
 

 
Abstract 

 
In this paper, we propose a method for compensating for 

motion features that are outside a given viewing angle by 
using a regression estimate that is based on a correlation 
between the motion features from human bodies deficient 
visually, when recognizing the actions of people whose 
bodies are only partially within the given view. This 
compensation is good for use in situations where parts of a 
person’s body are partially protruding outside the edges of 
the viewing angle, and contributes to enlarging the region 
coverage for action recognition. The motion features and 
position of the acting person in a depth image are 
calculated first in the proposed method. Second, the deficit 
length protruding outside the view angle is calculated, 
according to the position of the person. Finally, the motion 
features from the entire body are estimated using a 
regression estimate from the motion features by selecting 
the regression coefficients according to the deficit length. 
The method for improving the effectiveness of the 
F-measure is confirmed using three kinds of motion 
features in a fundamental laboratory experiment. We found 
from the experimental results that the F-measure was 
improved by more 12.5% when using motion feature 
compensation compared to without compensation when the 
person within the viewing angle cannot actually be seen 
from the floor to 630 mm above it. 

1. Introduction 
There has been a steady increase in the use of monitoring 

systems that automatically detect moving or abandoned 
objects using video recognition technology for video 
surveillance cameras. Some research has already been done 
in search of methods for recognizing human actions and 
comprehending human behavior such as violence and 
accidents [1][2] in order to create more advanced systems, 
and some of them have already been put into practice [3]. 
The use of these kinds of human behavior comprehension 
techniques would reduce the monitoring burden of security 
personnel semantically summarizing video surveillance 
footage. 

Conventional methods of human action recognition 

primarily use motion features that represent the appearance 
and motion within the local parts of the videos. However, 
robustness against outside disturbances is one of the 
problems needing consideration when penetrating these 
kinds of motion recognition techniques. Even if we are 
restricted to indoor environments, we must reduce the 
amount of influence on the motion features resulting from 
flickers in the lighting, shadow disturbances, and imaging 
noise in low illuminant environments and so on when 
operating systems at many locations. 

The use of a depth image sensor looks like a promising 
way to create a robust human action technique. A depth 
image sensor is a device that measures the range of every 
pixel in an image using a specific optical system. There are 
several kinds of depth image sensors such as Time of Flight 
(TOF) [4] and Light Coding [5]. The depth information 
from a depth image sensor has an advantage in that it is less 
likely to be affected by disturbances from the video camera 
feeds such as external light or shadows. In addition, using 
the depth information seems to be a promising way to 
improve the recognition performance by using it to 
precisely measure the human position and shape in a 3D 
space. 

However, the narrow viewing angle of a depth image 
sensor for its specific optical system could be a serious 
problem when used for the action recognition in indoor 
environment monitoring. A depth image sensor would only 
capture a limited range of images around a given spot on 
the floor when placed on the ceiling at tilt angle just like 
that for conventional surveillance cameras, which is the 
most acceptable location for general customers. The 
conventional techniques for recognizing human actions, 
represented by using the skeleton recognition [6] and action 
recognition methods [7] [13], by and large assume that the 
human positions would be restricted to around the center of 
the viewing angle. On the other hand, for human behavior 
comprehension targeting voluntary human actions, the 
positions of humans are hard to restrict and as large an area 
as possible is required for recognizing a target. For these 
reasons, the conventional methods used at the settings just 
mentioned can barely recognize the actions of a person 
whose body parts are somewhat protruding outside the 
viewing angle, such as when the person starts to leave the 
viewing angle. 
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In this paper, we propose a method as an efficient and 
effective solution that compensates for the motion features 
by using a regression estimate that is based on a correlation 
between the motion features of body parts outside the 
viewing angle and that of full body images. The effects of 
the body parts outside the viewing angle could be 
diminished by making the motion features from them closely 
match the ones from an entire body using the proposed 
method. 

2. Conventional action recognition methods 
using depth images 

We will briefly introduce some conventional action 
recognition methods that use depth images in this section. 
We will also explain the adverse effect on the conventional 
methods from body parts only slightly protruding outside 
the viewing angle. 

