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Abstract—We introduce a method that automatically selects
appropriate RBM types according to the visible unit distribution.
The distribution of a visible unit strongly depends on a dataset.
For example, binary data can be considered as pseudo binary
distribution with high peaks at 0 and 1. For real-value data,
the distribution can be modeled by single Gaussian model or
Gaussian mixture model. Our proposed method selects appropri-
ate RBM according to the distribution of each unit. We employ
the Gaussian mixture model to determine whether the visible
unit distribution is the pseudo binary or the Gaussian mixture.
According to this distribution, we can select a Bernoulli-Bernoulli
RBM(BBRBM) or a Gaussian-Bernoulli RBM(GBRBM). Fur-
thermore, we employ normalization process to obtain a smoothed
Gaussian mixture distribution. This allowed us to reduce vari-
ations such as illumination changes in the input data. After
experimentation with MNIST, CBCL and our own dataset, our
proposed method obtained the best recognition performance and
further shortened the convergence time of the learning process.

I. INTRODUCTION

A restricted Boltzmann machine (RBM)[1] is becoming
more and more popular stochastic graphical model in recent
years. iFollowing the RBM proposed, various RBM and the
stacked RBM methods have proposed as new machine learning
methods [3][4][5][7]. These methods are applied to image
recognition, speech recognition, etc., and show state-of-the-
art performance in benchmark tests [6][8][10]. A conventional
RBM assume that the visible unit is of binary data, it becomes
a critical limitation to the various applications. The method
such as softmax which approximate the binary data from real-
value, is employed to address this issue. Alternatively, Hinton
also proposed a method to apply real-value data through a
formulation of the RBM by assuming the input data to be
of Gaussian distribution[2]. These existing approaches used to
handle real-value data are quite effective when the distribution
of the input data is known. However, it is difficult to determine
the data distribution for general purpose, i.e. whether the input
is from a binary image or a gray scale image. In this paper,
a Bernoulli-Bernoulli RBM (BBRBM) refers to the RBM
assuming that the distribution of both visible and hidden units
is binary. A Gaussian-Bernoulli RBM (GBRBM) refers to the
RBM assuming that the distribution of the visible unit is the
Gaussian distribution and that the distribution of the hidden
unit is binary.

The Stacked RBM can achieve higher recognition perfor-
mance compared with the single RBM. In order to apply to
gray scale image, Hinton proposed the stacked RBM which
contain the GBRBM in the first layer and the BBRBM in

other layers.[2]. On the other hand, Cho used the GBRBM
for all stacked layers[9][11]. In those approaches, one needs
to heuristically pre-determine which RBM is appropriate for
each layer. We propose a method to automatically select the
appropriate RBM type according to the distribution of visible
unit for each layer. In the stacked RBM, the conditional
probability or the inference of the hidden unit is used as
the input of the next layer of the RBM, even though the
distribution of hidden unit is assumed as binary in both the
BBRBM and the GBRBM. In this sense, we need to select
RBM for each layer according to the distribution of actual
input data. For the first layer, we can select RBM according to
the distribution of the given data. For example, the GBRBM
should be selected for the real-valued data such as image.
However, it is unclear which type of the RBM is suitable
for the second layer. Therefore, we need to evaluate the
distribution of the inferred hidden state of the first layer. When
the GBRBM is selected, we employ the normalization process
where it is possible to suppress variations in the distribution
of the input data to obtain the Gaussian distribution. We refer
this GBRBM with normalization process to nGBRBM.

The key contributions of our proposed method are, 1) the
proposed automatic RBM selection improves the recognition
performance. In particular, it is no longer necessary to heuris-
tically pre-determine the RBM type of each layer; 2) the nor-
malization for the GBRBM improves the performance of the
stacked RBM which includes the GBRBM. This normalization
is not only successful in the first layer, but also obtains better
results in later layers.

