



Abstract— T3D edge detection from a depth image is an

important technique of 3D object recognition in preprocessing.

There are three types of 3D edges in a depth image called jump,

convex roof, and concave roof edges. Conventional 3D edge

detection based on ring operators has been proposed. The

conventional ring operator can detect three types of 3D edges by

classifying the response of Fourier transforms. Since the

conventional method needs to apply Fourier transforms to all

pixels of a depth image, real-time processing cannot be done due

to high computational cost. Therefore, this paper presents a fast

and reliable method of detecting three types of 3D edges by

using a decision tree. The decision tree is trained under

supervised learning from numerous synthesized depth images

and labels by capturing depth relations between candidate

pixels and pixels on a ring operator to classify 3D edges. The

experimental results revealed that the proposed method has 25

times faster than the conventional method. This paper also

presents some examples of 3D line and 3D convex corner

detection based on results obtained with the proposed method.

I. INTRODUCTION

The detection and localization of edges and corners are
important tasks for robot vision in preprocessing. Corner and
edge detection are used as the first step in simultaneous
localization and mapping (SLAM) [1] [2] [3] and 3D object
detection [4]. Depth information obtained from new ranging
sensors such as time-of-flight TOF cameras [5] is widely used
in computer vision and they have enabled breakthroughs in
several tasks [6]. Our research is concerned with detecting 3D
edges in a depth image. 3D edges are also helpful for robot
navigation. There are three types of 3D edges called jump,
convex roof, and concave roof edges. Fig. 1 outlines three
types of 3D edges of a cube in a depth image. A jump edge can
be observed in Fig. 1 (b) on the boundary between the object
and background. A convex roof edge and a concave roof edge
can be observed on the boundary between two surfaces. Fig. 1
(c) shows edges detected by a Laplacian edge detector, which
is widely used for gray-scale images. As can be seen from Fig.
1 (c), it is hard to detect both convex and concave roof edges
because the gradient of neighboring pixels in the depth image
is small. A ring operator that detects three types of 3D edges in
a depth image has been proposed by Inokuchi et al. [7] to
overcome this problem. First, the ring operator, which is a
circle of 32 pixels around the edge candidate, is applied by
using spectral analysis of waveforms such as fast Fourier

Masaya Kaneko, Takahiro Hasegawa, Yuji Yamauchi, Takayoshi

Yamashita, and Hironobu Fujiyoshi are with the Chubu University, Kasugai,

Aichi Japan. {msy, tkhr, yuu}@vision.cs.chubu.ac.jp

{yamashita, hf}@cs.chubu.ac.jp

Hiroshi Murase is with the Nagoya University, Nagoya Aichi, Japan.

murase@nagoya-u.jp

transform (FFT). Then, the criterion operates that results in
spectral analysis to classify waveforms into three types of 3D
edges or planes. Since the ring operator needs to apply FFT to
all pixels in a depth image by raster-scanning, real-time
processing cannot be done due to the high computational cost
of FFT. Real-time processing is required since 3D edge
detection in a depth image is used in preprocessing. Features
from the Accelerated Segment Test (FAST) have been used
for high-speed corner detection to detect corners in gray-scale
images [8], [9]. A machine learning approach has been
introduced in FAST to identify corners.

We applied a machine learning approach to the 3D edge
detector in a depth image because we were inspired by the
work done with FAST. We propose a fast and reliable method
of detecting three types of 3D edges by using a decision tree in
this paper. The decision tree is trained under supervised
learning using many synthesized depth images and edge labels
by capturing the depth relation between an edge candidate and
pixels on the ring operator in order to classify the 3D edges.
The remainder of the paper is organized as follows. Section II
discusses related work. Section III introduces the proposed
method. Section IV presents the experimental results. Section
V presents some applications based on the proposed method,
and the paper is concluded in Section VI.

II. RELATED WORK

This section briefly describes the definition of 3D edges in

a depth image and related work.

Fast 3D Edge Detection by Using Decision Tree from Depth Image

Masaya Kaneko, Takahiro Hasegawa, Yuji Yamauchi, Takayoshi Yamashita,

Hironobu Fujiyoshi, and Hiroshi Murase

Fig. 1. 3D edges in a depth image.

