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Abstract—In the detection of human from image using statisti-
cal learning methods, the labor cost of collecting training samples
and the time cost for retraining to match the target scene are
major issues. One method to reduce the work involved in sample
collection is transfer learning based on boosting. However, if there
is a large change between the auxiliary scene and target scene, it
is difficult to apply the transfer learning. We therefore propose a
hybrid transfer learning method in which two feature spaces are
prepared, one of feature obtained by transfer and another of full
feature search that is the same as retraining. The feature space is
selectively switched on the basis of the defined training efficiency.
The proposed method improving accuracy up to 8.35% compared
to conventional transfer learning while accelerating training time
by 3.2 times faster compared to retraining.

I. INTRODUCTION

There has been much research to date on human detection
from images based on statistical learning methods, and its
application to intelligent transport systems (ITS) and other
fields has already begun. Human detection techniques based
on statistical learning methods prepare large quantities of
human and background images to train classifiers such as
support vector machines (SVMs) and boosting algorithms
[1] for classifying such images. There are techniques that
extract human silhouettes from gradients using Histograms
of Oriented Gradients (HOG) [2] as features as proposed by
Dalal. It is also common to create a learning database by
collecting human images as positive samples on the order of
several thousand and background images as negative samples
on the order of tens of thousand. All samples of human
images are required to have no human position shifts and to
be uniform in terms of human size, aspect ratio, etc. This is
because local-area gradients are used as features, which means
that the occurrence of human position shifts or differences
in human size in the images could prevent the selection of
common human features by statistical learning methods.

In response to this problem, the generation of sample
images by computer-graphic means has been researched as
a method for simplifying the collection of a large volume
of high-quality samples [3], [4]. In these studies, it has
been possible to obtain many uniformly positioned positive
samples, which means that good-quality training samples with
no position shifts can be prepared. However, in the case that
the environment used for collecting the training samples is

different from the target scene in which the human-detection
system is being applied, the appearance of people will differ
and human-detection performance will drop. For example,
if the camera’s angle of depression differs between the two
environments, the way in which people look in terms of
aspect ratio, proportion with respect to body parts, etc., may
differ greatly even for the same person. Solving this problem
requires that human images be collected from the environment
targeted by the human-detection system and that the classifier
be retrained. Here, however, creating a dataset to train the
human detector for every target scene and performing the
training incurs high labor and time costs. One approach to
solving this problem is to use transfer learning [5], which
has been proposed as a technique for reducing the labor
involved in collecting samples and retraining in response to
such variations in appearance. Pang et al. performed pre-
training using samples obtained from many existing databases
[8]. The method they proposed reduces the labor involved in
collecting samples by transferring the classifier obtained by
pre-training to the target environment and by adapting it to a
small number of target samples collected from that environ-
ment. The method also reduces the labor involved in retraining
by transferring the features deemed effective in the classifier
previously trained with existing databases thereby limiting
the feature search. However, significant differences between
scenes can significantly degrade performance compared to
retraining. This is “negative transfer” in the field of transfer
learning. Rosenstein et al. have shown that negative transfer
can occur when attempting to adapt to very different scenes
by transfer learning [10]. Against the above background, we
propose a hybrid transfer learning method that prepares two
feature spaces –one consisting of features obtained by transfer
and the other a full-feature space the same as retraining– and
that selectively switches between these feature spaces based
on a defined training efficiency. This method makes it possible
to create a classifier that minimizes the effects of negative
transfer. As a result, it achieves high accuracy even between
significantly disparate scenes that have been difficult to handle
in conventional transfer learning and speeds up training time
compared with retraining.



