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Abstract—Binary codes that are binarizations of features
represented by real numbers have recently been used in the
object recognition field, in order to achieve reduced memory and
robustness with respect to noise. However, binarizing features
represented by real numbers has a problem in that a great deal
of the information within the features drops out. That is why we
focus on quantization residual, which is information that drops
out when features are binarized. With this study, we introduce
a transition likelihood model into classifiers, in order to take
into consideration the possibility that a binary code which has
been observed from an image will transition to another binary
code. This enables classifications that consider transitions to the
desired binary code, even if the observed binary code differs
from the actually desired binary code for some reason. From the
results of experiments, we confirmed that the proposed method
enables an increase in detection performance while maintaining
the same levels of memory and computing costs as those for
previous methods of binarizing features.

I. INTRODUCTION

There is intense research under way into the highly accurate
detection of pedestrians from images, in order to implement
driving assistance for drivers and security systems for reas-
surance and safety. Since there are large variations in which
the pedestrians that are the detection object can be seen, due
to various different causes such as their orientation and pose,
it is necessary to have features that enable the extraction of
elements that are as far as possible common from many images
of pedestrians. For that reason, there have been many proposals
for features that are intended to be robust with respect to such
factors[1], [5], [12], [3]. The most successful approach is a
Histogram of Oriented Gradients (HOG) features proposed
by Dalal, et al. [1]. HOG features are a high-dimensional
features in which gradient information obtained from each
pixel is represented as a gradient orientation histogram in
a local region. HOG features that enable the perception of
pedestrians shapes have a high detection performance, despite
their comparative simple processing, and are being used in
many pedestrian detection methods [14], [2], [10].

Another recent approach that is popular has the objective
of producing mobile terminals that are aiming towards the
commercial viability of people detection techniques [4] and
running on hardware such as Field-Programmable Gate Arrays
(FPGAs) [7]. To enable operation on such a device, it is
becoming essential to have features that use little memory and
also enable highly accurate detection. Binarized features have
been proposed as one such method [6], [11], [13]. In general,
a feature is represented as feature vectors with real numbers as
elements, but each of the features described above consist of

a number of encodings that have been binarized by some sort
of benchmark, and combined into a single feature. Yamauchi
et al. have reduced the memory used for representing features
by subjecting HOG features to threshold value processing then
binarizing in accordance with the magnitude relationships of
two histograms [13]. In addition, Mu et al. have used a Local
Binary Pattern (LBP) [8] as a feature in pedestrian detection
[6], to represent magnitude relationships with neighboring
pixels. Such binarized features also have the advantage of
being robust with respect to noise.

However, the process of quantizing a features into binary
form creates a problem in that a great deal of the information
within the features drops out. If information divided into two
classes is included in the missing information, the classification
capability deteriorates when a binarized features are is used.
It is reported in [13] that simply binarizing a HOG features
that is represented by real numbers results in a deterioration
in detection performance.

In this study, we focus on the information that drops
out during the binarization of the feature. This missing
information is called a quantization error that is defined as
the difference in values before and after quantization, but in
this study we define the missing information as quantization
residual since the values after the quantization are 0 / 1. A
quantization residual indicates the difference between a real
number value and a threshold value, when the values of a
feature represented by real numbers are subjected to threshold
value processing, by way of example. One characteristic of
quantization residuals is that binary encoding that is stable and
less likely to invert is obtained when the quantization residual
is larger. If the quantization residual is small, on the other hand,
unstable binary encoding in which inversions can easily occur
are obtained. Binary codes that is expressed by combining a
number of binary encodings is a discrete variable that forms
another feature by simply inverting one binary code. For that
reason, it can happen that even when features are similar
when represented by real numbers, they are not observed to be
the same binary code when binarized. Essentially, since it is
necessary to extract elements that are common to the detection
objects, in order to detect pedestrians highly accurately, such
representations of features are not suitable.