The rest of paper, we review the BBRBM and the GBRBM
in Section 2. Then, we propose the automatic RBM type
selection and the normalization for the GBRBM in Section
3. The comparison results for predefined multiple layers of
the RBM and the GBRBM in various dataset, such as binary
data and real-value data, are shown in Section 4. Finally, we
will discuss about the effectiveness of our proposed method
with analysis of the distribution of each unit in Section 5, and
present our conclusions in Section 6.

II. RESTRICTED BOLTZMANN MACHINE

A. Bernoulli-Bernoulli RBM

The restricted Boltzmann machine (RBM) consists of m
visible units v = (v1, ..., vm) and n hidden units h =
(h1, ..., hn), with fully connecting between them. But there
are no visible to visible and hidden to hidden connections. The
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visible units in the first layer correspond to the measurements.
In computer vision tasks, one visible unit often corresponds
to one pixel value. The hidden units h are independent condi-
tionally to the measurements. Because of this, each hidden unit
becomes an independent specific feature. The RBM has been
mainly developed to model binary variables (v,h) which take
the binary values of (v,h) ∈ {0, 1}m+n. A joint probability
of (v,h) can be expressed with the BBRBM as:

p(v,h) =
1

Z
e−E(v,h), (1)

where Z is the normalizing constant and the energy function
E,

E(v,h) = −
m∑

i=1

n∑

j=1

wijvihj −
m∑

i=1

bivi −
n∑

j=1

cjhj , (2)

for all i ∈ {1, ..., n} and j ∈ {1, ...,m}, wij is a real valued
weight associated with the edge between units vi and hj and bi
and cj are real valued bias terms associated with the i-th visible
and the j-th hidden variable, respectively. From Eqs. (1) and
(2), E(v,h) with a low energy are given a high probability.

In terms of probability, the hidden units are independent
from the visible units and vice versa, as shown in Eqs. (3) and
(4). When binary data are given in visible units, the conditional
probability is estimated from the neural network propagation
rule by Eqs. (5) and (6).

p(v|h) =
∏

i=1

p(vi|h), (3)

p(h|v) =
∏

i=1

p(hj |v), (4)

p(vi = 1|h) = f(bi +
∑

j=1

hjwij), (5)

p(hj = 1|v) = f(cj +
∑

i=1

viwij), (6)

where f(·) is the sigmoid activation function.

The model with the energy function has been developed to
model the random binary variables. Therefore, this model is
not suitable to model a continuous value data. To address this
issue, the GBRBM has proposed.

B. Gaussian-Bernoulli RBM

The Gaussian-Bernoulli RBM (GBRBM) has visible units
with real-value vm and binary hidden units hn. Based on the
same idea as the BBRBM, the energy function of the GBRBM
is defined as

E(v,h) = −
m∑

i=1

n∑

j=1

wijhj
vi
σi
−

m∑

i=1

(vi − bi)
2

2σ2
i

−
n∑

j=1

cjhj ,

(7)
where bi and cj are biases corresponding respectively to visible
and hidden units, wij are the connecting weights between the
visible and hidden units and σi is the standard deviation asso-
ciated with Gaussian visible units vi. Conditional probabilities
for visible and hidden units are

p(vi = v|h) = N(v|bi +
∑

j

hjwij , σ
2
i ), (8)

p(hj = 1|v) = f(cj +
∑

i

wij
vi
σ2
i

), (9)

���� ����

���� ����

Fig. 1. Distribution of visible unit. (a) is MNIST, (b) is the intensity
distribution of certain unit for MNIST images, (c) is CBCL, and (d) is the
intensity distribution of certain unit for CBCL images.

where N(·|μ, σ2) denotes the Gaussian probability density
function with mean μ and standard deviation σ.

In the parameter updating process, a contrastive divergence
(CD) learning is highly successful and is becoming the stan-
dard learning method to train the RBM parameters[1]. The CD
learning only samples for k steps to approximate the second
term in the log-likelihood gradient from a sample from the
RBM distribution. In the CD learning, k is usually set to 1.
The update rules for the parameters are the following,

∇wij =<
1

σ2
i

vihj >d − <
1

σ2
i

vihj >m, (10)

∇bi =<
1

σ2
i

vi >d − <
1

σ2
i

vi >m, (11)

∇cj =< hj >d − < hj >m, (12)

where shorthand notations < · >d and < · >m denote the
expectation computed over the data and model distributions
accordingly.