II. TRANSFER LEARNING BY COVARIATE-SHIFT

Transfer learning is a type of learning technique used in
the field of machine learning. Although the term “transfer
learning” can be interpreted in a number of ways, it has
been defined in the call-for-participation announcement of the
NIPS 2005 Workshop–Inductive Transfer: 10 Years Later [5]
as the “problem of retaining and applying the knowledge
learned in one or more tasks to efficiently develop an effective
hypothesis for a new task.” Research using transfer learning
has been increasing in recent years as reported in papers
like SOINN [11], TRAdaBoost [6], and CovBoost [8]. In the
study presented in this paper, we use covariate-shift boost
(CovBoost) that introduces boosting to transfer learning based
on the covariate shift.
A. Covariate-shift Boost (CovBoost)

Covariate-shift boost (CovBoost) is a boosting technique
that can use a small quantity of training samples in a new
scene and yet maintain the same level of detection accuracy as
when using a large quantity of training samples and perform-
ing a full-feature search. This is accomplished by applying
information on weak classifiers obtained by pre-training and
training samples previously used for training to training for
the target scene. The CovBoost technique has been proposed
by Pang et al. as a means of reducing the labor cost of
retraining when appearance differs between standard training
samples and training samples for specific scenes targeted for
detection, and has been extended for semi-supervised online
learning as well [8], [9]. In general, a boosting technique aims
to determine the strong classifier H(x) that minimizes the loss
function shown by

L =
∑
Ω

e−yH(x). (1)

Here, Ω is the total number of training samples while x
and y correspond to feature and its class label in a training
sample. In CovBoost, input samples consist of training
samples used for pre-training (auxiliary domain) and training
samples used for retraining (target domain). Here, probability
density distribution pa(x) of the auxiliary domain observed in
terms of features is generally different than probability density
distribution pt(x) of the target domain, or in other words,
pa(y|x) 6= pt(y|x). Thus, samples effective for training in
the target domain can be selected by weighting samples in
the auxiliary domain by pt(y|x)

pa(y|x) , which is called a covariate
loss. This value can be used to insert samples of the auxiliary
domain into the target domain, which is a process called
transfer leaning by covariate shift. The covariate loss by
pt(y|x)
pa(y|x) is denoted by the symbol λ. The target function of
transfer learning using the covariate shift is given by

L̃ =
∑

(xi,yi)∈Tt

e−yiHt(xi) +
∑

(xj ,yj)∈Ta

λje
−yjHt(xj). (2)

Here, (xi, yi) ∈ Tt and (xj , yj) ∈ Ta denote target-sample
feature and its class label of target domain t and auxiliary
domain a, respectively. The value λ can be calculated as shown
in Eq. (3).

λ =
1 + e−yHa(x)

1 + e−yHt(x)
(3)
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Fig. 1. Variation of appearance of training samples by an angle of depression.

The value λ therefore expresses the adaptiveness of auxiliary-
domain samples to the target domain in terms of the classifiers
Ha and Ht. A larger value means greater adaptiveness to the
target domain.

B. Problems with CovBoost

Pang and others have achieved equivalent performance for
environments with different viewpoints by transferring clas-
sifiers by CovBoost despite reducing the number of newly
collected training samples to one-third the usual amount.
However, in the case that camera angle of depression differs
significantly, appearance in those images will vary signifi-
cantly with change in the angle of camera-tilt. As a result,
the transfer of features becomes difficult and performance
deteriorates. Change in classification performance by transfer
learning when changing the camera’s angle of depression is
shown in Fig.1 as detection error trade-off (DET). Here, we
used the INRIA person dataset for pre-training and HOG
as features. These results show that performance deteriorates
when making a big change in the angle of depression since
the appearance of training samples changes. In short, it can be
seen that a transferred feature in itself cannot adapt well to a
greatly changed target domain.

III. HYBRID TRANSFER LEARNING

Transfer learning can be used to achieve high-accuracy
classification even when collecting only a small quantity of
target training samples, but it cannot adapt if auxiliary scenes
and target scenes differ greatly. In response to this problem, we
prepare two feature spaces–one consisting of features obtained
by transfer and the other of features obtained by retraining–and
selectively switch between the transfer-feature space and full-
feature space based on training efficiency (Fig.2). We propose
this method as a form of “hybrid transfer learning” with the
aim of creating a classifier that is faster than retraining and
more accurate than conventional transfer learning.