The conventional methods can be divided into two kind 
of approaches, one that extracts the motion features directly 
from the depth images that represent the appearance and 
motion of the local parts of the body and the one that 
preliminarily recognizes human skeletal structures using 
methods such as [6] and use the skeletal properties like the 
joint positions for the motion features. As a representative 
method of the former approach, Holts at el. extracted 
motion features from the spatial distribution of the pixel 
subtraction from the depth images' frame subtraction, and 
recognized the gestures by categorizing the features using 
the Edit Distance method [7]. Li at el. extracted motion 
features from the outline shapes of a human silhouette 
projected onto some planes, and recognized the 
fundamental actions such as crouching by using an action 
state transition model of the feature [8]. Ikemura at el. 
extracted motion features using the most frequent depth 
values from small areas in the depth images, and 
recognized the picking up action from store shelves by 
categorizing the features using Joint-Boosting [9]. Ni at el. 
extracted the motion features using the Bag of Features 
(BOF) method and the moment features from the Motion 
History Image (MHI), and recognized daily actions like 
cleaning by categorizing the features using Support Vector 
Machines (SVM) [10]. Schwarz at el. extracted the spatial 
coordinates of the corners of a human silhouette extracted 
with the background subtraction of the depth images as the 
motion features, and recognized fundamental actions such 
as waving arms by categorizing the features using a state 
transition model with a manifold [11]. 

As representative methods of the latter approach, which 
extracts motion features from human skeletons, Masood at 
el. used the distances between the joint positions in adjacent 
frames, and recognized fundamental actions such as 
walking by categorizing the features by using the 
similarities between the representative frames of each 
action previously defined [12]. Wang at el. extracted the 

displacement of the joint positions between the frames and 
the distribution of the pixel values around the skeleton, and 
recognized the actions accompanied with an instrument 
such as playing a musical instrument by categorizing the 
features using Multiple Kernel Learning (MKL) [13]. 

The conventional methods above assumed that the entire 
body of the actors was within the viewing angle. Based on 
the narrow viewing angle of depth image sensors, this 
assumption is satisfied only when the positions of the actor 
are around the center of the viewing angle, and not satisfied 
when the positions are close to the edges of the viewing 
angle. It is difficult to recognize the actions because of the 
body parts partially protruding outside the edges of the 
viewing angle, when the positions of the acting persons are 
close to the edges of the viewing angle, making the persons 
partially deficient visually in the images. This problem 
could be avoided by previously limiting the positions of the 
humans when targeting a gesture [7] or actions at specified 
positions [8], but could not be avoided when targeting 
human actions whose positions could not be previously 
limited, like that for human behavior comprehension. 

3. Motion features compensation with 
regression estimate 

We describe a method for compensating for motion 
features that are outside the given viewing angle by using a 
regression estimate for cases when part of a person's body 
is partially outside the view in depth images. We present an 
outline of the method in Figure1. First, the motion features 
are calculated from the depth images. Simultaneously, the 
person's position and deficit length according to the 
position are calculated. Second, regression coefficients 
according to the deficit length are selected, and regression 
estimates of the motion features for an entire human body 
are made from the ones of the partially deficient human 
body views. 

3.1. Deficit length calculation to human positions 
The position of a human within an image is calculated by 

extracting the person's silhouette from the depth image and 
by calculating the depth value from the pixels within the 
silhouette. The deficit length is calculated from this 

Figure 1: Outline of motion features compensation.
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position and a geometric model representing the set 
position, set angle, and the viewing angle of the depth 
image sensor. 
3.1.1 Human position extraction 

Human silhouettes in depth images are extracted using 
background subtraction. This background subtraction 
method is precise because it uses the depth information [6]. 

For calculating the position of a human within a given 
view, the pixels in the silhouette are first converted into a 
point cloud [14], and the coordinates are transformed so 
that the normal of the floor is vertical. Second, the gravity 
center for x-z plane of the floor is calculated, which helps to 
determine the human position. 

