the proposed method is more robust to 

noise by training the decision tree with noise-added images. 

However, the ring operator is affected by noise due to spectral 

analysis. The processing times for a depth image with a VGA 

size of 640 by 480 pixels are summarized in Table I. The 

hardware used for these experiments was a personal computer 

equipped with a 2.67 GHz Intel X7452 CPU. The ternary 

decision tree had the fastest processing time, followed by the 

binary decision tree, surface normal, and the ring operator. 

Since the proposed method based on the decision tree could 

decrease the number of pixels accessed on the ring, we 

detected 3D edges 25 times faster than the ring operator. We 

can also see that the processing time by the ternary decision 

tree is faster than that by the binary decision tree. This is 

because the depth of the decision tree is shallower due to the 

introduction of ternary decision. 

C. 3D edge detection from depth image obtained by TOF 

caomera 

Fig. 8 shows some examples of 3D edges detected with the 

three methods from a real depth image taken with a TOF 

camera (mesa SR-4000). We can see that decision trees with 

flexible thresholds have better 3D edge detection with fewer 

false positives.  

V. APPLICATIONS 

We confirmed from our experimental evaluation that the 

proposed method provided fast and reliable 3D edge 

detection. This section presents two examples of applications 

based on results obtained with the proposed method. Fig. (9) 

(a) has some examples of line segment detection (LSD) that 

was applied [17] to jump edges, convex roof edges, and 

concave roof edges detected with the proposed method. These 

line segments with attributes of 3D edges should be very 

helpful for reconstructing 3D scenes and recognizing 3D 

objects. Fig. 9 (b) shows some examples of 3D convex corner 

detection. We trained a decision tree using the results from 

the proposed method to classify whether edges were 3D 

convex corners or not. Since 3D convex corners consist of 

three lines with convex roof edges, it is easy to detect them 

without surface normal computation. 

VI.CONCLUSION 

We presented a fast and reliable method of 3D edge 

detection based on a decision tree. We achieved a 25 times 

faster than that with the conventional ring operator by using 

machine learning. We will attempt to identify 3D objects in a 

scene in future work by using the outputs of the proposed 

method as representations of internal features. 
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