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9993-4/15/$31.00 ©2015 IEEE 1314

Fig. 2. Ring operator and properties of 3D edges.

A. Definition of 3D edges in depth image

A depth image contains information relating to the
distance of surfaces of objects in a scene from the viewpoint of
the camera. Since each pixel in a depth image has a distance
similar to the intensity of a gray-scale image, it is easy to apply
conventional image processing techniques such as edge and
corner detection. However, a depth image has another aspect
of properties related to 3D structures compared to gray-scale
images. Edges in a gray-scale image are observed at pixels in
which the gradient of neighboring pixels is high. There are
three types of edges in a depth image.

 Jump edges Jump edges are observed on the
boundary between an object (surface) and the
background (non-surface). The value of the gradient
on the jump edge is high, as shown in Fig. 2 (a), which
represents depth discontinuities.

 Convex Roof edges Roof edges are observed on the
boundary between two surfaces. Convex roof edges
have convex shapes on the cube shown in Fig. 2 (b).

 Concave Roof edges Concave roof edges have
concave shapes in which the boundary is usually
observed between the surface of the floor and the cube
shown in Fig. 2 (c).

It is useful to detect these three types of edges separately to
identify the 3D structure of a scene. However, conventional
edge detector based on Laplacian filter can not classify these
three types of edges.

B. Edge detection methods based on surface normal

There are already methods of edge detection based on

surface normal for depth images [10], [11], [12], [13]. Puili et

al. [10] proposed surface normal-based edge detector from a

depth image. Jiang et al. [11] split each line of the image into

a set of quadratic polynomials. Approaches using

mathematical morphology operators have also been

developed [12]. Ye et al. proposed a robust edge detector with

a Singular Value Decomposition (SVD) filter to smooth

object surfaces [13].

Fig. 3. Overview of proposed method.

These surface normal-based edge detectors are used for object
detection via 3D geometry [14] and image segmentation [15].

C. Ring operator

Inokuchi et al. proposed a method of classifying 3D edges

by spectral analysis along a ring operator [7], as seen in Fig. 2.

Fig. 2 shows 3D edges have different properties in the form of

waveform signals converted from a circle of 32 pixels.

Inokuchi et al. applied spectrum analysis (FFT) to waveforms

by taking advantage of these different properties. They could

classify them into jump edges, convex roof edges, concave

roof edges, and planes by using three thresholds and the first

and second components of the Fourier spectrum. Fig. 2 (b)

shows an example of a 3D edge detected by Inokuchi et al. [7].

Real-time processing cannot be done since the ring operator

needs to apply FFT to all pixels of a depth image by

raster-scanning. It takes the ring operator approximately 0.7

sec to detect a 3D edge in a depth image with a VGA size of

640 by 480 pixels. The size of the ring operator needs to be set

to two exponents for processing with FFT.

III. PROPOSED METHOD

We applied a machine learning approach to a 3D edge
detector for a depth image. This section describes a fast and
reliable method of detecting three types of 3D edges by using a
binary decision tree and a ternary decision tree. Fig. 3
overviews the proposed method.

A. Training sample

The proposed method can deal with changes in viewpoints.
As training samples that represented many different
viewpoints were generated, we placed a virtual cube at the
center to generate a depth image with computer graphics (CG)
rendering from a viewpoint whose Euler angle rotation
parameters, φ and θ, were set at equal intervals, as shown in

Fig. 4. The rotation ranges for the parameters were φ∈ [0, 45],

and θ ∈ [0, 90] in this work, and the interval for φ and θ was

11.25. The distance from the viewpoint to the center position
of the cube was set from 1.5 m to 3.0 m. We added Gaussian
noise to the generated depth image of a training sample to
simulate a real depth image obtained with a TOF camera. We
also created edge labels for all pixels in the generated depth
image, in which the labels belonged to one of four classes of
jump edges, convex roof edges, concave roof edges, or planes.
These four classes were determined by applying a ring
operator [7]. We correctly manually labeled pixels with the
ring operator. We generated 180 depth images by doing so and
used them to train the decision tree.