A. Defining the Problem

In this study, we define learning by standard data as the
auxiliary domain and data of specific scenes in an actual
installation environment as the target domain.
Auxiliary domain

Since learning in the auxiliary domain can be done by
offline processing, it uses a large amount of standard data.
For the auxiliary domain of this study, we used 2,416 human
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Fig. 2. Hybrid transfer learning.

images from the INRIA person dataset [12]–a standard dataset
for human-detection purposes–and use a classifier trained by
AdaBoost.The INRIA person dataset is widely known as a
benchmark for pedestrian detection and as effective data for
detecting upright humans at a low angle of depression.

• Number of positive/negative samples: 2,416/12,180
• Scenes: Camera tilt = 0; front-facing human images

Target domain
For the target domain, we used specific scenes having

different camera angles of depression. In contrast to auxiliary-
domain data, target-domain data must be newly obtained,
which means that getting by with as small a number of samples
as possible is desirable. In this study, we saved on labor by
obtaining samples through the creation of human images by
computer-graphic means as described in [4]. Specifically, we
generated 800 specific scenes for each angle of depression
used, namely 20, 30, 40, and 50, and took these scenes to be
the target domain.

• Number of positive/negative samples: 800/12,180
• Scenes: Camera tilt = 20, 30, 40, 50

In this study, we train a classifier at high speed while maintain-
ing accuracy using a small amount of new samples (one-third
that of the auxiliary domain in [8]) by selectively switching to
the feature space used for retraining when performing transfer
learning for the problem defined above.

B. Feature Shift
CovBoost performs feature transfer as a preparation to

learning. First, as shown in Fig. 3(1), it determines the center
coordinates of the local feature of a weak classifier selected
by pre-training. It then generates L local candidate areas with
these coordinates as center by normal random numbers as
shown in Fig. 3(2). According to [8], L = 50 is an appropriate
number of candidates. At this point, the proposed method
determines histograms of local features from the candidate
areas and compares each of them with the histogram of the
local feature of the weak classifier selected in pre-training to
assess their similarity (Fig. 3(3)). The Bhattacharyya coeffi-
cient shown by the following equation is used to calculate
histogram similarity.

Bhattacharyya =
n∑

i=1

√
p(x)q(x) (4)

Here, p(x) and q(x) denote the probability density distri-
butions of different domains. Finally, we treat the transfer
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Fig. 3. Transferring HOG feature for Pedestrian detection.
TABLE I

VARIATION OF THE SIMILARITY BY CAMERA TILT.
Camera tilt[deg] 20 30 40 50

Bhattacharyya coefficient 0.975 0.974 0.970 0.967

candidate having the highest similarity to the weak classifier
selected in pre-training as a feature to be transferred and
define the set of all such transferred features as transfer-
feature space FTr. We also define all features extracted from
images the same as in retraining as full-feature space FRe.
Average similarity for each camera-tilt is listed in TABLE I.
As touched upon in section 2.2, similarity drops the more that
target data departs from training data in the auxiliary domain.
This difference can be said to be a factor in the degradation
of classifier performance shown in Fig. 1.

C. Learning by the Hybrid Transfer Learning Method

Hybrid-type learning uses a group of samples extracted from
both auxiliary domain Ta and target domain Tt. All of these
samples have a class label set to +1 for positive samples
and −1 for negative samples. The next step is to initialize
sample weights. Here, the normalized values of the target
domain and auxiliary domain are taken be the initial values
of those domains with the weights of each denoted as Dt(xi)
and Da(xj). The selection of a weak classifier is achieved
by determining h(x) so as to minimize Eq. (2). Here, we get
the approximate formula of Eq. (5) by subjecting Eq. (2) to a
first-order Taylor expansion with h(x) = 0. Determining h(x)
so as to minimize Eq. (5) selects weak classifier hm(x).

hm = arg min
ht

(
∑

(xi,yi)∈Tt

e−2yiDt(xi)yiht(xi) (5)