III. PROPOSED METHOD

As shown in Eqs.(5) and (6), the random binary variables
are assumed for the inputs of the BBRBM. This assumption
becomes a critical issue in considering real applications such
as image processing. Hand writing digit data as shown in Fig.1
(a) can be considered as pseudo binary variables whose density
functions condense at two values as shown in Fig.1 (b). In
this case, the BBRBM can obtain an efficient classification
feature in the hidden units because most of the inputs are of
binary value. On the other hand, if the input data is real-value
like grayscale images in Fig.1(c), the density function of each
input is distributed in wide range as shown in Fig.1(d). The
GBRBM may obtain efficient features for these distribution
input data. In this sense, the performance of the RBM can be
improved by selecting the GBRBM or the BBRBM depending
on the distribution of the inputs. First, we propose the RBM
selection method that determines whether to apply either the
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BBRBM or the GBRBM according to the distribution of the
visible unit.

Training of the GBRBM is a challenging task. One of
the reasons for that the data distribution of each visible unit
has many variations. The distribution of each visible unit is
assumed to be single Gaussian distribution, but it becomes an
obscure and vague Gaussian distribution. We therefore propose
a normalized Gaussian-Bernoulli RBM (nGBRBM) where
each visible unit is normalized in order to obtain a distinct
Gaussian distribution from the Gaussian mixture distribution.

A. Proposed RBM type selection

We assume that the distribution of each input unit belongs
to a pseudo binary distribution, single Gaussian distribution, or
Gaussian mixture distribution. The pseudo binary distribution
has two sharp peaks at two values like 0 and 1. The pseudo
binary distribution can be considered the special case of the
Gaussian mixture distribution. We model distribution of each
inputs by the Gaussian mixture model (GMM). Then, the
distribution is classified by parameters of the GMM. The
distribution of visible unit vi is modeled by

p(vi) =

K∑

k=1

πkN(vi|μk,Σk). (13)

Note that K is the number of Gaussian components, πk is the
mixture weight of k-th Gaussian, μk and Σk are respectively
the mean and variance. We estimated the parameters π, μ and
Σ via a maximum likelihood estimation, which matches the
distribution of the training data. In the maximum likelihood
estimation, the parameters can be obtained iteratively by using
an EM algorithm. On the EM iteration, we compute a posteriori
probability for component k as E-step, given by

pr(k|vi, μk,Σk) =
πkN(vi|μk,Σk)∑K
l=1 πlN(vi|μk,Σl)

. (14)

In M-step, the parameters are updated as follows,

μk =

∑T
t=1 pr(k|v(t)i , μk,Σk)v

(t)
i∑T

t=1 pr(k|v(t)i , μk,Σk)
, (15)

Σk =

∑T
t=1 pr(k|v(t)i , μk,Σk)v

(t)2
i∑T

t=1 pr(k|v(t)i , μk,Σk)
− μ2

k, (16)

πk =
1

T

T∑

t=1

pr(k|vi, μk,Σk). (17)

We estimate the parameters for each k. Then, we find
best K with minimum fitting error between the distribution
of visual unit and the distribution with estimated parameters.
If K is equal or greater than 3, the distribution of visible
unit is identified as the Gaussian mixture, and if K equals
1, the distribution is identified as the single Gaussian. On the
other hand, if K equals 2, it must be identified as either the
pseudo binary distribution or the Gaussian mixture. The pseudo
distribution has two Gaussians with small standard variations
around 0 and 1. This mean that two μk are separated by
significant distance Thm. Moreover, both standard deviations
Σk are smaller than the threshold Thd. If these two conditions
are satisfied, we are able to identify the distribution as the

����

���� ����
Fig. 2. Normalized image and distribution of visible unit after input data
normalization. (a) is the original image in CBCL, (b) is normalized images, (c)
is the distribution of visible unit using normalized images (original distribution
is Fig.1(d)).

pseudo binary. After identification of the distribution for all
visible unit using the above method, we determine the RBM
types by taking a vote of the distribution of them. For example,
if pseudo binary distribution is majority, the BBRBM is
selected. On the other hand, if major distribution is single or
the Gaussian mixture, then the nGBRBM is selected.

