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Abstract

This paper proposes Relational HOG (R-HOG) features
for object detection, and binary selection by using a wild-
card “∗” with Real AdaBoost. HOG features are effective
for object detection, but their focus on local regions makes
them high-dimensional features. To reduce the memory re-
quired for the HOG features, this paper proposes a new fea-
ture, R-HOG, which creates binary patterns from the HOG
features extracted from two local regions. This approach
enables the created binary patterns to reflect the relation-
ships between local regions. Furthermore, we extend the R-
HOG features by shifting the gradient orientations. These
shifted Relational HOG (SR-HOG) features make it possi-
ble to clarify the size relationships of the HOG features.
However, since R-HOG and SR-HOG features contain bi-
nary values not needed for classification, we have added a
process to the Real AdaBoost learning algorithm in which
“∗” permits either of the two binary values “0” and “1”,
and so valid binary values can be selected. Evaluation ex-
periment demonstrated that the SR-HOG features introduc-
ing “∗” offers better detection performance than the con-
ventional method (HOG feature) despite the reduced mem-
ory requirements.

1. Introduction
With the increasing use of digital cameras and vehicle-

mounted cameras, the expectations for practical detection
of humans in image for the purposes of improving image
quality and assisting the drivers of vehicles are also rising.
Research on the use of Field Programmable Gate Arrays
(FPGA) or other such hardware implementations of that
function has been done [12, 3, 6]. In hardware implementa-
tions, it is important that the detection method can operate
with high accuracy, high-speed and low memory require-
ments.

Most detection methods proposed in recent years use
combinations of local features of images and stochastic
learning [2, 18, 7, 15, 17]. Local region gradients [5, 1],
which are used as features in many proposals, can capture

the shape of an object, but very many dimensions are re-
quired to obtain the features of each local region. The diffi-
culty of accomplishing that with small-scale hardware that
has limited memory is a major problem whose solution re-
quires a reduction in the amount of feature data. Less data
has two benefits. One is that less memory is needed and the
other is that features can be categorical, each representing
common properties.

Two approaches to reducing the amount of data can be
considered: compressing the feature space to reduce the
number of features and reducing the amount of data needed
for each feature. The former approach includes methods
such as vector quantization to reduce the number of fea-
tures [9] and principle component analysis to compress the
feature dimensions. These methods can retain the original
amount of data while reducing the number of feature dimen-
sions. Human detection, however, involves the processing
of a huge number of detection windows, so these methods
are very inefficient.

The latter approach involves quantizing features at a low
bit rate. Scalar quantization, for example, can represent the
feature data at a bit rate that fits the problem. Quantiza-
tion is also an effective way to reduce the amount of data.
In addition to representing the information with the mini-
mum amount of data, it has the advantages of being robust
against noise and easy to use. One method of quantization
is threshold processing, which is simple and has the advan-
tage of low computational cost. However, determining the
optimum threshold for many samples is difficult. Another
binarization method uses the size relationship. The Local
Binary Pattern (LBP) proposed by Ojala etal. [13, 16, 11]
and a method that expands on that [4] have the advantage of
not requiring a threshold, as binarization is based on com-
parison of the two values. Threshold binarization and size
relationship binarization also differ in the data contained in
one binary value. In threshold processing, the value repre-
sents only size, but when size relationship is used, the rela-
tion between two values is also included.

Our method focuses on binarization using the size re-
lationship, which is one of the latter methods of reducing
data quantity. To achieve highly accurate object detection
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while reducing the amount of feature data, we propose the
Relational HOG (R-HOG) feature, a binarization method in
which the size relationship is obtained by comparing HOG
features from two local regions. Since R-HOG features uses
the size relationship of two HOG features, they can repre-
sent the relatedness of local regions. However, they com-
bine multiple binary values, and so contain values that are
unnecessary for classification. We solved that problem by
introducing a wild-card “∗”, which permits either of the two
binary values of “0” and “1”, when training. That makes
it possible to select the binary values that are effective for
classification by Real AdaBoost.

