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Abstract—In the field of image recognition, a high-dimensional
feature vector is often used to construct a classifier. This presents
a problem, however, since using a large number of features can
slow down training and degrade model readability. To alleviate
this problem, sequential backward selection (SBS) has come
to be used as a method for selecting an effective number of
features for classification. However, as a type of wrapper method,
SBS iteratively constructs and evaluates classifiers when selecting
features, which is computationally intensive. In this study, we
define the contribution ratio of features by random forest and use
it to create an efficient feature selection method. We performed
an evaluation experiment to compare the proposed method with
SBS and found that the former could significantly reduce feature
selection time for the same dimension reduction rate.

I. INTRODUCTION

Advances in computer technology have made it possible
to process massive amounts of data at high speed, and there
is now a trend toward using such large amounts of data to
construct classifiers in fields like computer vision and pattern
recognition. A standard problem in image recognition, is that
a high-dimensional feature vector is often used to construct
a classifier despite the fact that some of those features do
not contribute to classification ability. Using a large number
of features can degrade learning speed and learning-model
readability. Another problem is that a large amount of memory
can be consumed during the classification process when using
a high-dimensional feature vector thereby increasing compu-
tational costs. Against this background, a number of meth-
ods for selecting features have been proposed. Conventional
feature selection methods can be divided into filtering that
selects features on the basis of an evaluation function like
entropy and wrapper methods that select features according
to generalization error. Filters select features by an evaluation
function using training samples, which makes for high-speed
processing. This approach, however, requires the design of an
optimal evaluation function for each target dataset. A wrapper
method, on the other hand, first constructs a classifier from
a subset of features and evaluates the classification ability
of that classifier. It then changes the feature subset and con-
structs another classifier. For each classifier so constructed, the
method evaluates its generalization ability. Finally, it selects
the subset corresponding to the classifier with the highest
generalization ability as the one composed of features with the
highest classification ability. Since a wrapper method selects
features acin acording to generalization ability, it is better than

filtering in reducing the number of feature dimensions while
maintaining classification ability. On the other hand, a wrapper
method must construct a classifier for each subset, which can
make the time required for feature selection huge. The purpose
of the study presented here is to achieve efficient feature
selection while maintaining classification ability without the
need for iteratively constructing and evaluating classifiers as
in a wrapper method. For the classifier of this study, we
use a random forest [1], which has been attracting attention
in fields such as computer vision and pattern recognition.
Random forest is a learning algorithm that combines decision-
tree learning and ensemble learning to construct a multitude of
decision trees. It features high-speed learning robust to noise
by also incorporating random learning. In this study, we define
the degree of contribution that each feature in the constructed
decision trees makes to classification ability as “ contribution
ratio” and reduce the number of feature dimensions based on
the contribution ratios of the features in question. Contribution
ratios can be calculated after constructing the classifier only
once, which means that feature selection can be performed
faster than a wrapper method that must repeatedly construct
classifiers.

II. EXISTING FEATURE SELECTION METHODS

Selecting a combination of features with high classification
ability improves classifier readability, shortens feature extrac-
tion time at classification time, and reduces the amount of
memory consumed. Feature selection involves the following
optimization problem: from among K features, select d fea-
tures having high generalization ability and the highest dimen-
sion reduction rate. Feature selection methods can generally be
divided into filtering and wrapper methods. Filtering is capable
of high-speed processing since it selects features according to
an evaluation function like entropy using training samples. On
the other hand, it must select an optimal evaluation function
tailored to each target dataset and learning model. A wrapper
method starts out by constructing a classifier from a subset of
features and evaluating its classification ability. It then changes
the feature subset and constructs another classifier. For each
classifier so constructed, it evaluates its generalization ability,
and it selects the subset that constructs the classifier with the
highest generalization ability as the one having features with
the highest classification ability.



A. Wrapper methods

A wrapper method evaluates a constructed classifier on
the basis of generalization ability and consequently has a
high dimension reduction rate compared to filtering. Typical
wrapper methods for solving this optimization problem are
round robin, sequential forward selection (SFS), sequential
backward selection (SBS), and plus-s minus-r. These methods
are outlined below.

1) Round robin: The round robin technique, which is also
called an exhaustive search, searches through all combinations
of xC, features. Among all feature selection methods, this
is the only one that can guarantee an optimal solution, but
computational complexity increases explosively for large val-
ues of K and d, the number of feature dimensions and number
of selected features, respectively. As a result, the round robin
method is not a practical approach when dealing with a large
number of features.