That is why, in this study, a transition likelihood model
that represents the relationships between binary code based on
quantization residuals is introduced into classifiers. A transition
likelihood model represents the degree of likelihood of an
observed binary code x transitioning to another binary code
x’. This study uses transition likelihood distributions created
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Fig. 1. Binary codes. (a)B-HOG feature, (b)R-HOG feature.

on the basis of binary code and quantization residuals obtained
from training samples, as a transition likelihood model. This
predicts transitions from an observed binary code to another
binary code, in accordance with the transition likelihood dis-
tribution created during the classification. By introducing this
binary code transition prediction into classifiers, it becomes
possible to take into consideration transitions to the originally
obtained binary code, even if the observed binary code differs
from the actually desired binary code for some reason.

II. HOG FEATURES AND BINARIZATION

In this study, we use a HOG feature[1] that enables
perception of the human form, and also binary code that are
binarized forms of that feature. In this case, we discuss a
binarized HOG feature and a relational HOG feature [13], as
a HOG feature and a binary code.

A. Binarized HOG

A binarized HOG (B-HOG) feature is a feature that has
been proposed in order to reduce the memory for a HOG
feature in which elements are represented by real numbers. The
B-HOG feature is obtained by subjecting gradient orientation
histograms V c in eight orientations within a certain cell c to
threshold value processing as shown in Eq. (1), to obtain binary
encoding, as shown in Fig. 1(a).

xB
c (n) =

{
1 if vc(n) > th
0 otherwise (1)

We compute the binary code for all 8 orientations in accor-
dance with Eq. (1), and take the thus-obtained binary coded
xB

c = {xB
c (1), xB

c (2), · · · , xB
c (8)} as the B-HOG feature.

B. Relational HOG

B-HOG features provide a valid method for reducing mem-
ory, but they have a problem in that they necessitate an optimal
threshold value. A relational HOG (R-HOG) feature by which
binarization is done by comparing two gradient orientation
histograms, as shown in Fig. 1(b), has been proposed[13] as a
binarization method that does not necessitate a threshold value.
An R-HOG feature is binarized by comparing the magnitudes
of gradient orientation histograms V H

c1
and V H

c2
in eight

orientations obtained from two cell regions, as shown in Eq.
(2).

xR
c1,c2

(n) =
{

1 if vc1(n) > vc2(n)
0 otherwise (2)

The binary code xR
c1c2

= {xR
c1c2

(1), xR
c1c2

(2), · · · , xR
c1c2

(8)}
obtained in this manner forms the R-HOG.

C. Problems with previous methods

The amount of memory for representing a feature can be
reduced to 1/64 by binarizing a feature represented by real
numbers(double :8byte). However, the reduction in the amount
of memory for representing the feature inevitably leads to a
large reduction in the feature representation capability. This is
because information that is valid for classification is comprised
in the quantization residual that is information that drops out
during the binarization. In fact, it has already been reported
in [13] that detection performance deteriorates when HOG
features represented as real numbers are binarized by threshold
value processing. In addition, since the binary code that are
used in previous pedestrian detection methods are discrete
variables, a completely different feature is represented if just
one code is different. For that reason, it can happen that the
same binary code cannot be observed, even if features that are
similar appear during the representation by real numbers.

III. PROPOSED METHOD

Fig. 1 shows the procedure of classification based on transi-
tion likelihood model. Our approach introduces into classifiers
a transition likelihood model created based on quantization
residuals, which have not been used at all previously. The
transition likelihood model outputs a transition likelihood that
expresses the possibility of an observed binary code transi-
tioning into another binary code. Since the proposed method
makes it possible to represent relationships between binary
code even though they are discrete variables, by considering
these transition likelihoods during classification, it can output
classification results that are even more reliable.

In this section, we first define the quantization residual of
a binary code and discuss the transition likelihood distribution
created on the basis of quantization residuals as a transition
likelihood model. We then discuss classifiers into which the
binary code transition likelihood model has been introduced.

A. Quantization residual

The proposed method focuses on quantization residuals,
which are the amounts of information that drop out when a
feature represented by real numbers is binarized.