+
∑

(xj ,yj)∈Ta

λje
−2yjDa(xj)yjht(xj))

In this case, we determine each h() by searching through
transfer-feature space FTr and full-feature space FRe. We next
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calculate error εm by

εm =

∑
h(xi) 6=yi

e−2yiDt(xi) +
∑

h(xj) 6=yj

λje
−2yjDa(xj)

∑
i

e−2yiDt(xi) +
∑

j

λje
−2yjDa(xj)

. (6)

At this point, we calculate training efficiency ζ and perform
re-selection of weak classifiers in full-feature space FRe if
the value of ζ is equal to or less than a certain threshold. The
method for calculating ζ is explained in the next section. Next,
we calculate weight αm for the selected weak classifier by

αm =
1
4

ln
1 − εm

εm
. (7)

Next, we update the weight of the training samples as

D(x) = D(x)e−2yαthm(x) (8)
The above process is repeated the same number of times

as the number of training rounds in pre-training. Finally, by
weighting all weak classifiers and taking a majority vote, we
create a strong classifier for detection purposes. This strong
classifier is given by

Ht(x) = sign[
M∑

t=1

αtht(x) − th]. (9)

Here, th denotes the threshold value and M the number of
training rounds.

D. Feature Space Selection based on Training Efficiency

In feature transfer as described in the previous section,
transfer learning takes place in transfer-feature space FTr

consisting of features with high transfer likelihood. This
approach can reduce training time (lower search cost), but if
there are significant changes between pre-training data and
target training data, it may happen that there are no similar
features to be observed in the first place. It is for this reason
why switching is performed between the proposed transfer-
feature space based on likelihood and the full-feature space the
same as that of retraining. In short, we use high-speed transfer
learning based on likelihood in the case that transferring is
effective and learning by full-feature space in the case that
transferring is difficult. These feature spaces are defined as
follows.
Transfer-feature space

• Feature dimensions: 100 (selected by pretraining)

• Computational cost: low
• Degraded performance if difference between domains is

large
Full-feature space

• Feature dimensions: 3,780×100(dim×threshold)
• Computational cost: high
• Optimized for target domain

Here, the index needed for switching is a value that judges
whether transfer learning is sufficient enough for classification
purposes. Change in weak-classifier error in both transfer
learning and retraining boosting is shown in Fig.4. Here,
error ε can be computed by Eq. (6). It increases in value
as learning proceeds in both transfer learning and retraining.
This is because the weight of adaptively difficult samples
increases in value even though learning is progressing. Error
rises easily, in particular, if scenes in transfer learning are
greatly different since the limit of classification performance
is low in this case. If the variation in this error value is low,
learning will converge to some extent and there will be no
significant improvement. We therefore define the gradient of
this error value as training efficiency, which we use as an
index for switching. Specifically, we observe the slope of this
error, and if it turns out to be a gentle slope as transfer learning
proceeds and if its absolute value falls below the threshold, we
apply a full search. In this study, we calculate this gradient
by a least squares approximation using the most recent five
points. Since error ε drops significantly if effective features
can be discovered by a full search, the gradient will increase
and the system will move back to transfer learning. Change
in error when switching between feature spaces using training
efficiency is shown in Fig.4. These results show that error
greatly improves whenever moving to a full search and that
the system moves back to transfer learning when error has
sufficiently dropped.

IV. EXPERIMENT

We performed an experiment to assess the effectiveness of
the proposed method on the basis of classification accuracy
and training speed.

A. Overview of Experiment
To begin with, we pre-trained a classifier based on HOG

features and AdaBoost. For HOG features, cell size was set to
8 and block size to 2 and the total number of dimensions was
3780. For pre-training samples, we used 2,416 human images
from the INRIA person dataset as positive samples and 12,180
non-human images as negative samples. For target training
samples, we used 800 computer-generated human images as
positive samples for angles of depression of 20 ∼ 50[deg]
and 12,180 background images as negative samples. Further-
more, we used 2,416 computer-generated human images for
retraining as a comparison technique without performing any
pre-training.Finally, as evaluation samples, we used 10,000
computer-generated Human images and 10,000 background
images. We evaluated performance in terms of equal error
rate (EER), which is the value at which the false-positive rate
is equal to the false-negative rate. A low EER signifies high
accuracy.