B. Normalization of Visible Unit

We normalize each training data to obtain a distinct Gaus-
sian mixture distribution for visible units. Each pixel of the
training data is normalized with the zero-mean and the unit
variance of each training data. Figure 2 shows the normalized
images and distribution of visible unit using them. Advantages
to this normalization are that 1) the training data becomes uni-
form with no condition variations, such as illumination change,
2) the distribution of each visible unit becomes smoother.

C. Stacked selected RBMs

The stacked RBM is sometimes called a deep Boltzmann
machine (DBM) or a deep belief network (DBN). It has
simple layer-wise structure where the RBM is stacked on top
repeatedly multiple times. The hidden units of the learned
RBM can be used as visible unit for learning a following RBM.
It can be characterized as follows: 1) high representation can
be built from a large amount of unlabeled input data, and just
a few minimal labeled data can be used to slightly fine-tune
the model. 2) better propagation of ambiguous inputs can be
obtained with approximate inference procedure of fine-tuning
feedback. In our proposed method, the RBM type is identified
according to the distribution of the visible unit in the learning
of the RBM in each layer. Accordingly, the appropriate RBM
type for each layer can be decided without the pre-definitions
required in the conventional methods.

IV. EXPERIMENTS

A. Implementation

We evaluate the reconstruction error of the a single layer
RBM and the recognition performance with stacked layers in
various datasets. For the comparison, we use the standard hand-
written dataset MNIST[13] and face image dataset CBCL[12].
MNIST and CBCL are famous databases but they include
strictly controlled data for their background. In order to eval-
uate under various real-scene situations, we use our original
hand shape dataset including 6 hand shape classes in clutter
background. We define the following learning parameters of
the BBRBM, the GBRBM and our proposed method. The size
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TABLE I. STRUCTURE OF PROPOSED METHOD IN EACH DATASET.

Layer RBM type

MNIST CBCL Hand shape

1 BBRBM nGBRBM nGBRBM

2 nGBRBM BBRBM nGBRBM

3 BBRBM BBRBM BBRBM

4 BBRBM BBRBM BBRBM

of minibach is 100, while the initial learning rate and its upper
bound are set to 0.001 for pre-training. The weight-updating
ratio is set to 0.1. As parameters of the RBM selection, Thm

is 0.99 and Thd is 0.01.

We learn for all methods with 4-layer structure for each
dataset. We use the 60000 handwritten images for learning
and 10000 for testing in MNIST. The image size is 28 × 28
and the number of visible unit is 784. All methods are of 4-
layer structure with respectively 400, 255, 100 and 10 units in
each layer. The 10 units in the final layer are the number of
labels that are connected with the previous layer. In CBCL, we
learn for all methods with 2000 face images, and we use 1000
images for testing with a 19 ×19 image size. The number of
visible units is 361, and later layers respectively has 400, 255,
100 and 2 units. In this network, the output layer discriminates
between faces and non-faces for given image. As a third dataset
for comparison, we use a hand shape dataset with a 40× 40-
sized images. The number for learning data is 28000 and for
test data is 10000. The number of visible units is 1600, while
hidden units are 1024, 400, 100 and 7.

We also employ fine tuning to find optimized parameters
for whole of network with dropout. Fine tuning is based
on gradient decent on a supervised training criterion[3][4].
Dropout ratio is set to 0.5, iteration of fine tuning is 1000.
All methods apply same parameters for all dataset.