3.1.2 Deficit length calculation 
The deficit length B in Eq. (1) is calculated using the 

distance L on the floor between the depth image sensor and 
the person as Figure 3, by using a geometric model of the 
vertical viewing angle in a depth image. 

       (1) 

When B=0, the silhouette is within the viewing angle and 
not deficient. Examples of deficiencies are in Figure 4. 

3.2. Regression estimate of motion features 
according to deficit length 

The motion features from an entire human body can be 
estimated by using the regression coefficients from a 

regression estimate selected for its deficit length. When the 
given deficit length is B, Bi is selected first, which is the 
closest to B among N kinds of deficit length sets { B1 , B2 , ... 
BN } prepared beforehand. Second, the regression 
coefficients Ai corresponding to Bi are selected among a 
{ A1 , A2 , ... AN } set that is also prepared beforehand. Last, 
a regression estimate is done using Eq. (2), so that 
explanatory variable x is the motion features from a 
partially deficient body part view and objective variable y 
is that from an entire body view. ci is a constant term of 
regression in Eq.(2). 

iiA cxy +=ˆ                                                              (2) 

3.3. Calculation procedure of regression 
coefficients according to deficit length 

Every element of the regression coefficients set { A1 , 
A2 , ... AN } is calculated beforehand using depth image 
samples corresponding to the deficit length set { B1 , B2 , ... 
BN }. Here, the depth image samples are composed in a 
pseudo manner from the depth image samples of an entire 
human body by omitting the parts in the depth image whose 
heights are less than Bi. Regression coefficients Ai are 
calculated as shown in Eq. (3) from a sum of the squared 
deviations Sxx,i  of the motion features from a view of 
partially deficit body parts whose deficit length is Bi and 
Sxy,i  between the motion features from an entire body view 
and ones from a deficit body view. 

1
,,

−= ixxixyi SSA                                                              (3) 
Here,   in Eq. (2) is a statistically optimal estimated value 

in the least-square manner when changes in objective 
variable y according to the ones for explanatory variable x 
are approximated linearly. In this regression estimate, we 
assume that there is a correlation between the motion 
features from an image with parts of the subject’s body only 
partially within view and ones from an entire human body 
within view. For example, in a situation where the legs of a 
crouching and stretching person are not within full view, 
this assumption is filled because the upper body movement 
described by the former is synchronized with the crouching 
and stretching movement of the entire body described by 
the latter. 

3.4. Validation of correlation of motion features 
We validated the correlation between the motion features 

from a partially deficient human body view and ones from 
an entire human body view. The correlation coefficients 
between the motion features at prescribed deficit lengths 
and ones from an entire human body image are shown in 
Figure 5(a), which are calculated from our experimental 
datum later in Section 5.1. The motion features are 18 
dimensional ones described later in Section 4.2. In Figure 
5(b), the average and minimum values of each dimension of 
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the motion features are shown as representative values. The 
range in correlation coefficients is from 0 to 1, where 0 
means no correlation and 1 is a perfect correlation. When 
the deficit length is 0 the entire human body is shown in the 
image, and as the deficit length increases from zero the 
parts of the human body that go outside the viewing angle 
from the ground enlarge. In Figure 5(a) every correlation 
coefficient uniformly decreases as the deficit length 
increases, but the degree of decrease for each case is 
gradual. This result shows that there is a correlation 
between the motion features from a partially deficient 
human body view and the ones from an entire human body 
view. In Figure 5(b), the minimum correlation is 0.5 and the 
average one is 0.6 when the deficit length is as much as 
1050 mm. 

4. Action recognition using motion features 
compensation 

An outline of the proposed action recognition method 
including the motion features compensation is shown in 
Figure 6. First, a human silhouette is extracted from a depth 
image and is transformed by the projection. Then, the 
motion features representing the appearance and motion of 
the silhouette are calculated. Then, the motion features are 
compensated for. Finally, the action categories are 
discriminated from the motion features, and they are 
filtered using the time series. 