B-HOG feature
The quantization residual of a B-HOG feature is the difference
between the gradient strength vc(n) of a gradient orientation
histogram in a orientation n and a threshold value th, as shown
by Eq. (3):

qB
c (n) = vc(n) − th (3)

We obtain quantization residuals qB
c =

{qB
c (1), qB

c (2), · · · , qB
c (8)} in all 8 orientations from

Eq. (3).

R-HOG feature
The quantization residual of an R-HOG feature is the dif-
ference between two gradient orientation histograms vc1(n),
vc2(n), as shown by Eq. (4):

qR
c1,c2(n) = vc1(n) − vc2(n) (4)

We obtain quantization residuals qR
c1,c2 =

{qR
c1,c2(1), qR

c1,c2(2), · · · , qR
c1,c2(8)} in all 8 orientations

from Eq. (4).
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Fig. 2. Process of the proposed method. (a) Training transition likelihood model based on binary codes and quantization residuals from training samples. (b)
Classifier based on the transition likelihood model

Fig. 3. Flow to compute the transition score of binary code based on
quantization residuals. Blue represents that a binary code does not invert.
Red represents to invert of a binary code.

B. Transition likelihood distribution of binary code

We create a binary code transition likelihood distribution
in order to represent how possible it is that a binary code will
transition to another binary code . The flow for calculating the
transition scores of binary code are shown in Fig. 3.

1) Binary code transition score: To calculate the binary
code transition score, we first obtain the degree of non-
inversion z of the binary code. As shown in Fig. 3, when we
have assumed that a binary code x that is observed from a
certain training sample transitions to another binary code x′,
we determine the degree of non-inversion from whether or not
there is a transition for each binary code x(n) that makes up
the binary code x and that quantization residual. In this study,
we consider the following two points on the calculation of the
degree of non-inversion of binary code:

1) Whether or not the binary code inverts
2) Magnitude of the quantization residual

Taking into account the above two points, our considerations
are divided into four patterns. First of all, if there is no
inversion of the binary code and the quantization residual
is large, the degree of non-inversion increases, but if the
quantization residual is small, the degree of non-inversion
decreases. If there is inversion of the binary code and the

quantization residual is large, the degree of non-inversion
decreases, but if the quantization residual is small, the degree
of non-inversion increases. In the calculation of the degree
of non-inversion of this study, we use a concave function
F (q) and a convex function F̄ (q) in which one-dimensional
functions are combined, as shown in Fig. 4(a). We calculate the
degree of non-inversion of the binary code by using a concave
function F (qi(n)) and a convex function F̄ (qi(n)), as shown
in Eq. (5), from a binary code xi(n) observed from a sample i
and whether or not there is a transition in a binary code x′(n)
when we considered transitions to a certain binary code x′.

z(xi(n),x′(n),qi(n))=
{

F (qi(n)) if xi(n)=x′(n)
F̄ (qi(n)) otherwise

(5)

The degree of non-inversion of binary code obtained from
Eq. ((5)) is high when there is no transition in the binary
code (codes indicated by the blue characters in Fig. 3(b))
and low where there is a transition (codes indicated by the
red characters). In addition to the presence or absence of
transitions of the binary code, a transition score corresponding
to the value of the quantization residual is output.

2) Transition scores of binary code: We obtain a transition
score e(x′|xi) for the binary code on the assumption that
the binary code x transitions to the binary code x’, from
the thus-obtained degree of non-inversion z of the binary
code. The transition score of the binary code is obtained by
taking the sum total of the degrees of non-inversion of the
binary encoding, as shown in Eq. (6), to take into account
synchronism of the binary encoding.

e(x′|xi, qi) =
8∏

n=1

z(xi(n), x′(n), qi(n)) (6)

This is obtained from all of the training samples I , to create
a transition likelihood distribution E for the binary code by
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Fig. 4. (a) Non-invert score of a binary code is computed from concave func-
tion F () and convex function F̄ (). (b) Visualization of transition likelihood
distribution E(x′|x) of binary code.

summing them as shown by Eq. (7):

E(x′|x) =
I∑

i=1

e(x′|xi, q
i
)δ[xi − x′] (7)

δ[·] is the Kronecker delta function, which outputs 1 when
xi −x′ = 0 and 0 otherwise. We create a transition likelihood
distribution E as described above for each feature.