B. RBM Selection

The selected RBM type in each layer of the proposed
method is shown in Table I. For MNIST, since the distribution
of visible unit is close to the pseudo binary distribution,
the BBRBM is selected for the first layer. The nGBRBM is
selected for the second layer because the distribution is near the
Gaussian mixture distribution. For the later layers, the BBRBM
is selected since most of units have the pseudo binary distribu-
tion. As shown in Fig.1, CBCL data has Gaussian distribution.
This Gaussian distribution data is given as visible unit and
therefore, the nGBRBM is selected for the first layer. For the
second and following layers, the BBRBM is selected because
many units have pseudo binary distribution. Like CBCL, the
nGBRBM is selected in the first layer for hand shape database.
The nGBRBM is also selected since the Gaussian distribution
still remained in the second layer. For the later layers, the
BBRBM is selected since most of units have a pseudo binary
distribution. As mentioned above, the appropriate RBM type
depends on the dataset and the layer. In MNIST, most of
region is black, and hand written pixels are white like the
binary image. It is possible to learn with high discrimination
even when we apply the BBRBM in first layer. However,
CBCL and hand shape dataset are grayscale images and that
data represents Gaussian distribution. When the nGBRBM is
selected first, the best suitable RBM type depending on the
difficulty of the datasets will be selected for the following

TABLE II. RECOGNITION PERFORMANCE IN EACH DATASET.

Dataset BBRBM GBRBM Ours

MNIST 96.02 96.39 97.10

CBCL 93.59 96.39 97.60

Hand Shape 86.21 87.77 89.99

layers. In addition, the normalization process of the nGBRBM
is efficient in order to obtain the pseudo binary distribution
in earlier layers. This normalization reduce condition variation
such as illumination change and distribution of unit becomes
smoother. Therefore, the nGBRBM can learn more easily even
from datasets including difficult data. We describe more details
the distribution in each layer in the following section.

C. Reconstruction Result

We reconstruct of images to compare each RBM type. The
reconstructed images in MNIST are shown in Fig.3. While
most regions are correctly reconstructed with all methods
in MNIST, the details in handwritten images can not be
reproduced with the BBRBM or the GBRBM. For example, for
the ’7’ in the third column, the BBRBM can not reconstruct
the upper region with enough thickness. The ’3’ in the 5th
column also does not have enough thickness. The nGBRBM
can reconstruct much more correctly not only shapes but also
thickness. In CBCL, while each pixel is real-value data, their
images are uniform since the face size and background are not
contained in the image. Therefore, even if it is grayscale image,
the reconstruction is not such a difficult task for all methods, as
shown in Fig.4. All methods can reconstruct correctly various
faces. However, as shown in Fig.5, the nGBRBM had signif-
icantly better reconstruction performance compared with the
BBRBM and the GBRBM. The BBRBM and the GBRBM can
not correctly reconstruct both the hand shape and background
region. While most of reconstructed images with them are
blurry, the reconstruction with the nGBRBM is clearer than
that of others.. Moreover, the nGBRBM reconstructs the hand
region correctly even with a cluttered background. It had the
surprising ability to reconstruct not only hand shape but also
the background.

D. Recognition Performance

The comparison results of the recognition performance on
each dataset are shown in Table II. Our proposed method can
improve the recognition performance in all dataset. In MNIST,
the recognition rate of our proposed method reaches 97.10%,
an increase of more than 1% compared to the BBRBM.
Even for binary images in MNIST, our method performs
the best accuracy. Our proposed method also has the highest
recognition rate among comparison methods in CBCL and the
hand shape dataset. With these results, we can say that our
proposed method offers significant improvement for real-value
data. In other words, our proposed method is able to obtain
effective initial parameters throughout the whole network.
Furthermore, as shown in Fig.6, convergence comes much
earlier in pre-training with our proposed method than with the
other methods.

V. DISCUSSION

In Fig.7, we show the distributions of typical units in each
dataset. The visible units of the first layer in MNIST receives
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Fig. 3. Reconstructed images in MNIST. (a)original image, (b)BBRBM result,
(c)GBRBM result and (d)our proposed method.

