
KEYPOINT DETECTION BY CASCADED FAST

Takahiro Hasegawa† Yuji Yamauchi† Mitsuru Ambai‡ Yuichi Yoshida‡ Hironobu Fujiyoshi†

†Chubu University
{tkhr, yuu}@vision.cs.chubu.ac.jp, hf@cs.chubu.ac.jp

‡Denso IT Laboratory, Inc.
{manbai, yyoshida}@d-itlab.co.jp

ABSTRACT

When the FAST method for detecting corner features at high
speed is applied to images that include complex textures
(regions that include foliage, shrubbery, etc.), many corners
that are not needed for object recognition are detected be-
cause FAST defines corner features on the basis of a 16-pixel
bounding circle. To overcome that problem, we propose the
Cascaded FAST that defines corners on the basis of similarity
in terms of intensity, continuity and orientation in a broader
range of areas (20, 16, and 12 pixel bounding circles). Also,
cascading three decision trees trained by the FAST approach
enables high-speed corner detection in which non-corners
are eliminated early in the process. Furthermore, Cascaded
FAST determines scale by using an image pyramid and de-
termines orientation at high speed by using a framework for
referencing surrounding pixels.

Index Terms— Corner detector, Cascaded FAST, FAST,
Keypoint matching

1. INTRODUCTION

Identifying the correspondence of features (keypoints) in
different images is an important problem in the image recog-
nition. The many keypoint detection methods that have
been proposed to accomplish such detection can be classified
into three approaches: corner detection methods (Harris[1]，
FAST[2])，blob detection methods (DoG[3]，Harris-Affine[4])，
and region detection methods (MESR[5])[6]．The method
we propose here for high-speed keypoint detection is a cor-
ner detection method. The importance of the first proposal
by Moravec in 1977[7]has resulted in the proposal of many
corner detection methods since then[1] [4] [5] [8] [9] [10]．
In recent years, the Features from Accelerated Segment Test
(FAST) method has been attracting attention for high-speed
corner detection [11][2]．FAST uses the relative brightness
of the pixel of interest and an area bounded by 15 pixels cen-
tered on the pixel of interest to identify corners. High-speed
detection of corners is then possible because of the efficiency
of looking-up the surrounding pixels by using decision trees
trained by machine learning based on this definition. FAST,
however, has the problem of detecting a large number of cor-

Fig. 1. Comparison of corner detection results for a natural
image.

ners in the complex textures of tree foliage and shrubbery,
and so on that occur in natural images, such as shown in Fig.
1. That problem arises because corners are determined on the
basis of intensity information for an area that is bounded by
only 16 pixels. In assigning correspondences between two
images on the basis of a large number of corner points, as
shown in Fig. 1(a), two problems arise. One is that changes
in viewpoint and disturbances such as the movement of leaves
by wind in complex areas of natural images cause a change in
the appearance of the image so that the same corner features
cannot be detected in multiple images. The second problem
is that one corner detected in the first image is compared to
all of the corners detected in the second image in finding the
correspondence of corners in two images. That is computa-
tionally expensive when many corners are detected.
We therefore propose here the Cascaded FAST method for
fast detection of only the points that are important in deter-
mining correspondences between images. Cascaded FAST
uses decision trees that reference a wider range of pixels than
does FAST, which uses only an area bounded by 16 pixels.
Thus, corners can be detected quickly by cascading the de-
cision trees. Cascaded FAST can suppress the detection of
corner point in complex images of nature as shown in Fig.
1(b). In addition, Cascaded FAST determines scale by detect-
ing corners in an image pyramid. Furthermore, the Cascaded
FAST framework for referencing peripheral pixels can be
used for simultaneous detection of corners and orientation.

2. PROBLEMS AND TENDENCIES WITH FAST

Although FAST can detect corners very quickly, it detects
too many corners in areas of complex textures as shown in

Fig. 2. Appearance of corners detected by FAST.