1315

Fig. 4. Generation of training samples.

B. Training of binary decision tree

Fig. 5 (a) outlines the structure of the binary decision tree
we used to classify jump edges, convex roof edges, concave
roof edges, or planes into four classes.

1) Training of binary decision tree: We used the ID3
learning algorithm [16] for tree generation to construct a
binary decision tree using generated depth images and edge
labels. First, all 32 pixel rings in Fig. 6 were extracted from a
set of depth images to build an edge detector. Pixels positioned
relative to p, denoted by p → x, can have one of two states, Far

and Near, for each location on the ring, x∈{1,...,32}:

),(

)(

Near

Far

t

t

D

D

D

D

N

F
S

p

p

xp

xp

xp

















 (1)

where Dp is the depth value at edge candidate pixel p, x
denotes the location of the ring, Dp→x is the depth value at
pixel x, and t is a threshold. Here, F means that pixel x is far

from pixel p and N means that pixel p is near it. Let P be the set
of all pixels in all training samples. We trained the binary
decision tree with the training samples. These two states
derived from (1) are used to find the optimal split function at
each node of the decision tree while training. We search by
selecting x at each node while training, which yields the most
information about whether candidate pixels are edges or not,
measured with the information gain at node i:

),()()()(NF PHPHPHPG  (2)

where P is the number of training samples that reach the node,
PF is the number of training samples classified as “Far” at the
left child node, and PN is the number of training samples
classified as “Near” at the right child node. Entropy H is
measured by

),/(

}loglogloglog

)(log){()(

2222

2

cccvjp

cccccvcvjjpp

cccvjpcccvjpPH







 (3)

where j, cv, cc, and p correspond to the number of samples
belonging to jump edges, convex roof edges, concave roof
edges, and planes. We create new nodes until the information
gain derived by (3) becomes zero. Then, nodes are established
as leaf nodes that store edge labels in which the number of
samples at the node is maximum.

2) How to set threshold t: We employed two ways of setting
the value of threshold t in (1) in this work.

 Fixed threshold We set a fixed value as a threshold
for each node. We set 0.01 as the threshold that was
searched in advance in this work.

 Flexible threshold We search the optimum value for
the threshold in (1) ranging from the minimum to the
maximum depth value of the ring operator to
maximize information gain.

Fig. 5. Structures of binary decision tree and ternary decision tree. Numbers next to nodes denote neighboring pixel x, which is selected by

decision tree learning.

1316

Flexible thresholds can represent various changes in 3D edges
by changing the value of the threshold. However, the
computation time for the traversal decision tree can be more
than that of a fixed threshold.

C. Training of ternary decision tree

The depth of the binary decision tree described above will
be large due to binary decision. It is important to create a
decision tree with fewer depths to enable faster 3D edge
detection. We introduced a ternary decision tree with three
states to overcome this problem. Fig. 5 (b) outlines the
structure of a ternary decision tree. Pixels positioned relative
to p, denoted by p → x, can have one of three states of Far,

Equal, and Near for each location on the ring, x∈{1,...,32}:

).(

)(

)(

2

12

1

Near

Equal

Far

tD

tD

D

D

D

tD

tD

N

E

F

S

p

p

xp

xp

xp

p

p

xp































 (4)

F means that pixel x is far from pixel p. N means that pixel x is
near it. E means that the distance of pixel x is equal to that of
pixel p. t1 and t2 are thresholds for ternary decision. We search
by selecting x that yields the most information about whether
the candidate pixels are edges at each node while training,
which is measured by information gain:

),()()()()(NEF PHPHPHPHPG  (5)

where PF is the number of training samples classified as “Far”,
PN is the number of training samples classified as “Near”, and
PE is the number of training samples classified as “Equal”. H
is the entropy computed with (3). We train the ternary decision
tree until the information gain derived by (3) becomes zero.
Leaf nodes store edge labels in which the number of samples
at the nodes is maximum.