2. Related works

Local Binary Patterns (LBP) are a technique that is being
applied in a variety of fields such as object detection, face
recognition, and action recognition. The LBP features pro-
posed by Ojala et al. [13] represent the magnitude relations
of a pixel to adjacent pixels with a code, thus allowing rep-
resentations of fixed shapes such as edges. Liao et al. pro-
posed a method for application to face recognition in which
LBP is extended to represent magnitude relations between
the average luminance values in multi-resolution block ar-
eas [8]. Another technique applied in face recognition[14]
and action recognition [20] is the Local Ternary Pattern
(LTP), which extends LBP by using three values for the
threshold. Although that method can capture the relations
of nearby and adjacent pixels, it cannot represent other ef-
fective combinations that exist. Furthermore, the LTP ap-
proach requires optimum values for the three thresholds.

Methods that combine multiple feature quantities in-
clude the Joint Haar-like features proposed by Mita et al.,
which capture the relations of Haar-like features in differ-
ent positions [10], and co-occurrence features that link the
output values of weak classifiers with operators proposed by
Yamauchi et al. [19]. These methods combine feature quan-
tities on the basis of recognition results, so the combination
of features may be negatively affected when the results are
in error or when the target of detection is obscured.

In contrast to those methods, the features that we pro-
pose capture the relations of local gradients, and can thus
capture the relationships with all areas rather than simply
neighboring areas as in LBP and LTP. Furthermore, using
the wild-card character “∗” has a masking effect in which
binaries that are not needed for distinguishing the target are
not observed. It is therefore possible to use only the bina-
ries that are effective for discrimination, and approach that
can be expected to suppress degradation of recognition ac-
curacy.

3. HOG features and binarization
This section describes HOG features and binarization as

means of reducing the amount of HOG feature data.

3.1. HOG features

The Histograms of Oriented Gradients (HOG) feature
proposed by Dalal etal. [2] is a one-dimensional histogram
of gradient orientations of intensity in local regions that can
represent object shape. This feature is a histogram of adja-
cent pixel gradients for local regions, so it is not easily af-
fected by local lighting conditions and is robust to changes
in geometry.

To compute HOG features, first, the magnitude m and
gradient orientation θ are calculated from the intensity I
of the pixels. Next, using the calculated magnitude m and
gradient orientation θ, the sum of the magnitudes of quan-
tized gradient orientation θ′ in cell region c (p × p pixels)
are calculated. We represent the set of sums of magnitude
in gradient orientation θ′ as the N -orientation histogram
V c = {vc(1), vc(2), · · · , vc(N)}. Finally, we use Eq. (1)
to normalize the histogram by each block region (q×q cells)
to extract the features.

v′
c(n) =

vc(n)√(∑q×q×N
k=1 vc(k)2

)
+ ϵ

(ϵ = 1) (1)

After normalization, the histogram V ′
c is V ′

c =
{v′

c(1), v′
c(2), · · · , v′c(B × N)}. Here, B is the number of

cell regions that are contained in the block region.

3.2. Binarized HOG features (B-HOG)

Binarized HOG (B-HOG) features are obtained by
thresholding. Those features can capture the relatedness of
the gradient orientations within the cell region by observing
the binary values for N orientations in the cell region as a
single feature (binary pattern).

We use the eight-orientation histogram V ′
c for the

cell region subjected to threshold processing as shown
in Eq. (2) to produce the B-HOG features BBH

c =
{bBH

c (1), bBH
c (2), · · · , bBH

c (8)}. In reference [2], nine ori-
entations are used, but in our work we choose eight orienta-
tions so that features can be represented as one byte.

bBH
c (n) =

{
1 if v′

c(n) ≥ t
0 otherwise (2)

Here, the t represents the threshold. For example, when
extracting HOG features for an input image such as Fig. 1
and binarizing the features, we get BBH

c = (00001011)2.

3.3. Benefits and problems with B-HOG features

B-HOG features and HOG features vary with the amount
of feature data. The HOG features obtained with Eq. (1)
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Figure 1. B-HOG feature calculation method.

must usually be represented by double precision real num-
bers (8 bytes), but the B-HOG features can be represented
by one unsigned character (1 byte). Thus, B-HOG features
can reduce memory use to 1/8 that required by HOG fea-
tures. However, the need to obtain the optimum binariza-
tion threshold values t for different human detection envi-
ronments is a problem.