Fig. 1. We investigated the tendencies in detection of corner-
like points and points that are not corner-like by the FAST
method. We first examined tendencies in the appearance of
the region around corners in image patches that are centered
around points that are detected as corners. We compared the
appearance of those patch images as being corner-like and
non-corner-like. Corner features detected in artificial images
and natural images by FAST are shown in Fig. 2. The corner-
like points shown in Fig. 2(a) tend to be similar in appearance
for all of the patches. The non-corner-like points in Fig. 2(b),
on the other hand, tend towards a large variance in appear-
ance. From the tendencies in corner appearance shown in Fig.
2, we can expect the change in brightness of the pixels inside
and outside of the 16-pixel bounding circle to change in the
same way for corner-like points. We therefore quantitatively
analyzed the tendency in the difference in brightness between
the pixels in the surrounding region and the pixel of interest.
The analysis used average difference values for 1,000 corners
that were detected in images that contained only artificial ob-
jects and images that contained only natural regions. With
n or more consecutive pixels that are all classified as either
brighter or darker serving as a reference point, the pixel of in-
terest and the reference point are connected by a straight line
and a reference line is drawn (angle 0 degrees). The results of
the analysis are presented in Fig. 3, where the vertical axis is
the absolute value of the difference between the pixel of in-
terest and a bounding pixel and the horizontal axis is the an-
gle. The large difference values for the bounding pixels of the
corner-like points (20, 16, and 12 pixels) are consecutive and
the shapes of the graphs are similar. For the non-corner-like
points, the difference values are dispersed for 20, 16, 12, and
8 bounding pixels. These results show that defining corners
only on the basis of information for 20, 16, and 12 bounding
pixels is effective for detecting only the corner-like points.

3. KEYPOINT DETECTION BY CASCADED FAST

The results of the investigation described in section 2 confirm
that the changes in difference values for corner-like points are
similar for the cases of 20, 16, and 12 bounding pixels. We
therefore chose to base corner detection on information for

Fig. 3. Results of corner point analysis.

Fig. 4. Corner detection flow in Cascaded FAST.

that range of bounding pixels in the approach reported here as
shown in Fig. 4. Cascaded FAST also obtains scale and ori-
entation in addition to the corner coordinates, as is described
in detail below.

3.1. Definition of corner

In the Cascaded FAST method, corner candidate points are
first detected on the basis of conditions of continuous brighter
or darker pixels in bounding circles of 20, 16, and 12 pixels.
Then, orientation is calculated for the detected corner candi-
dates, and if the orientations for the cases of 20, 16, and 12
bounding pixels are similar, the pixel of interest is detected as
a corner. The processing is described in detail below.

Step1 : Continuous brighter or darker pixel condition

The pixels in bounding pixel sets of 20, 16, and 12 pixels are
classified according to the ternary values of brighter, similar,
and darker by

Sp→x =

d, Ip→x ≤ Ip − t (darker)
s, Ip − t < Ip→x < Ip + t (similar)
b, Ip + t ≤ Ip→x (brighter),

(1)

where Ip is the brightness value of the pixel of interest, x ∈
{1, · · · , 16} are the positions of the bounding pixels, Ip→xare
the brightness values of the 16 bounding pixels, and t is a
threshold value. FAST judges the pixel of interest to be a cor-
ner in the case that there are nine or more consecutive brighter
or darker pixels in a set of 16 bounding pixels. Cascaded
FAST, on the other hand, takes the pixel of interest to be a
corner candidate point when a bounding pixel set of 20, 16
or 12 pixels has a continuous respective run of at least 11,
9 or 6 brighter or darker pixels. The number of consecutive
brighter or darker pixels for sets of 20 or 12 bounding pixels

Fig. 5. Example of calculating orientation for 16 bounding
pixels.

was determined in proportion to the 16 bounding pixels used
by FAST.

Step2 : Calculation of orientation
For each corner candidate point obtained in Step1, the ori-
entations are calculated for the bounding pixel sets of 20, 16
and 12 pixels. An example of calculating the orientation for
16 bounding pixels is presented in Fig. 5. First, the angle
from the starting point to the ending point (sequence of all
brighter or all darker pixels) is obtained. Denoting the angle
of the pixel of interest p(up, vp) and the starting point pixel
xs(us, vs) with respect to the x axis as θs, and denoting the
angle of the pixel of interest p(up, vp) and the ending point
pixel xe(ue, ve) with respect to the x axis as θe, the angle of
the starting point and ending point, θs→e, is obtained by

θs→e =

{
360 − |θs − θe| If θs > θe

|θs − θe| Otherwise,
(2)

where θs = angle(xs, p) and θe = angle(xe, p). In the above
equations, angle(·) is a function that returns the angle of the
starting point or ending point relative to the x axis. The ori-
entation θ is then calculated as the direction that divides the
angle of the starting point and ending point into two equal
parts by

θ =
θs→e

2
+ θs. (3)

The orientations for the cases of 20 and 12 bounding pixels
are calculated in the same way as in Fig. 5.