D. Edge detection by decision tree and non-maximal

suppression

1) 3D edge detection by decision tree: Raster scanning of

the depth image is employed at the detection stage. The

previous decision tree that was trained distinguishes pixels

into one of the four classes of jump edges, convex roof edges,

concave roof edges, or planes by doing tree traversal at each

pixel. Fig. (7) (a) shows an example of 3D edge detection

with the proposed method.

1) Non-maximal suppression: We can see from Fig. (7) (a)

that pixels around the original edge have also been detected.

We introduced an approach of non-maximal suppression to

solve this problem. Since the decision tree does not directly

compute edge responses, we define a pseudo-edge response

by

|,|max)(
}32,...,1{

xpp
x

DDpresponse 


 (6)

where p is the location of a detected 3D edge with the

proposed method, and x is its location on the ring. We then

suppress miss-detected pixels in two steps.

1) We compute the pseudo-edge responses with (6) for

all candidate pixels detected by the decision tree.

2) The pseudo-edge responses in neighboring pixels (3

by 3 pixels) in which an edge label of x is the same as

p are ranked at candidate pixel p according to the

values of the pseudo-edge responses. If the value of a

response at pixel p is within the 3rd rank, pixel p is

finally stored as a 3D edge. If not, pixel p is rejected

as not being a 3D edge. Please note that we do not

only use the 1st rank because strong responses are

observed at neighboring pixels, which are lying on the

edge.

3) Repeat 2) for all candidate pixels detected by the

decision tree.

Fig. (7) (b) outlines an example of our non-maximal

suppression for 3D edges.

IV. EXPERIMENTAL RESULTS

We experimentally compared the proposed method with

conventional methods to find how effective it was.

A. Experimental overview

We compared the ring operator [7], surface normal [10],

and the proposed method (binary decision tree and ternary

decision tree) regarding the F-measure obtained by the

following equations:

,
2

recallprecision

recallprecision
measureF




 (7)

Fig. 6. Binary decision at node i.

Fig. 7. Non-maximal suppression.

1317

,
FNTP

TP
recall


 (8)

.
FPTP

TP
precision


 (9)

The decision trees were trained with 180 depth images. We

used another 90 depth images with different viewpoints in the

evaluation test, which were generated by CG and had added

noise. We have also presented some examples of 3D edge

detection using a TOF camera below.

B. Comparison with conventional methods

The results for the accuracy of detection are presented in

Table I, where we can see that the highest accuracy was

achieved by the ternary decision tree, followed by the binary

decision tree, surface normal, and finally the ring operator.

Fig. 8 provides some examples obtained with the proposed

method and the ring operator. The reason for this

improvement is that the proposed method is more robust to

noise by training the decision tree with noise-added images.

However, the ring operator is affected by noise due to spectral

analysis. The processing times for a depth image with a VGA

size of 640 by 480 pixels are summarized in Table I. The

hardware used for these experiments was a personal computer

equipped with a 2.67 GHz Intel X7452 CPU. The ternary

decision tree had the fastest processing time, followed by the

binary decision tree, surface normal, and the ring operator.

Since the proposed method based on the decision tree could

decrease the number of pixels accessed on the ring, we

detected 3D edges 25 times faster than the ring operator. We

can also see that the processing time by the ternary decision

tree is faster than that by the binary decision tree. This is

because the depth of the decision tree is shallower due to the

introduction of ternary decision.

C. 3D edge detection from depth image obtained by TOF

caomera

Fig. 8 shows some examples of 3D edges detected with the

three methods from a real depth image taken with a TOF

camera (mesa SR-4000). We can see that decision trees with

flexible thresholds have better 3D edge detection with fewer

false positives.

V. APPLICATIONS

We confirmed from our experimental evaluation that the

proposed method provided fast and reliable 3D edge

detection. This section presents two examples of applications

based on results obtained with the proposed method. Fig. (9)

(a) has some examples of line segment detection (LSD) that

was applied [17] to jump edges, convex roof edges, and

concave roof edges detected with the proposed method. These

line segments with attributes of 3D edges should be very

helpful for reconstructing 3D scenes and recognizing 3D

objects. Fig. 9 (b) shows some examples of 3D convex corner

detection. We trained a decision tree using the results from

the proposed method to classify whether edges were 3D

convex corners or not. Since 3D convex corners consist of

three lines with convex roof edges, it is easy to detect them

without surface normal computation.