2) Sequential forward selection: The SFS method proposed
by Whitney [2] first constructs classifiers each with a different
feature and selects the feature of the classifier with the highest
classification rate as the first feature. It then constructs new
classifiers by combining that feature with a feature not yet
selected and treats the new feature that results in a classifier
with the highest classification rate as the second feature. This
type of sequential addition is repeated to search for the third
feature and beyond until d features are found. The SFS method
has the lowest computational cost among wrapper methods and
has been used as an executable feature selection method.

3) Sequential backward selection: In contrast to SFS, the
SBS method proposed by Marill [3] sequentially constructs
classifiers for each subset of features achieved by removing
one feature at a time from the previous set and evaluates
those classifiers according to an evaluation value such as
classification error rate. Once a classifier with the highest
evaluation value has been constructed, the excluded feature
is considered to make no contribution to classification ability
and is therefore deleted. The flow of the SBS technique is
shown in Fig.1.

4) Plus-s minus-r: The plus-s minus-r method proposed
by Stearns [4] is an optimization method that uses the SFS
and SBS methods in an alternate manner. It features the
ability to delete a feature that has already been selected. First,
given feature set X consisting of k-selected features, the
technique applies SFS s times to Xk to select features and
obtain the feature set X . Next, it applies SBS to reduce
the number of features and obtain the feature set Xy s—,. It
then repeats this application of SFS and SBS until the number
of features reaches the target value d. In general, s > 7, so
the plus-s minus-r technique may be used, for example, with
s = 2andr = 1.

B. Problems with wrapper methods

A wrapper method selects features by evaluating classi-
fication ability, and can therefore select features in a stable
manner without having to be optimized for each dataset or
learning model as in filtering. On the other hand, a wrapper
method must train as many classifiers as there are features
when selecting features. In other words, classifiers must be

Algorithm 1 Random Forest training algorithm

Require: Training samples{x1,y1},...,{x~n,yn};
x; € X,y; € {1,2,...,M}
Init: Initialize sample weight w;:
w < L.
Run:
fort=1:T do
Create subset Z; from training samples.
AFE 42 <= —00.
for k=1: K do
Select fj one dimensionally and randomly from features.
for h=1:H do
Select threshold 75, randomly.
Use fi and 7, to split sample-set Z,, into Z; and Z,..
Calculate information gain AE:

AE = E(Z,) - FLE(T) — BT,
if AE > AFE.q. then
AFE e < AFE
end if
end for
end for

if AF 0> =0 or max depth D has been reached, then
save class probability P(c|l) in leaf node.
else
Continue splitting.
end if
end for

repeatedly trained and evaluated in order to select features,
which means that processing time can escalate as the number
of feature dimensions increase.

III. RANDOM FOREST

In this section, we describe the Random Forest method
for feature selection using contribution ratio. Random Forest
is a training algorithm for constructing a multiclass classifier
having a multiple-decision-tree structure. It features a safe-
guard against overtraining by incorporating bootstrapping the
same as in the “bagging” approach [5] as well as high-
speed learning even for a high-dimensional feature vector by
incorporating random feature selection [6]. Thanks to these
features, the Random Forest method has come to be used in
semantic segmentation [7], character recognition [8], object
recognition [9],[10] and human pose estimation [11] in the
field of computer vision.

A. Training

The Random Forest method creates subsets from training
samples and constructs a classifier having a multiple-decision-
tree structure. Each decision tree consists of split nodes and
leaf nodes: split nodes are repeatedly constructed and leaf
nodes are created when splitting can no longer be performed on
the basis of a certain criterion. The training algorithm is shown
in Algorithm 1. Here, T denotes number of trees and D the
maximum tree depth. A subset is created from input consist-
ing of training-sample set Z = {x1,y1},...,{XN,Un},X; €
X,y € {1,2,...,C}. Tt is selected randomly from training-
sample set Z with sample overlapping allowed. The algorithm
constructs a decision tree using one subset. A split node in a
decision tree saves a splitting function that uses feature f; and
threshold 73, to split the sample either left or right. Based on the
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Fig. 1. Flow of the SBS method.

number of feature selections K and the number of threshold
selections H, the splitting function selects a candidate ran-
domly K x H times and settles on the candidate with the
highest information gain AFE. Sample set Z,, that has arrived
at a certain split node n branches into Z; and Z, according
to candidate fj and 7, of the splitting function. Then, using
7, and Z,, the algorithm calculates information gain AE by
Eq. (1). Information gain is the result of subtracting from the
entropy of the existing node the entropies of its child nodes. It
represents the extent to which information gain has decreased
by the splitting function. Small child-node entropy results in
large information gain and a splitting function that can split a
category well.

|Zi]

I,

Here, function F(I) represents information entropy calculated
by Eq. (2).