An example of transition likelihood distributions that we
have created is shown in Fig. 4(b). We used a B-HOG
feature and the threshold value th used in the binarization
of the HOG feature was 0.09, in a similar manner to [13].
This transition likelihood distribution has higher transition
likelihoods as codes become more similar to the input binary
code. For example, if the input binary code is {00000000},
the binary code after transition where the Hamming distance
is 0 is naturally the most likely. When the Hamming distance
increases, on the other hand, transitions in the binary code are
unlikely to occur, so it is clear that the transition likelihood
is less. However, transition likelihoods assume values that
are different from the Hamming distances because they are
determined on the basis of the quantization residuals of the
training samples. For that reason, when transitions of the
binary code are likely to occur, in other words, when there
are many samples with small quantization residuals within the
training samples, the proposed method is better at representing
transitions between binary code that are likely to occur in
practice than with Hamming distance.

C. Transition prediction based on quantization residual

In this section, we discuss classifiers into which are in-
troduced a transition likelihood model created on the basis
of quantization residuals obtained from training samples (Fig.
2(b)).

1) Real AdaBoost classifier: In our research, we use Real
AdaBoost [9], which enables highly accurate and fast classi-
fications, as the statistical training method. A strong classifier
H(x) that is trained by the Real AdaBoost algorithm is
represented by linear linking of weak classifiers ht(x), as
shown in Eq. (8):

H(x) =
T∑

t=1

ht(x) (8)

where T is the total number of weak classifiers that are
combined and t is the number of each weak classifier. Subse-
quently, since the number of the weak classifier is irrelevant,
we express h(x) as a general weak classifier. The weak clas-
sifiers h(x) are determined by the log ratio of the probability
of occurrence of positive class or negative class, as shown in
Eq. (9).

h(x) =
1
2
ln

W+(x)
W−(x)

(9)

where the probability density function W± of the binary code
is created by summing the weighting wi of the training samples
as shown by Eq. (10):

W+(x)=
∑

xi=x∧yi=+1

wi, W−(x)=
∑

xi=x∧yi=−1

wi (10)

2) Classifiers using transition likelihood distributions:
Since this study considers the transition from the observed
binary code x to another binary code x′, we introduce the
transition likelihood model into Eq. (11) and define each weak
classifier h(x) as shown by Eq. (11).

h(x)
�
=

1
2

∑
x′∈X

(
P (x′|x)ln

W+(x′)
W−(x′)

)
(11)

where P (x′|x) represents the probability of the binary code x
transitioning to the binary code x’, X means universal set of
binary codes x. However, in practice the observed binary code
does not transition to another binary code so P (x′|x) cannot
be obtained. That is why in this study, we substitute a transition
likelihood distribution E(x′|x) that represents the possibilities
of transitions between binary code, as shown by Eq. (12).
The transition likelihood distribution E(x′|x) can simulate the
representation of the transition probability P (x′|x) of binary
code that cannot be observed in practice.

P (x′|x) ≈ E(x′|x)∑
x′∈X

E(x′|x)
(12)

If the binary code x is not observed during this time, we
consider that there is also no transition between binary code.
In such a case, both the denominator and numerator of Eq. (12)
are zero, so P (x′|x) = 0. As described above, classification
can be done by taking into account the possibility of an ob-
served binary code transitioning into another binary code, from
Eq. (11) and Eq. (12). However, since Eq. (11) is considered
for transitions to all of the binary codes, the log ratio of
the probability of occurrence of a binary code that differs
greatly from the observed binary codeg also has an effect on
the weak classifiers. Since the log ratio is obtained during
this process even when the probability of occurrence of the
probability density function W± is equivalent to substantially
zero, an extremely large or small value is added, which has
an adverse effect on the value of the weak classifier h(x). To
resolve that problem, we subject the transition likelihoods to
threshold value processing as shown in Eq. (13), to suppress
the effects on the classification results of binary- codes with
low possibilities of transition from the observed binary code.