VI.CONCLUSION

We presented a fast and reliable method of 3D edge

detection based on a decision tree. We achieved a 25 times

faster than that with the conventional ring operator by using

machine learning. We will attempt to identify 3D objects in a

scene in future work by using the outputs of the proposed

method as representations of internal features.

REFERENCES

[1] M. Montemerlo, S.Thrun, D. Loller, B. Wegbreit, et al., “Fastslam: A

factored solution to the simultaneous localization and mapping

problem,” in AAAI National Conference on Artificial Intelligence, 2002,

pp. 593-598.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part I,” IEEE Robotics & Automation Magazine, vol. 13, no.

2, pp. 99-110, 2006.

Ring operator[7] Surface normal[10]

Binary decision tree Ternary decision tree

Fixed th. Flexible th. Fixed th. Flexible th.

Jump edge 0.898 - 0.768 0.884 0.780 0.911

Convex roof edge 0.759 - 0.726 0.817 0.769 0.831

Concave roof edge 0.781 - 0.689 0.764 0.717 0.797

Plane 0.999 - 0.736 0.991 0.765 0.997

Average 0.859 0.706 0.729 0.862 0.757 0.884

Processing time [ms] 683.2 61.5 47.2 35.0 22.7 26.5

Depth of decision tree - - 15.4 12.9 8.7 10.1

TABLE I
F-MEASURE

Fig. 9. Application of LSD and 3D convex corner detection

1318

[3] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and

mapping (slam): Part ii,” IEEE Robotics & Automation Magazine, vol.

13, no. 3, pp. 108-117, 2006.

[4] R. Rios-Cabrera and T. Tuytelaars, “Discriminatively trained templates

for 3d object detection: A real time scalable approach,” in IEEE

International Conference on Computer Vision, 2013, pp. 2048-2055.

[5] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE
Journal of Quantum Electronics, vol. 37, no. 3, pp. 390-397, 2001.

[6] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia,

vol. 19, no. 2, pp. 4–10, 2012.

[7] S. Inokuchi, T. Nita, F. Matsuda, and Y. Sakurai, “A three dimensional

edge-region operator for range pictures,” in International Conference

on Pattern Recognition, 1982, pp. 918–920.

[8] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in European conference on Computer Vision. Springer,

2006, pp. 430–443.

[9] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine

learning approach to corner detection,” Pattern Analysis and Machine

Intelligence, vol. 32, no. 1, pp. 105–119, 2010.

[10] P. Kari and P. Matti, “Range image segmentation based on

decomposition of surface normals,” in Scandinavian Conference on

Image Analysis,. IEEE, 1993, pp. 893–899.

[11] X. Jiang and H. Bunke, “Edge detection in range images based on scan

line approximation,” Computer Vision and Image Understanding, vol.

73, no. 2, pp. 183–199, 1999.

[12] R. Krishnapuram and S. Gupta, “Morphological methods for detection

and classification of edges in range images,” Journal of Mathematical

Imaging and Vision, vol. 2, no. 4, pp. 351–375, 1992.

[13] C. Ye and G. M. Hegde, “Robust edge extraction for swissranger
sr-3000 range images,” in IEEE International Conference on Robotics

and Automation, 2009, pp. 2437–2442.

[14] A. Shrivastava and A. Gupta, “Building part-based object detectors via

3d geometry,” in IEEE International Conference on Computer Vision,

2013, pp. 1745–1752.

[15] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based reasoning with

blocks, support, and stability,” in International Conference on Pattern

Recognition, 2013, pp. 1–8.

[16] J. R. Quinlan, “Induction of decision trees,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 1, no. 1, pp. 81–106,

1986.

[17] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd: A

fast line segment detector with a false detection control,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no.

4, pp. 722–732, 2010.

Fig. 8. Edge detection examples using depth image obtained by a TOF camera(SR-4000). Red color means jump edges, Blue means convex

roof edge, and green menas concave rood edge.

1319