4. Proposed method
In this section, we first describe Relational HOG (R-

HOG) features and Shifted Relational HOG (SR-HOG) fea-
tures. To solve the problems described in section 3.3 while
retaining the advantages of quantization, we first binarize by
using the size relation of the HOG features extracted from
two local regions. The R-HOG and SR-HOG features can
capture the relatedness of local regions, but they contain bi-
nary values that are unnecessary for classification. There-
fore, we introduce a wild-card “∗”, which permits either of
the two binary values “0” and “1” in the training to allow
the selection of the binary values that are effective in classi-
fication by Real AdaBoost.

4.1. Relational HOG features (R-HOG)

R-HOG features are binarized by comparing the two val-
ues of HOG features obtained from two local regions as
shown in Fig. 2, thus reducing data quantity by eliminat-
ing use of a threshold. While B-HOG features can represent
gradient magnitudes only as binary values, R-HOG features
can also represent the relationship between two features.
Furthermore, R-HOG feature binarizes the size relation of
HOG features, so processing to normalize the HOG is not
needed. Because the normalization processing has the high-
est computational cost of the HOG feature processing, the
proposed method can greatly reduce the processing cost.

R-HOG features are the binarized feature quantities
BRH

c1c2
= {bRH

c1c2
(1), bRH

c1c2
(2), · · · , bRH

c1c2
(8)} that result from

comparing the size relationship of the eight-orientation his-
tograms V c1 and V c2 obtained from two cell regions c1 and
c2, as shown in Eq. (3).

bRH
c1c2

(n) =
{

1 if vc1(n) ≥ vc2(n)
0 otherwise (3)

Note that vc(n) does not require a normalization process.
As we see in Fig. 2, we can create a binary pattern that

Figure 2. Binarization using HOG features of two cell regions.

Figure 3. Introducing a shift in the orientation.

captures the relatedness of local regions by using the size
relationship of features in two cell regions. In doing so,
the R-HOG features are computed from all combinations of
cell regions. However, as shown in Fig. 3, if the extracted
features are similar, their size relation is not distinct, and so
is difficult to represent clearly as binary values.

4.2. Shifted Relational HOG features (SR-HOG)

To solve the problems associated with R-HOG features,
as shown in Fig. 3 (b) and (c), we shift the orientation of
the eight-orientation histogram V c2 extracted from one of
the cell regions by s(s = 0, 1, 2, · · · , 7) to create the eight
histograms V c2s. Then, we use Eq. (4) in the same way
as Eq. (3) to obtain the size relationship and calculate the
eight binarized features, BSRH

c1c2s.

bSRH
c1c2

(n, s) =
{

1 if vc1(n) ≥ vc2((n + s)%8)
0 otherwise (4)

Here, % is the modulo operator. By calculating the size
relationship with the orientation-shifted histograms, the size
relationship can be represented clearly even if the extracted
features are similar. In this paper, we refer to the R-HOG
features extracted with orientation shifting as Shifted Rela-
tional HOG (SR-HOG) features.
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Figure 4. Example of a representation by binary patterns that include “∗”.

4.3. Binary selection by using a wild-card “∗”

After extracting the R-HOG or SR-HOG features, train-
ing by the Real AdaBoost is applied. Introducing “∗” into
features that have been converted to binary patterns to se-
lect binary patterns that are effective in classification at the
same time as selecting the position of cells and the binary
patterns that are effective in discrimination is expected to
increase the detection accuracy.

4.3.1 Introduction of a wild-card “∗”

The proposed features are obtained as binary patterns (Fig.
4(b)) from two HOG features as shown in Fig. 4(a). How-
ever, when the difference in compared magnitude is small,
the binary values may be easily reversed. Such binary val-
ues have low reliability, and so are a cause of error in clas-
sification. For that reason, we propose here a binary value
selection method in which a wild-card “∗” is introduced as
shown in Fig. 4(c). The “∗” permits either of the binary
values “0” or “1”. Doing so makes it possible to express
multiple similar binary patterns simultaneously, as shown
in Fig. 4(d). The number of “∗” and the binary bits at
which they are used are selected by Real AdaBoost. Then,
for each combination of cell regions, 6,561 (= 38) binary
patterns that include “∗”, are generated as weak classifier
candidates, as shown in Fig. 5.