TABLE II
ACCURACY EVALUATION BY EER.

Camera tilt[deg] 20 30 40 50
Proposed method[%] 2.26 6.18 8.37 6.37
Transfer learning[%] 3.85 10.56 16.72 15.61

Re-train[%] 0.08 1.07 1.45 1.02

TABLE III
COMPARISON OF TRAINING COST.

Camera tilt[deg] 20 30 40 50
Proposed method [min] 15.0 13.8 18.6 14.4

Re-train [min] 60

mean-gradient（tilt:50°） (a)Transfered
      feature

(b)Full searched 
        feature

(c)proposed
selection(a+b)

(d)Re-train
  selection

Fig. 5. Selected HOG Feature : (a)selected transfer-step, (b)selected retrain-
step, (c)(a)+(b) selected hybrid transfer learning, (d)selected retrain

B. Change in Accuracy by the Feature Space Selection Method

To assess the effectiveness of the proposed hybrid transfer
learning method, we compared it with the existing transfer
learning and retraining methods focusing on target scenes
having a disparity with pre-training scenes. The classification
performances of these methods for four types of target scenes
corresponding to different camera angles of depression are
compared in TABLE II.

These results show that the performance of the existing
transfer learning method dropped significantly with change
in scenes. In contrast, the proposed method, while inferior
to retraining, demonstrated greatly improved performance of
1.59% ∼ 8.35% compared with transfer learning even for
significant scene changes as the ones here. Retraining had the
highest performance since it could be applied to the target
domain with an ample number of samples without relying on
the auxiliary domain.

C. Comparison of Training Speeds

The proposed method demonstrated a level of accuracy
near that of retraining for a small number of samples the
same as that of transfer learning. Retraining, however, is a
method applied to target scenes, which means that sample
collection cost and computational training cost must be taken
into account. We therefore compared the proposed method
and retraining method with this in mind. Their respective
training costs are listed in TABLEIII. The proposed method
achieved training times 3.2 ∼ 4.1 times faster than that of re-
training.These results suggest that the proposed method could
be easily applied to raising classification accuracy without
incurring a large training cost that would normally be expected
when adding data, creating cascade structures, etc.

D. Discussion

The proposed method maintains high accuracy by supple-
menting the classification process with features from a full
search in response to large changes in scenes that transfer
learning cannot deal with. Among the features selected by
the proposed method, Fig.5 visualizes those selected transfer

features (a) and full search (b). It can be seen from Fig.5(a)
that standard shoulder edges and vertically oriented edges
of legs could be transferred. On the other hand, it can be
seen from the full search of Fig.5(b) that horizontal edges
are conspicuous and that features that adapted to changes
in the appearance of upper body parts owing to changes in
the angle of depression were selected. The overlaying of (a)
and (b) as the entire proposed method is shown in Fig.5(c)
and the features selected by retraining are shown in Fig.5(d).
Comparing the two methods, it can be seen that the positional
relationships and gradient directions of the features are similar,
which means that the proposed method of Fig.5(c) can obtain
a configuration of features nearly the same as the retraining
method of Fig.5(d) by combining transfer features with a full
search.

V. CONCLUSION

The method proposed in the paper prepares two feature
spaces–a transfer-feature space obtained by transferring fea-
tures in transfer learning and a full-feature space the same as
retraining–and adaptively switches between them. By selecting
space according to training efficiency based on the gradient of
weak-classifier error ε, we have improved training performance
by 1.59% ∼ 8.35% compared with conventional transfer
learning and increased training speed by more than 3.2 times
compared with retraining. Looking forward, we plan to expand
our method beyond covariate-shift-type transfer learning and
to develop high-accuracy classifiers through Real AdaBoost
and other approaches.
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