4.1. Depth image preprocessing 
For the preprocessing, the human silhouettes in the 

image are extracted using background subtraction, as 
shown in Figure 7(a). Then, a point cloud in the human 
silhouettes is coordinate transformed so that the floor plane 

is vertical, and the point cloud is projected onto three planes 
as shown in Figure 7(b). 

These projected images correspond to the virtual images 
from the virtual viewpoints located at infinite distances 
along the z, y, and x axes respectively, and the posture 
changes of the person can be described more easily using it. 
It is particularly effective for posture changes along the 
optical axis, e.g., that shown in Figure 7(b) where a part of 
an arm is enlarged and its motion feature is easily extracted. 
In addition, it diminishes the differences in human 
appearance located at different positions in a depth image. 

4.2. Motion feature extraction from depth image 
Arbitrary motion features could be used that can be used 

to describe the appearance and motion of human silhouettes 
in depth images for the proposed method. Here for example, 
we describe the motion features using MHI in Figure 8. 

MHI is a kind of feature that records the history of the 
motions in grayscale images [15]. For calculating the 
motion features using MHI, a histogram that describes the 
orientation of a time slice shape of MHI is at first calculated. 
Second, amount of the histogram is normalized so that the 
amount equals the area of the time slice. These motion 
features describe the direction of appearance and the 
motion and magnitude of the motion from the moving parts 
in the depth images.  

The motion features using MHI are respectively 
calculated from three projections. The motion features are 
actually 18-dimensional when the number of the bin is 6, 
and they are expanded using the time series [17]. The 
motion features are 108-dimensional when number of the 
time slice is 6. 

4.3. Action category discrimination from motion 
features 

Dimensionality reduction using Linear Discernment 
Analysis (LDA) and the kNN method are used for 
discriminating action categories from the motion features 
[17]. The dimensionality reduction is aimed at enhancing 

Figure 5: Motion features’ correlations at some deficit lengths.
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the discrimination performance by pruning the dimensions 
not contributing to the category discrimination. The 
criterion for the feature dimensions after reduction is a 95% 
cumulative contribution ratio of the LDA eigen values. The 
kNN method is used so that the distance is minimized 
between a given motion feature and the representative 
vectors shown in Eq. (4). In Eq. (4), y is the motion features, 
vcm is the m-th element of the representative vectors {vc}= 
{vc1,vc2,…vcM} belonging to action category c {1,2,…C}. 

cm
c

vy −minarg                                                              (4) 

Here, the representative vectors are calculated 
beforehand from the learning samples using the LBG 
method [16]. These learning samples are the datum from 
entire human body views. 

4.4. Time series filtering by posterior probability 
For time series filtering, action category c is chosen as 

the latest recognition result that maximizes the posterior 
probability given by Eq. (5), for diminishing erroneous 
discriminations from instant turbulence in the motion 
features. 

∏
=

K

k
kB

c
cP

i
1

)|(maxarg v                                                       (5) 

In Eq. (5), K is the history length and the length is 18 
because we target continuous actions in this paper, vk is the 
representative vector chosen for the k-th in the history 
when  using  Eq. (4),  and              is  the  posterior  
probability of action category c around representative 
vector vk when the deficit length is Bi. This posterior 
probability is calculated beforehand using Eq. (4) for every 
representative vector and every deficit length {B1, B2, ... BN 
}. Sc,i in Eq. (6) is the number of training samples whose 
nearest neighbor is representative vector v when the 
compensated values are calculated for all the learning 
samples whose deficit length is Bi. This posterior 
probability is the most proper value for every compensated 
for motion feature of each deficit length. 

� =
= C

j ijicB SScP
i 1 ,,)|( v                                                   (6) 

5. Experimental results 
We describe our evaluation of the experimental results 

using the proposed method. 

5.1. Experimental conditions 
The depth sensor used for the experiments was a 

standard TOF device [4]. The horizontal and vertical 
viewing angles of the device were 41 and 36 degrees. The 
device was mounted 2.2m off the ground and tilted at 25 
degrees. 