E(Z,). (M)

E(I)=- Zp(cmogp(ci). )

Here, p(c;) represents probability of class ¢; determined by the
occurrence rate of the teacher signal in the training sample.
Repeating this process splits the sample set, and once the
information gain becomes 0 or the process reaches maximum
depth D, the algorithm creates leaf node [ and calculates
occurrence probability P(c|l) of each category from the sample
set that the process has arrived at. Each decision tree is
constructed in this manner.

B. Classification

We here describe the Random Forest classification algo-
rithm. The algorithm begins by inputting an unknown sample
x into each of the decision trees created by the training
algorithm. It then transverses each decision tree by branching
left or right at each node by the splitting function and outputs
class probability P;(c|x) saved at the leaf node arrived at.

Then, as shown by Eq. (3), the algorithm calculates the average
value of the outputs from all decision trees in the random
forest.

1 I
P(cx) = T Z Pi(c]x). 3)
t=1

Final output g obtained by Eq. (4) determines the class with
the highest probability.

9 = arg max P(c|x). 4

IV. PROPOSED METHOD

This study proposes efficient feature selection requiring
no iterative construction and evaluation of classifiers. The
proposed method selects features by using the degree to which
each feature contributes to the classification ability of the con-
structed classifier (contribution ratio) as an evaluation criterion.
Contribution ratios can be calculated once a random forest has
been constructed, which means that feature selection can be
performed faster than a wrapper method that repeatedly con-
structs classifiers. Here, we propose a sequential-calculation
type and a batch-calculation type of feature selection us-
ing the contribution ratio concept. The sequential-calculation
technique calculates feature contribution ratios after reducing
the feature set by one dimension for the case that features
are reduced one dimension at a time by backward selection.
The batch-calculation technique, in contrast, calculates feature
contribution ratios once a random forest has been constructed
using all features. Features are then selected on the basis of
those calculated contribution ratios.

A. Calculation of contribution ratios

The method for calculating contribution ratios is shown in
Fig. 2. A feature dimension selected at a split node situated on
an upper level of a decision tree splits many training samples
and can therefore be considered to make a large contribution
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Algorithm 2 Feature selection by sequential calculation of
contribution ratios
Require: Number of trees : T'
Run:
for k=1: K do
Construct random forest using existing features
for i = 0: I*) do
Calculate contribution ratio C(¢) for each feature from
the constructed random forest:

. = St,50( 15,
Oy = Ly, 2 S0l

2 S
end for !
if the termination condition is not satisfied then
delete the feature with the lowest contribution ratio,
else
Terminate feature selection,
end if
end for

x 100

to the classification ability of the classifier. With this in mind,
we define contribution ratio C(¢) by random forest by Eq. (5)
using the number of samples that have arrived at the split node
in question.

‘ 1.7 8s01f5,1]
C@) = = =1 27 7 % 100. 5)
v T ; Z}J St

Here, 6[f;,4] represents the delta function, which returns 1
if the dimension number selected at node j is the same as
and 0 otherwise. Accordingly, the numerator in the expression
of Eq. (5) represents the total number of samples .S; ; split at
split node 5 at which feature dimension ¢ was selected, and the
denominator represents the total number of samples S; ; split
at all split nodes in that decision tree. This equation therefore
calculates the contribution ratio of that feature for each of the
T constructed trees and calculates the average of those values
to give the overall contribution ratio of that feature.

B. Feature selection by sequential calculation using contribu-
tion ratio

The sequential-calculation type of feature selection using
contribution ratios is shown in Algorithm 2. The proposed
method first constructs a random forest and calculates the
contribution ratio of each feature. It then evaluates the con-
structed classifier and decides whether to terminate feature
selection. If the condition for termination is not satisfied and
feature-dimension reduction continues, the algorithm deletes

Algorithm 3 Feature selection by batch calculation of contri-
bution ratios
Require: Number of trees : T’
Run:
Construct random forest using all features.
for i =0: 1% do
Calculate contribution ratio C'(¢) of each feature from the

constructed random Jforest:
. IR TIR)
Cli)=AST & 777 100
( ) T Zt—l § :J] St,j

end for
for k=1: K do
if the termination condition is not satisfied then
delete the feature with the lowest contribution ratio.

else
Terminate feature selection.
end if
end for
TABLE 1. OUTLINE OF DATASETS.