����

����

����

����

Fig. 4. Reconstructed images in CBCL. (a)original image, (b)BBRBM result,
(c)GBRBM result and (d)our proposed method.
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Fig. 5. Reconstructed images in hand shape data. (a)original image,
(b)BBRBM result, (c)GBRBM result and (d)our proposed method.

the data that have the distribution as shown in Fig.1(b). Those
distributions have two peaks at 0 and 1 because most of the
pixels in MNIST consist of black and white. These distribution
can be seen as the pseudo binary, and our method selects the
BBRBM in the first layer. The output distribution of the typical
units in the first layer has two peaks, as shown with the yellow
line in Fig.7(a). Although the distribution has high peak at
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Fig. 6. Reconstruction error of each iteration in CBCL.
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Fig. 7. Distribution of hidden units. (a) is the 80th unit in the first layer,
and (b) is the 205th unit in the second layer, in MNIST. (c) is the 15th unit
in the first layer, and (d) is the 57th unit in the second layer, in CBCL. (e) is
the 71th unit in the first layer, and (f) is the 95th unit in the second layer, in
the hand shape data set.

0 and 1, it is identified the Gaussian mixture instead of the
pseudo binary. Because the most of distributions have large
variance than threshold THm . Therefore, the nGBRBM is
selected as the 2nd layer. As a result, the proposed method
outputs the distribution with high peak at 0 and 1, while the
BBRBM and the GBRBM output like Gaussian distribution as
shown in Fig.7(b). The BBRBM is selected in later layers,
because the most of distributions are identified the pseudo
binary like yellow line in Fig.7(b).

1524



���� ���� ����

Fig. 8. Weight Visualization. (a) the distribution has a peak in 1, it is common
feature to discriminate several classes, (b) the distribution has two peaks near
0 and 1, it is specific feature to discriminate specific class, in this case it seem
is specified to ’1’ in MNIST, (c) the distribution is uniform, it does not focus
on specific classes.

In CBCL, our proposed method selects the nGBRBM by
reason that many distribution of visible units are Gaussian as
shown in Fig.1(c). The distribution has high peaks at 0 and 1
and it is identified the pseudo binary distribution. Therefore,
the BBRBM is selected as the 2nd layer. While the BBRBM
has two peaks near 0 or 1, the distance between them is not
far enough than threshold THd like red line in Fig.1(c). In the
later layer, our proposed method selects the BBRBM because
the distribution is the pseudo binary distribution like yellow
line in Fig.1(d).

The hand shape dataset has wide variation due to pose
and illumination changes. Moreover, since the background is
complex, the distribution of visible unit is a Gaussian mixture.
The proposed method selects the nGBRBM in the first layer
as same as CBCL. As shown in Fig.7(e)(f), the distributions
have two peaks. However, the proposed method selected the
nGBRBM as the second and third layers by reason that it has
not enough distance between them and variance.

We show the visualization of typical units of MNIST in
Fig.8. We find the characteristics of the unit through this
observation of the distribution and Fig.8 as follows. 1)if the
unit has a high peak near 1, it seems common features for the
training data. As shown in Fig.8, white region that has high
weights, commons to several class such as ’2’, ’6’, ’8’, etc.
It means that some weights connected with this unit are high
for several classes and other weights are low to discard rest
of classes. 2)if the unit has two high peak near 0 and 1, it
has a high discrimination for the specific class like Fig.8(b).
In this case it attention to specific class like ’1’. 3)if the unit
has uniform distribution, it has not enough discrimination for
training data. It means that the weights are not high to specific
class like Fig.8(c).

We show the distribution of the units for the BBRBM, the
GBRBM and the proposed methods in each layer. We illus-
trated the effect of RBM type selection through the distribution
of the visible units. We could obtain effective parameters with
high discrimination with our proposed RBM type selection.

VI. CONCLUSION

In this paper, we have proposed the method to select
the RBM types according to the distribution of the visible
unit. By doing so, it is no longer necessary to pre-determine
the type of RBM in advance. Furthermore, the normalization

process for the GBRBM to suppress variations of the input
data is incorporated. With the proposed method, one can
select the appropriate RBM types automatically. As a results,
the proposed method improve the performance compared to
conventional methods.
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