For example, if there are 8 × 16 cells in one detection
window, then there are 8, 128(=128 C2) cell combination
patterns and 6,561 patterns of binary values plus “∗” for
each pair of cells, which gives about 50 million weak clas-
sifier candidates. These weak classifier candidates are used
for training with Real AdaBoost.

4.3.2 Training method

The proposed training method involves using Real Ad-
aBoost to select weak classifiers effective for classification
from among the many weak classifier candidates described
in section 4.3.1. The training process is shown in Fig. 6.

First, labeled training samples (x1, y1), · · · , (xI , yI) are
prepared. The xi are images and yi are class labels. The

Figure 5. Patterns using wild-card “∗” in a pair of cell regions.

class that is the target of detection is yi = +1 and the class
that is not the target of detection is yi = −1. The sample
weights are denoted as Dl(i) and are initialized with Eq.
(5).

Next, the processing up to the updating of the training
sample weights from calculations of the sample weight fre-
quencies is repeated for a certain number of weak classi-
fiers, T , or until a certain detection rate is attained. First,
the probability density functions W+ and W− that represent
the frequency with which the binary patterns F (x) extracted
from all combinations of cell regions, and the patterns of
“0”, “1”, and “∗”, or, are the same are calculated from Eq.
(6) and Eq. (7) as shown in Fig. 7. F (x) is a function of bi-
nary patterns from input image x; or are patterns composed
of “0”, “1”, and “∗” that exist in combinations of two cell
regions, r(∈ R = {ci, cj}i=1,2,··· ,127,j=i+1,i+2,··· ,128 ), as
shown in Fig. 5. The + symbol represents the class of
detection targets; the − represents the class of non-targets.
The δ is Kronecker’s delta function, which returns a value
of 1 when the two input binary patterns are the same. Here,
if the features used in training are SR-HOG features, then
in addition to the combination of two cell regions, r, the
number of shifted orientations is also taken into account.

After calculating the probability density functions W+

and W−, Eq. (8) is used to calculate score Z, which rep-
resents the degree of separation. A larger Z value means
a greater frequency difference between the positive sample
and the negative sample. Thus, from among the binary pat-
terns or, the weak classifier candidates for which the equiv-
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¶ ³
1, Input: Labeled training samples I .

{xi, yi}i=1···I , yi ∈ {−1, 1}
2, Initialization: Initialization of sample weights.

D1(i) = 1/I (5)
3, Training:

For l = 1, · · · , L //Number of weak classifiers.
For r = 1, · · · , R //Combination number of two cell regions.

For o = 1, · · · , O //Binary pattern with wild-card “∗”.

· Calculate the probability density functions.
W+ =

X

i:yi=+1

Dl(i)δ[F (xi), or] (6)

W− =
X

i:yi=−1

Dl(i)δ[F (xi), or] (7)

· Calculate the score Z.
Zor = |W+ − W−| (8)

End for
End for

· Select weak classifier hl.
hl = arg max

or∈(O×R)
Zor (9)

· Update sample weights.
Dl+1(i) = Dl(i) exp [−yihl(xi)] (10)

h(xi) =

8

<

:

1
2

ln
W++ϵ

W−+ϵ
if F (xi) = or

1
2

ln
(1−W+)+ϵ

(1−W−)+ϵ
otherwise

(11)

End for

4, Output: Strong classifier.

H(x) = sign

"

L
X

l=1

hl(x)

#

(12)

µ ´
Figure 6. Training algorithm.

Figure 7. Calculation of the probability density functions.

alent value Z from Eq. (9) is maximum are selected as the
effective weak classifiers for round l, hl.

After selection of the weak classifiers, Eq. (10) is used to
update the training sample weights so that the training sam-
ples that failed to classify will classify correctly in the next
round. Then, the probability density functions of the se-
lected weak classifier sample, W+ and W−, are used to cal-
culate the weak classifier output hl(x) from Eq. (9). Here,
the W+ and (1 − W+) and the W− and (1 − W−) are nor-

Figure 8. Training datasets.

malized to the value 1, and ϵ is a coefficient for preventing
the denominator from taking a value of 0 (ϵ = 1/I).