Dataset Name No.of Samples No.of Classes No.of Features
Pendigits 14988 10 16
Waveform 5000 3 21
Spambase 4601 2 57
Optdigits 5620 10 64

the feature with the lowest contribution ratio. The flow of
feature selection by sequential calculation is shown in Fig.
3(a).

C. Feature selection by batch calculation using contribution
ratio

Feature selection by batch calculation of contribution ratios
is shown in Algorithm 3 and the flow of feature selection by
batch calculation is shown in Fig. 3(b). This type of feature
selection performs dimension reduction based on contribution
ratios calculated from all features. Its computational cost is
small compared to feature selection by sequential calculation
since it does not have to calculate contribution ratios every
time a random forest is constructed.

V. EVALUATION EXPERIMENT

We performed an experiment to demonstrate the effective-
ness of the proposed method by comparing it with the SBS
method. The condition for terminating the experiment was
increase in the classification error rate by 10% compared to
that at the time of training and evaluating the classifier using
all features. The evaluation method measured generalization
ability by 3-hold cross-validation.

1) Datasets: In this evaluation experiment, we used
datasets from the UCI Machine Learning Repository [12],
which is a collection of benchmark datasets released by the
University of Californian at Irvine for assessing machine
learning algorithms. We used, in particular, the Pendigits,
Waveform, Spambase, and Optdigits datasets in this repository
as listed in Table 1.

A. Training parameters

The random-forest training parameters used in this experi-
ment are listed in Table 2. These parameters were used so that
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error would be minimized in the results of classifier training
and evaluation after changing tree depth and number of trees
when using all features to 10 - 30 and 10 - 200, respectively, in
ten rounds of feature selection. As for fixed parameters applied
to all datasets, the number of times to perform feature selection
was set to the square root of the number of feature dimensions,
the threshold number of times to perform feature selection was
set to 10, and the subset ratio was set to 1.0.
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B. Evaluation results

The classification error rate versus dimension reduction
rate for each dataset is shown in Figs. 4, 5, 6, and 7. These
results show that the proposed method can perform feature
selection at a classification error rate essentially equivalent to
that of the SBS method for the same dimension reduction
rate. Here, we consider that the sequential-calculation type
of feature selection has a reduction rate higher than that of



TABLE II. RANDOM-FOREST TRAINING PARAMETERS.

Dataset Name | Depth No. of Trees
Pendigits 20 80
Waveform 30 150
Spambase 30 90
Optdigits 20 110
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Fig. 8. Commonality in selected features between SBS and proposed method.

the lump-calculation type of feature selection since the former
evaluates classifiers while taking fluctuation in features into
account. Commonality in selected features between SBS and
the proposed method is shown in Fig. 8. Although common-
ality between features selected by SBS and features selected
by the proposed method drops for each feature reduction, it
can be seen from these results that about 50% of features
selected by the proposed method are the same as those selected
by SBS at a reduction rate of 80%. The processing time for
reducing the feature set by one dimension for each dataset
is shown in Fig. 9. Feature selection time is significantly
shortened by the proposed method compared to SBS. Since
the SBS method must train as many classifiers as there are
features, N number of features means that a classifier must
be constructed O(N) times. In contrast, the proposed method
can calculate contribution ratios from one classifier, which
means that a classifier must be constructed O(1) times thereby
shortening the time required for feature selection. In other
words, the difference in feature selection time between SBS
and the proposed method becomes large for datasets with a
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Fig. 9. Time required for feature selection.

large number of features.

VI. CONCLUSION

In this paper, we defined the contribution that each feature
makes to classification ability as “ contribution ratio” and
proposed a method of selecting features based on contribution
ratio. The results of an evaluation experiment showed that
the proposed method achieves a feature-dimension reduction
rate equivalent to that of the conventional SBS method.
Furthermore, compared to SBS that must construct O(N)
number of classifiers for N number of feature dimensions, the
proposed method constructs a classifier only O(1) times, which
significantly shortens the time required for feature selection.
In future research, we plan to study a method for selecting
an optimal combination of features by using a decision-tree
structure and evaluating co-occurrence among features.
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