We used six different actions, crouch, drop, turn, jostle, 
walk, and wave, in our experiments, as shown in Figure 9. 

For the crouch, the person stretched and bent their knees 
several times in a kneeling position. For the drop action, the 
person fell to the ground from an upright position. For the 
jostle action, two facing people grasp each others’ arms and 
jostled. The person stood and looked back for the turn 
action. The person marched in the same position for the 
walk action. For the waving action, the person shook both 
arms from horizontal to straight up several times. With 
these actions, the jostle and drop are examples of abnormal 
actions which are violent and accidental respectively, and 
the rest actions are examples of daily actions. There are two 
types of actions that affect the action recognition 
performance from the direction of the people toward the 
depth image sensors: frontal and sideways. There are 12 
action categories, which are products of six actions and two 
directions. There were two people for the jostling and only 
one for the rest. 216 action data in total were taken, which is 
a combination of the 12 action categories and three action 
experimenters, and the six positions. A breakdown of two 
of the positions is given in the second and third columns in 
Figure 4, where the people were only partially within view, 
and four of them are shown in Figure 10, where the entire 
person’s body was shown. 

There were three motion features: MHI, CHLAC [1], 
and ST-Patch [2]. CHLAC is a 251-dimensional feature 
that makes comparisons with the binary frame subtraction 
using 251 local patterns. ST-Patch is a grouping of 
6-dimensional features that consists of the temporal and 
spatial moments of the gradients of grayscale images. Each 
motion feature is a combined vector of the elements 
consisting of the three projections shown in Figure 7. The 
dimensions of ST-Patch are expanded using the 6 
accumulated frames [17]. 

The evaluation targets are the frame-wise recognition 

Figure 9: Examples of action datum.
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results. The evaluation indicator is an F-measure that is the 
harmonic average of the recall and precision. The 
representative indicators are the mean of the indicators of 
all the action categories. 

5.2. Evaluation results using simulated deficit  
For a fundamental evaluation, only the compensation 

process in the proposed method is evaluated using 
synthetically deficient depth images on condition that the 
set of deficit lengths is dense, the calculation of the deficit 
length according to the human positions (see 3.1) is omitted, 
and the deficit length of the regression coefficients (see 3.2) 
is set to the deficit length of the synthesized datum. For 
synthesizing deficit depth images, points are omitted whose 
height is from the ground level to the deficit length. The set 
of deficit lengths is incremented by 150 mm from 300 mm 
to 1200 mm. The data in positions 2 and 3 in Figure 10 are 
used for training, and the ones at positions 1 and 4 are used 
for the evaluation. Here, the affect from the difference in 
human size and the tilt angle according to the difference in 
the positions of the human are diminished by the 
preprocessing discussed in Section 4.1. using the projection 
transformation from the viewpoints at infinite distances. 

Graphs of the F-measure averaging for every action are 
shown in Figure 11. The ones without motion feature 
compensation and the ones with motion feature 
compensation by [18] are also shown in Figure 11. [18] is a 
method for restoring an entire image in an image sequence 
from a partial image using the eigen image method, and is 
used in this experiment for restoring the deficient parts of 
the projected depth images to the xy and zy planes shown in 
Figure 7. The restored images by [18] are dealt as deficient 
less (0 mm deficient) and used for recognizing actions with 
the method described in Section 4. 

The compensation in the proposed method was valid 
because the F-measure when the motion features are 

compensated for is consistently higher than the one when 
not compensated for in the range of 0 to 1200 mm deficient. 
When choosing to focus on the 600 mm deficient case, 
improvement of the F-measure is 22.4, 15.1, and 60.2% 
respectively. Here, 600 mm deficient corresponds to cases 
when the legs of the person in the given view are rarely 
shown when considering the average inseam of an adult 
male is 800 mm. Here, the result in which the degree of 
improvement of ST-Path is especially large comes from the 
appearance elements, (features in one frame) which the 
remaining two motion features rarely possess. The 
compensation of the motion features is especially effective 
for the appearance elements because these elements are 
constantly deficient (independent of the persons’ motion) 
when parts of the people being viewed protrude out of the 
viewing angle. When comparing the proposed method and 
[18], the former outperformed the latter because it 
outperformed the latter in a majority of the ranges 
excluding the 300 mm deficient case when using ST-Patch. 