Finally, the processing up to this point is repeated for a
certain number of weak classifiers or until a certain detec-
tion rate is obtained to construct the strong classifier H(x)
in Eq. (12).

5. Evaluation experiment
To evaluate the effectiveness of the proposed method, we

conducted two experiments. First, we evaluate the effec-
tiveness of R-HOG and SR-HOG features comparing with
conventional HOG features. Next, we compared the accu-
racy before and after introduction of the wild-card “∗” to
SR-HOG features to evaluate the effectiveness of using “∗”.

5.1. Data sets

In the experiments, we used datasets for people, and ve-
hicles. The people dataset is the INRIA Person Dataset [2];
the vehicle dataset is the one used in reference [19]. Each
dataset is shown in Fig. 8. The training sample from the
INRIA Person Dataset includes 2,416 positive samples and
12,180 negative samples; the test sample includes 1,126
positive samples and 453 negative samples. The nega-
tive test sample includes background images that contain
no people. The vehicle dataset training sample included
710 positive samples and 8,800 negative samples; the test
sample included 1,230 positive samples and 3,880 negative
samples.

5.2. Overview of the evaluation experiment
The evaluation experiments compared the methods listed

below.
• HOG features (HOG)
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Dataset Image size Cell size Block size Orientation
[pix.] [pix.] [cell]

INRIA[2] 64 × 128 8 × 8 2 × 2 8
Vehicle[19] 72 × 54 9 × 9 2 × 2 8

Table 1. Parameters used in the experiment for each dataset.

• Binarized HOG features (B-HOG)

• Relational HOG features (R-HOG)

• R-HOG features + shifted-orientation (SR-HOG)

The various dataset parameters are presented in Table
1. For the evaluation, we use the Detection Error Trade-
off (DET) curve. The DET curve has the False Positive
Per Window (FPPW) values along the horizontal axis and
the false negative rate on the vertical axis; points nearer to
the origin in the lower left indicate higher detection accu-
racy. Also, the threshold t used when calculating the B-
HOG features is the value determined in preliminary exper-
iments to have the highest detection accuracy. The t value
was 0.09 for the INRIA Person Dataset and 0.10 for the ve-
hicle dataset.

5.3. Experiment 1: Effectiveness of R-HOG and
SR-HOG features

In experiment 1, we tested the effectiveness of R-HOG
and SR-HOG features. The DET curves that represent the
results for the two datasets are presented in Fig. 9.

First, we compare the B-HOG features with the R-HOG
features. Comparing the human detection rates for when
the FPPW from Fig. 9(a) is 1.0 × 10−2, the detection rate
for the R-HOG features is about 8.5% higher than for the
B-HOG features. Comparing the vehicle detection rates for
when the FPPW from Fig. 9(b) is 1.0× 10−2, the detection
rate for the R-HOG features is about 1.7% higher than for
the B-HOG features.

Next, we compare R-HOG features and SR-HOG fea-
tures. Comparing the people detection rates for when the
FPPW from Fig. 9(a) is 1.0 × 10−2, the detection rate for
the SR-HOG features is about 1.7% higher than for the R-
HOG features. Comparing the vehicle detection rates for
when the FPPW from Fig. 9(b) is 1.0× 10−2, the detection
rate for the SR-HOG features is about 2.1% higher than for
the R-HOG features. From these results we know that R-
HOG features, which are binary patterns obtained by size
relationship, are superior to B-HOG features, which are bi-
nary patterns obtained by threshold processing, in capturing
the relations between cell regions and thus provide a higher
detection rate. Furthermore, shifting the gradient orienta-
tion of HOG features from one of the cell regions to obtain
a binary pattern as is done for SR-HOG features clarifies the
size relationship, so the performance is even higher than for
R-HOG features.

Finally, we compare the R-HOG features and the SR-
HOG features with the HOG features. For both human and

vehicle detection, the detection rates for the R-HOG fea-
tures are lower than for the HOG features. However, the de-
tection rates for the SR-HOG features come closer to those
for the HOG features, even though the feature data is re-
duced.