Step3 : Orientation similarity condition
Each corner candidate point is judged to be a corner or non-
corner according to the similarity of the orientations for the
bounding pixel sets of 20, 16 and 12 pixels. Denoting the
orientation angle difference for the 16 pixel and 12 pixel sets
as α, the orientation angle difference for the 16 pixel and 20
pixel sets is obtained as β. Then, the corner candidate pixel
of interest p(up, vp) is detected as a corner by

p(up, vp) =

{
c If α ≤ Th1 & β ≤ Th2

c Otherwise,
(4)

where Th1 and Th2 are threshold values. Because the orien-
tations for 20 bounding pixels and 12 pixel bounding pixels
have different resolutions, there are different threshold values
for α and β.

3.2. Faster processing through cascading
For Cascaded FAST, the training sample is first divided into
corner and non-corner features as described in section 3.1.
The training sample is then used to train three decision trees
by the ID3[12] algorithm with reference to bounding pixel
sets of 20, 16 and 12 pixels. In Cascaded FAST, when all
three of the decision trees decide that an input pixel is a cor-
ner, the pixel is output as a corner candidate point. If even
one decision tree decides the point is a non-corner, the non-
corner result is output. To expedite that processing, the deci-
sion trees are placed in a cascading arrangement (Fig. 4) so
that non-corner pixels are rejected earlier in the process and
corner candidate points are detected faster. Next, orientation
is calculated for the candidate points as described in Step 2,
and the final judgement is made on the basis of similarity as
described in Step 3. The order of the decision trees for the
bounding pixel sets of 20, 16 and 12 pixels does not affect
the corner detection results at all, but preliminary experiments
show that the order does affect detection time. As shown in
Fig. 4, the decision tree order for referencing the bounding
pixel sets in the order of 12, 16 and 20 pixels was confirmed
to produce the fastest corner detection.

3.3. Obtaining orientation and scale
The corner detection methods described so far output only the
corner point coordinates, but the proposed Cascaded FAST
method can output scale and orientation in addition to cor-
ner point coordinates. Concerning scale, Cascaded FAST is
applied to an image pyramid of multiple resolutions and the
scale of the image resolution for which corner points were
detected is used. If a corner is detected in same position of
multiple scale, they are detected as different keypoints. For
orientation, the value calculated according to Step 2 of sec-
tion 3.1 is output.

The keypoints detected by Cascaded FAST are shown in
Fig. 6. The centers of the red circles are the corner coordi-
nates, the size of the circle indicates the scale, and the blue
line indicates orientation. We can see from Fig. 6 that the
orientations of the detected corners are rotated by the same
number of degrees by which the image is rotated.

4. EVALUATION EXPERIMENTS

We performed evaluation experiments to test the effectiveness
of Cascaded FAST. The hardware used for these experiments
is a personal computer equipped with a 3.33-GHz Intel(R)
X5470 CPU and 32 GB of memory.

4.1. Evaluation of corner detection
The corner detection results for each method are presented in
Fig. 7. FAST detects a large number of corners in natural

Fig. 6. Examples of detected keypoints by Cascaded FAST.

regions, but Cascaded FAST detects a much smaller number.
Also, we compared the Harris method, FAST, and Cascaded
FAST regarding the time required for corner detection. The
processing speeds are presented in Table 1. The processing
time is 2.9 [ms] longer for Cascaded FAST than for FAST, but
the speed is about 11 times as fast as with the Harris method.
Also, Cascaded FAST is capable of operating at 135 [fps].

Fig. 7. Corner detection results for various methods.

Table 1. Comparison of detection times for various methods.
Harris FAST Cascaded FAST

Detection time[ms] 81.1 4.5 7.4
Number of corners 3549 15913 2369

4.2. Evaluation of determining the correspondences in
two images
Here, we evaluate the performance and processing time for
matching keypoints in two images. The results for three meth-
ods, Harris, FAST, and Cascaded FAST, are compared. An
image pyramid was used for the calculation of scale for all
methods. The orientation calculations are performed by two
methods, one based on the moment within a patch that is cen-
tered on a corner point [13] and the other is the one used
by Cascaded FAST. The feature description is ORB, which
is normalized to changes in rotation and scale [13]. ORB fea-
tures represent the brightness relationship within a patch as a
binary feature. In this experiment, we used 110 images (1024
× 768 pixels) applied by affine transforms.