E′(x′|x) =
{

E(x′|x) if E(x′|x) > ε
0 otherwise (13)
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This threshold value ε creates a model that does not take
account of transitions of the binary code if it is set to an
extremely large value. In this study, we set ε = 0.005 from
preliminary experiments. Weak classifiers using the binary
code transition likelihood distribution that we propose (Eq.
(11)) seem at first glance to have larger computational costs
when compared with the Real AdaBoost weak classifiers (Eq.
(9)) that are generally used. However, the same computational
costs are achieved by previously computing outputs for each
binary code that is observed in practice, and saving them as a
look-up table.

IV. EVALUATION EXPERIMENTS

In our experiments, we compare B-HOG and R-HOG
features, which are features that have been binarized as pro-
posed in [13], and classifiers in accordance with the proposed
method. Binary codes transition prediction model based on the
quantization residuals of training samples is introduced into
these classifiers. We use the INRIA person dataset[1] as the
dataset used in these evaluation experiments.

A. Experiment results

A DET curve of the results of the experiments is shown
in Fig.5. First of all, if the HOG feature , B-HOG feature
, and the proposed method based on the B-HOG feature are
compared, the proposed method, the HOG feature , and the B-
HOG feature are shown to be in decreasing order of detection
performance. The detection rate of the B-HOG feature ,
which is a HOG feature that has been subjected to threshold
value processing where the FPPW is 10−3, deteriorated by
approximately 2.9% in comparison with the HOG feature.
When the proposed method based on the B-HOG feature
where the FPPW is 10−3 was compared with the HOG feature
and B-HOG feature, the detection rate rose by approximately
5.4% and 8.4% respectively. From the above, we see that the
detection performance deteriorated when the HOG feature was
simply binarized by threshold value processing, but we were
able to obtain detection performances that exceeded those of
the HOG feature by introducing binary code predictions into
the classifiers, in accordance with the proposed method. In
addition, this tendency produced similar results even when
the binarization method was different. A comparison of the
R-HOG feature where FPPW was 10−3 and the proposed
method based on the R-HOG feature demonstrated an increase
in detection performance of approximately 3.0%.

B. Discussion

We have confirmed from the results of the evaluation exper-
iments that weak classifiers into which a binary code transition
likelihood model has been introduced contribute to an increase
in detection performance, irrespective of the method used to
binarize the feature. In this paragraph, we discuss to what
degree is the detection performance of each weak classifier
raised by the introduction of binary code transition predictions.

The results of miss-classification rates of general Real
AdaBoost weak classifiers (Eq. (9)) and the miss-classification
rates of weak classifiers into which transition predictions have
been introduced (Eq. (11)) are plotted on two-dimensional

Fig. 5. DET curves of experiment.

graphs in Fig. 6. All of the plotted points represent miss-
classification rates when the same feature is used. If there
is no change in the performance of a weak classifier, it is
plotted on the red line indicating y = x. If the detection
performance is higher with the proposed method, the point
is plotted to the right and below the red line. From Fig. 6, it
is clear that the detection performance of a large number of
weak classifiers is increased by the proposed method. When
based on the B-HOG feature, the detection performance for
approximately 96.2% of the weak classifiers can be raised, and
when based on the R-HOG feature, the detection performance
for approximately 88.3% of the weak classifiers can be raised.
The classification rate for each individual weak classifier
increases by approximately 5.0% at a maximum. However,
since Real AdaBoost, which is an ensemble training method
in which large numbers of weak classifiers are combined, is
used as the training method, the final classifiers trained by
the proposed method can achieve an even higher detection
performance.