5.4. Experiment 2: Effectiveness of binary selection
by a wilde-card “∗”

In experiment 2, we tested the effectiveness of introduc-
ing “∗” for selection of binary patterns that are effective for
classification when using Real AdaBoost to train the classi-
fiers. In this experiment, we focused on SR-HOG features,
which have the best detection accuracy among the proposed
methods as shown by the results of experiment 1, and de-
termined the effects of introducing “∗” in the training. The
DET curves for the experimental results for the two datasets
are shown in Fig. 10.

From Fig. 10, we can see that introduction of “∗” to
the training improved detection accuracy to a level higher
than that for the HOG features. From Fig. 10(a), we see
that comparing the human detection rates for when FPPW
is 1.0×10−2 shows that introduction of “∗” to SR-HOG fea-
tures improves accuracy by about 4.1% relative to SR-HOG
features without “∗” and by about 1.5% relative to HOG
features. From Fig. 10(b), we see that comparing the vehi-
cle detection rates for when FPPW is 1.0×10−2 shows that
introduction of “∗” to SR-HOG features improves accuracy
by about 1.2% relative to both SR-HOG features without
“∗” and HOG features. We consider this result to be due
to suppression of the reversal of binary values to which “∗”
has been introduced, thus allowing selection of binary val-
ues that are even more effective in classification.

5.5. Discussion

Here, we show the proportions of features that contain
various numbers of “∗” that are selected as weak classifiers
for each dataset to verify the effectiveness of introducing
“∗” and to ascertain the effectiveness of the SR-HOG fea-
tures. The results are presented in Fig. 11.

From Fig. 11 (a) and (b), first, since features that include
some of the “∗” codes are selected as weak classifiers, it is
clear that adding a process to introduce “∗” when training is
effective in classification. We also know that features which
contain zero “∗” are selected less frequently for both human
and vehicle detection in these experiments. This means that
introducing “∗” greatly contributes to an improvement in
detection accuracy.

Second, we see that the number of “∗” for which the se-
lection frequency is the highest is three for B-HOG features
and one for SR-HOG features in the case of persons. In
the case of vehicles, the numbers are four for B-HOG fea-
tures and three for SR-HOG features. The fact that the fea-
tures selected for the SR-HOG features contain fewer “∗”
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Figure 9. Effectiveness of R-HOG and SR-HOG features.

Figure 10. Effectiveness of the wild-card “∗”.

for both people and vehicle detection means that the SR-
HOG features include more binary values effective for clas-
sification than do B-HOG features. This is because the ori-
entation shifting that is done to produce SR-HOG features
considerably suppresses the ambiguity caused by the rever-
sal of binary values, which can cause error in classification.
Therefore, SR-HOG features can represent the characteris-
tics of the target object more explicitly than B-HOG fea-
tures.

5.6. Comparison of memory and computational cost

Table 2 shows the memory use and computational cost
required for feature extraction and classification in one de-
tection window (64×128 pixels) for HOG features, B-HOG
features, R-HOG features, and SR-HOG features, assuming
500 weak classifiers.

The R-HOG features used about 87.5% less memory
than the HOG features, and the SR-HOG features used
75.0% less memory than the HOG features. Both the R-
HOG features and the SR-HOG features reduced the com-

putational cost by about 50.0% compared with the HOG
features. This is because the R-HOG features and the SR-
HOG features do not require normalization processing.

When the ambiguous code “∗” is introduced, the amount
of memory and the computational cost for online discrim-
ination are almost the same as the values shown in Table
2, because the same number of weak classifiers are used
in both processes. In general, binarization of features de-
creases the detection accuracy such as for B-HOG due to the
reduction of information effective for classification. How-
ever, SR-HOG features introducing “∗” are able to achieve
higher discrimination accuracy than HOG features even
though binarization is applied.

6. Conclusion

We have proposed Relational HOG features with a wild-
card “∗”. This paper makes two contributions. The first is,
Relational HOG features, which are binarized on the basis
of the size relationship of HOG features extracted from two
cell regions. These features can capture the relatedness of
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Figure 11. proportions of weak classifiers that contain various numbers of “∗”.