For evaluation of keypoint correspondence, we used the
matching rate calculated as the number of correct correspon-
dences divided by the total number of correspondences. Next,
we compare the matching rate and the frame rate (fps). The
matching performance and speed results are presented in Fig.

8. The matching results are about the same for Cascaded
FAST and the other methods, but Cascaded FAST has a higher
frame rate. The computation times for the various processes
are shown in Fig. 9. For the Harris method, the corner de-
tection processing time accounts for a very high proportion
of the total. FAST, on the other hand, does corner detection
and orientation calculation at high speed, but requires a high
proportion of processing time for feature description and dis-
tance calculation. The reason for that is the very large number
of corners detected by FAST compared to the other methods.
Cascaded FAST is faster than the other two methods for each
type of processing. In particular, the orientation calculation in
which the data for the 20 pixel bounded region is used can be
eliminated, because the orientation values calculated for cor-
ner detection can be reused. Cascaded FAST can do image
correspondence in about 43.7 [ms] when orientation is calcu-
lated by using the data for 20 bounding pixels.

Fig. 8. Matching performance and speed.

Fig. 9. Computation time for keypoint matching.

5. CONCLUSION

We have proposed Cascaded FAST as a method for suppress-
ing unneeded points when identifying correspondences in nat-
ural regions between two images. Cascaded FAST suppresses
corner detection by defining corner features in terms of con-
tinuous brightness values and orientation similarity in a wider
range of bounding pixel sets that includes 20, 16 and 12 pix-
els. Cascaded FAST also achieves high-speed corner detec-
tion by cascading three decision trees trained by the FAST
approach to eliminate non-corner candidates early in the pro-
cess. Furthermore, this method uses image pyramids to de-
termine scale. It can also determine orientation at high speed
by using a framework for referencing the pixels in the bound-
ing circle of a feature region and effectively match keypoints.
Issues for future work include efficient acquisition of scale
from an image pyramid.

6. REFERENCES

[1] C. Harris and M. Stephens, “A combined corner and
edge detector,” in Alvey Vision Conference, 1988, pp.
147–151.

[2] E. Rosten, R. Porter, and T. Drummond, “FASTER and
better: A machine learning approach to corner detec-
tion,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 32, pp. 105–119, 2010.

[3] David G. Lowe, “Distinctive Image Features from
Scale-Invariant Keypoints,” International Journal of
Computer Vision, vol. 60, pp. 91–110, 2004.

[4] Mikolajczyk and Schmid, “Scale & Affine Invariant In-
terest Point Detectors,” International Journal of Com-
puter Vision, vol. 60, no. 1, pp. 63–86, 2004.

[5] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust
Wide Baseline Stereo from Maximally Stable Extremal
Regions,” in British Machine Vision Conference, 2002,
pp. 36.1–36.10.

[6] Tinne Tuytelaars and Krystian Mikolajczyk, Local In-
variant Feature Detectors: A Survey, Now Publishers
Inc., Hanover, MA, USA, 2008.

[7] H. Moravec, “Towards Automatic Visual Obstacle
Avoidance,” in International Joint Conference on Ar-
tificial Intelligence, 1977, p. 584.

[8] J. Shi and C. Tomasi, “Good Features to Track,” in Con-
ference on Computer Vision and Pattern Recognition.

[9] S. M. Smith and J. M. Brady, “Susan—a new
approach to low level image processing,” International
Journal of Comput. Vision, vol. 23, no. 1, pp. 45–78,
1997.

[10] J. P. Gravel, “Corner Detection,” Biological Cybernetic,
vol. 59, no. 4, pp. 139 – 153, 1988.

[11] E. Rosten and T. Drummond, “Machine learning for
high-speed corner detection,” in European Conference
on Computer Vision, 2006, pp. 430 – 443.

[12] J. R. Quinlan, “Induction of decision trees,” Machine
Learning, vol. 1, no. 1, pp. 81–106, 1986.

[13] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“ORB: An Efficient Alternative to SIFT or SURF,” in
International Conference on Computer Vision, 2011, pp.
2564–2571.