5.3. Evaluation results using actual deficiency 
The proposed method was evaluated for actual deficient 

depth images using the 2nd and 3rd columns data in Figure 
4. The median deficit length calculated using Eq. (1) was 
630 mm for the datum in the 2nd column in Figure 4 and 
1000 mm for the 3rd. The deficit length set of regression 
coefficients and datum for training were equivalent to that 
in the experiment described in Section 5.2. 

Graphs of the experimental results are shown in Figure 
12. The horizontal axis of the graphs in this figure 
represents the deficit length of the regression coefficients 

Figure 11: Evaluation results of simulated deficient datum.
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(see 3.2.). There are three graphs in Figure 12, when the 
actually deficient datum is compensated for, when the 
actually deficient datum is not compensated for, and when 
the simulated deficient datum described in Section 5.2. is 
compensated for. First, when comparing the cases when 
actually deficient datum is and is not compensated for, the 
former’s F-measure surpassed the latter’s for any motion 
features when the regression coefficients were used when 
the deficit length was within a ± 150 ~ 300 mm gap from 
the actual deficit length. The deficit length range should be 
able to tolerate the deficit length estimation for the 
proposed method. When comparing the cases when the 
regression coefficients with the nearest deficit length to the 
actual one, the F-measures of MHI, ST-Patch, and CHLAC 
are improved by 12.7, 12.5, and 35.5% for the 2nd column 
datum using the regression coefficients for a deficit length 
of 600 mm, and improved by 23.9, 12.6, and 36.6% for the 
3rd column datum when using the regression coefficients 
for a deficit length of 1050 mm. Second, when comparing 
the cases when actual and simulated deficient datum are 
compensated for in Figure 12, the graphs came close to 
each other when regression coefficients close to the actual 
deficit length were used, and the differences in F-measure 
between them are at most 10.5% when the regression 
coefficients closest to the actual deficit length were used. 

5.4. Evaluation results with altered deficient 
positions  

Two cases were used for evaluating whether or not the 
deficient parts could be altered from lower positions when 
the deficient positions were in the upper and right positions. 
The upper deficit position corresponds to cases when the 
body positions are farther away and the tilt angle of the 
depth image sensors is deep. The right deficit position 
corresponds to cases when the body positions are to the left 
end of the viewing angle of the sensor. The evaluation data 
are simulated deficiencies like those described in Section 
5.2. For the upper deficit position, the deficit length is set to 
0 mm to 2150 mm from the floor, which corresponds to the 
whole height of the person within whose arms are raised 
above them. For the right deficit position, the deficit length 
is set to 0 mm at a position 900 mm to the right of gravity 

center of the people in the view, which corresponds to the 
maximum length of an arm lifted horizontally. MHI was 
applied as the motion features. Considering the manner of 
motion for each action category in Figure 9, there should be 
a correlation between the motion features from the entire 
body, and the ones from partially deficient upward and to 
the right body views 

The experimental results are shown in Figure 13. The 
graphs of the proposed method showed that it outperformed 
the ones without motion feature compensation when the 
deficit positions are both upward and to the right, and the 
F-measure of the former surpassed 19.1% and 21.0% when 
the deficit lengths were 600 and 900 mm. 

6. Conclusion 
We proposed a method that helps to compensate for the 

motion features that are outside a given viewing angle by 
using a regression estimate in this paper, for the purpose of 
enlarging the target area for action recognition when using 
depth images. We acknowledged the effectiveness of the 
proposed method from our experimental results. In our 
future work, we want to improve the recognition 
performance by using more precise motion features such as 
the joint positions of human bones. 
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