Table 2. Comparison of memory use and computational cost.
Feature HOG B-HOG R-HOG SR-HOG

Memory[KB] 3.91 0.50 0.49 0.98
Computational cost[ms] 5.39 × 10−7 5.40 × 10−7 2.70 × 10−7 2.70 × 10−7

local regions in a single binary pattern.
The second contribution is the introduction of a wild-

card “∗” to allow selection of binary values that are effective
in classification with Real AdaBoost. When the difference
in magnitude of HOG features is small, the binary value
may reverse, which is a cause of lower detection accuracy.
Introducing the wild-card “∗”, which can take either of the
two binary values “0” and “1”, suppresses binary value re-
versal, and achieves highly accurate detection with less fea-
ture data.

References
[1] A. Bosch, A. Zisserman, and X. Munoz. Representing shape

with a spatial pyramid kernel. In Proc. of ACM international
conference on Image and video retrieval, pages 401–408,
2007.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In IEEE Conf. on CVPR, volume 1, pages
886–893, 2005.

[3] A. Ess, B. Leibe, K. Schindler, and L. V. Gool. A mobile vi-
sion system for robust multi-person tracking. In IEEE Conf.
on CVPR, pages 1–8, 2008.

[4] A. Hadid, M. Pietikainen, and T. Ahonen. A discriminative
feature space for detecting and recognizing faces. In IEEE
Conf. on CVPR, volume 2, pages 797–804, 2004.

[5] C. Hou, H. Ai, and S. Lao. Multiview pedestrian detection
based on vector boosting. In Proc. of ACCV, pages 210–219,
2007.

[6] K. Khattab, J. Dubois, and J. Miteran. Cascade boosting-
based object detection from high-level description to hard-
ware implementation. EURASIP Journal on Embedded Sys-
tems, 2009:1–12, 2009.

[7] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection
in crowded scenes. In IEEE Conf. on CVPR, volume 1, pages
878–885, 2005.

[8] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Li. Learning multi-
scale block local binary patterns for face recognition. In in
Advances in Biometrics, pages 828–837, 2007.

[9] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector
quantizer design. In IEEE Trans. on Communications, vol-
ume 28, pages 84–95, 1980.

[10] T. Mita, T. Kaneko, and O. Hori. Joint haar-like fea-
tures based on feature co-occurrence for face detection (in
japanese). IEICE Trans., J89-D(8):1791–1801, 2006.

[11] Y. Mu, S. Yan, Y. Liu, T. Huang, and B. Zhou. Discriminative
local binary patterns for human detection in personal album.
In IEEE Conf. on CVPR, pages 1–8, 2008.

[12] V. Nair, P. O. Laprise, and J. J. Clark. An FPGA-based peo-
ple detection system. EURASIP Journal on Applied Signal
Processing, 2005:1047–1061, 2005.

[13] T. Ojala, M. P. ainen, and D. Harwood. A comparative study
of texture measures with classification based on featured dis-
tributions. In Pattern Recognition, volume 29, pages 51–59,
1996.

[14] X. Tan and B. Triggs. Enhanced local texture feature sets
for face recognition under difficult lighting conditions. IEEE
Transactions on Image Processing, 19:1635–1650, 2010.

[15] O. Tuzel, F. Porikli, and P. Meer. Human detection via clas-
sification on riemannian manifolds. In IEEE Conf. on CVPR,
pages 1–8, 2007.

[16] X. Wang, T. X. Han, and S. Yan. An HOG-LBP human
detector with partial occlusion handling. In Proc. of IEEE
ICCV, pages 1–8, 2009.

[17] T. Watanabe, S. Ito, and K. Yokoi. Co-occurrence histograms
of oriented gradients for pedestrian detection. In Proc. of
PSIVT, pages 37–47, 2008.

[18] B. Wu and R. Nevatia. Detection of multiple, partially oc-
cluded humans in a single image by bayesian combination
of edgelet part detectors. In Proc. of IEEE ICCV, volume 1,
pages 90–97, 2005.

[19] Y. Yamauchi, M. Takaki, T. Yamashita, and H. Fujiyoshi.
Feature co-occurrence representation based on boosting for
object detection. In International Workshop on Socially In-
telligent Surveillance and Monitoring(in conjunction with
CVPR), pages 31–38, 2010.

[20] L. Yeffet and L. Wolf. Local trinary patterns for human ac-
tion recognition. In Proc. of IEEE ICCV, 2009.

1792