From the above results, we have confirmed that the pro-
posed method enables pedestrian detection that is more ac-
curate than that of previous methods. With previous methods
that use binary code, binary code that are discrete variables
are handled as mutually independent values. For that reason,
if the observed binary code has been observed to be another
binary code for some reason, only the observed binary code
will be considered during the classification, so it is possible
that that classification results will vary widely. The proposed
method, on the other hand, forms a framework which enables
predictions of how likely the observed binary code will tran-
sition into all the other binary codes. Since the binary code
transitions are based on the transition likelihood distribution
created from the binary code obtained from training samples
and the quantization residuals, the possibilites of binary code
transitions that occur readily in practice are considered. For
that reason, even if a binary code has been observed to be
another binary code for some reason or other, that adverse
effect can be restrained.

V. CONCLUSIONS

In this paper, we proposed a method of effective utilization
of quantization residuals, which have not been used previously
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Fig. 6. The graph of error computed from Eq. (9) and Eq. (11). The ploted
points are represented equal error rate. (a) B-HOG feature base. (b) R-HOG
feature base.

in the pattern recognition field. The proposed method intro-
duces a transition likelihood model into classifiers, in order
to consider the possibility of a binary code that has been
observed from an image transitioning into another binary code.
The proposed method is capable of outputting highly reliable
classification results since it can consider the possibility of
an observed binary code transitioning into another binary
code. The results of experiments show that the proposed
method enables an increase in detection performance while
maintaining the same levels of memory and computing costs
as those for previous methods of binarizing features.

The approach that makes effective use of quantization
residuals in accordance with the proposed method is imple-
mented by Boosting-based classifiers in this study, but we
consider it will be possible to expand it into other classifiers
such as Random Forest and SVM. We will examine expansion
into such training methods in the future.

REFERENCES

[1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. In Computer Vision and Pattern Recognition, volume 1,
pages 886–893, 2005.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object Detection with Discriminatively Trained Part Based Models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

[3] C. Hou, H. Z. Ai, and S. H. Lao. Multiview Pedestrian Detection Based
on Vector Boosting. In Asian Conference on Computer Vision, pages
210–219, 2007.

[4] B. Leibe, K. Schindler, N. Cornelis, and L. V. Gool. Coupled Object
Detection and Tracking from Static Cameras and Moving Vehicles.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(10):1683–1698, 2008.

[5] K. Levi and Y. Weiss. Learning Object Detection from a Small Number
of Examples: the Importance of Good Features. In Computer Vision and
Pattern Recognition, volume 2, pages 53–60, 2004.

[6] Y. D. Mu, S. C. Yan, Y. Liu, T. Huang, and B. F. Zhou. Discriminative
local binary patterns for human detection in personal album. In
Computer Vision and Pattern Recognition, pages 1–8, 2008.

[7] V. Nair, P.-O. Laprise, and J. J. Clark. An FPGA-Based People
Detection System. EURASIP Journal on Advances in Signal Processing,
2005(7):1047–1061, 2005.

[8] T. Ojala, M. Pietikainen, and D. Harwood. A comparative study of
texture measures with classification based on featured distributions.
Journal of the Pattern Recognition, 29(1):51–59, 1996.

[9] R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

[10] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis. Human
Detection Using Partial Least Squares Analysis. In International
Conference on Computer Vision, 2009.

[11] X. Wang, T. X. Han, and S. Yan. An HOG-LBP Human Detector with
Partial Occlusion Handling. In International Conference on Computer
Vision, 2009.

[12] B. Wu and R. Nevatia. Detection of Multiple, Partially Occluded
Humans in a Single Image by Bayesian Combination of Edgelet Part
Detectors. In International Conference on Computer Vision, pages 90–
97, 2005.

[13] Y. Yamauchi, C. Matsushima, T. Yamashita, and H. Fujiyoshi. Rela-
tional HOG Feature with Wild-Card for Object Detection. In Workshop
on Visual Surveillance(in conjunction with ICCV2011), 2011.

[14] Q. Zhu, S. Avidan, M. C. Yeh, and K. T. Cheng. Fast Human Detection
Using a Cascade of Histograms of Oriented Gradients. In Computer
Vision and Pattern Recognition, pages 1491–1498, 2006.

277277277


