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Abstract

This paper proposes a method of feature co-occurrence
representation based on boosting for object detection. A
previously proposed method that combines multiple binary-
classified codes by AdaBoost to represent the co-occurrence
of features has been shown to be effective in face detec-
tion. However, if an input feature is difficult to be assigned
to a correct binary code due to occlusion or other factors,
a problem arises here since the process of binary classifi-
cation and co-occurrence representation may combine fea-
tures that include an erroneous code. In response to this
problem, this paper proposes a Co-occurrence Probabil-
ity Feature (CPF) that combines multiple weak classifiers
by addition and multiplication arithmetic operators using
Real AdaBoost in which the outputs of weak classifiers are
real values. Since CPF combines classifiers using two types
of operators, diverse types of co-occurrence can be rep-
resented and improved detection performance can be ex-
pected. To represent even more diversified co-occurrence,
this paper also proposes co-occurrence representation that
applies a subtraction arithmetic operator. Although co-
occurrence representation using addition and multiplica-
tion operators can represent co-occurrence between fea-
tures, use of the subtraction operator enables the represen-
tation of co-occurrence between local features and features
having other properties. This should have the effect of re-
vising the probability of the detection-target class obtained
from local features. Evaluation experiments have shown co-
occurrence representation by the proposed methods to be
effective.

1. Introduction

Detecting object in image is being researched for appli-
cation in a wide variety of fields including surveillance and
ITS. In particular, many methods for detecting pedestrians
have been proposed in recent years with the aim of improv-
ing accuracy.

As reflected by the face-detection framework proposed

978-1-4244-7028-0/10/$26.00 ©2010 IEEE

by Viola and Jones [17], object-detection methods gener-
ally combine local features representing the appearance of
an object with statistical learning. The appearance of an ob-
ject targeted for detection can change due to lighting, pose,
viewpoint, etc., and to deal with these changes, features that
focus on local region in the image have been proposed.

Local features that have been proposed include differ-
ences in intensities [17], edges [7][4][19][16], and texture
[10][18]. For local features like these, the information con-
tained by any one feature is very small, but the appearance
of a target object can be represented by a very large num-
ber of features. In addition, a high-accuracy detector can
be achieved through training by using a statistical-learning
method to extract from a huge feature pool those that are
common to training samples of target objects.

Many previous works are therefore making use of fea-
tures obtained from local region to deal with aspects of ap-
pearance common to target objects. However, as the in-
formation included in a local region is small, only part of
the appearance of a target object can be represented. As a
result, background image similar to the partial appearance
of a target object might be erroneously detected. To solve
this problem, object-detection methods that consider the co-
occurrence of multiple local features have been proposed in
recent years [8][14][1]. These methods can capture not only
partial appearance but also a global structure of object mak-
ing for high-accuracy detection.

Also proposed in recent years are image categorization
methods that make use of context [13][5][12]. These meth-
ods use category-classification results determined from ap-
pearance to evaluate the relationship between categories and
revise category output. This makes for high-accuracy cate-
gory classification even in the case of ambiguous appear-
ance. However, some training samples may include co-
occurrence representation even for objects in categories that
have a low probability of existing simultaneously. If such
samples should be included in test images, the possibil-
ity of erroneous classification as a result of co-occurrence
representation is high. This is typical problems due to
the representation of very strong relationships such as co-



occurrence between categories. To deal with this problem,
co-occurrence representation capable of even higher gener-
alization is needed.

In this paper, we propose a Co-occurrence Probability
Feature (CPF) that combines weak classifiers of Real Ad-
aBoost [15][19] by arithmetic operator. A CPF is a discrim-
inative feature achieved by combining multiple local fea-
tures through a boosting. Here, the combining of weak clas-
sifiers by multiple types of different operators enables the
representation of diverse types of co-occurrence. In addi-
tion, to represent even more diverse types of co-occurrence,
we also propose co-occurrence representation that applies
a subtraction operator. By using a co-occurrence represen-
tation method that applies a subtraction operator, we can
expect co-occurrence such that the probability of the object
class is revised from information having other properties.

This paper is organized as follows. We summarize re-
lated works in Section 2. We describe our proposed method,
co-occurrence probability feature in Section 3, and report
the experimental results in Section 4. Section 5 then de-
scribes the CPF extension that applies the subtraction oper-
ator and Section 6 concludes the paper.

2. Related work

Many methods have been recently proposed with the
aim of improving classification accuracy by focusing on
co-occurrence. This section surveys the research associated
with those methods from two viewpoints: the co-occurrence
of categories and the co-occurrence of features.

First, we look at methods that consider the co-occurrence
of different categories [13][5][12]. Using categories deter-
mined and their degree of reliability from appearance, these
methods revise classification results from the relationship
between those categories. For example, if an “automobile”
exists in the input image, the low possibility of a “cow”
running alongside and the high possibility of a “motorcy-
cle” running alongside can each be represented as a co-
occurrence between categories. This approach enables a
sample that would otherwise be difficult to classify based
only on appearance to be correctly classified. However, as
some training samples may include a co-occurrence repre-
sentation of object categories that have a low probability of
existing simultaneously, the possibly of a negative effect on
classification accuracy exists.

Next, we look at methods that consider the co-
occurrence of features [8][14][9]. Mita et al. have proposed
a joint Haar-like feature [8] based on the co-occurrence
of multiple Haar-like features. A joint Haar-like feature
combines binary codes from multiple Haar-like features
through boosting. As a result, the relationship between fea-
tures based on structures such as the eye, nose, and mouth
of a face can be determined. This makes erroneous de-
tections difficult even if the background image should in-

clude a section similar to part of a face. However, in the
case that an erroneous binary code is included in the fea-
tures to be combined, the joint Haar-like feature will be
adversely affected, and the classification accuracy deteri-
orates. This problem is thought to be especially prevalent
for target objects like human whose shape can undergo dra-
matic changes and for objects affected by occlusion due to
overlapping in the image. Sabzmeydani et al. have pro-
posed a shapelet feature [14] that combines edge features
in four directions by boosting. A shapelet feature can si-
multaneously capture edges that co-occur in a target object
and edges that do not. Also proposed is a joint HOG fea-
ture [9] that aims to increase the accuracy of classification
even further by combining the advantages of joint Haar-like
features with those of shapelet features. These methods can
generate discriminative feature effective for object detection
that evaluate feature co-occurrence through boosting. Other
methods that consider co-occurrence include local binary
pattern (LBP)[11], which represents the intensity relation-
ship between adjacent pixels, and methods that apply LBP
[10][18]. However, LBP is not necessarily effective fea-
tures for object detection because combinations to evaluate
co-occurrence are prepared.

The basic idea of our approach presented in this paper
is embodied by the second viewpoint above, that is, by the
type of method that considers the co-occurrence of features.
In conventional methods of this type, classification results
obtained by boosting are binarized and combined to rep-
resent co-occurrence. As a result, the combination of er-
roneous classification results could have an adverse effect
on final results. In this paper, we deal with this problem
by combining weak classifiers from Real AdaBoost. Weak
classifiers are combined by addition and multiplication op-
erators having different properties, thus this approach en-
ables the representation of co-occurrence with some fuzzi-
ness. And with the aim of improving detection performance
even further, the first idea presented above of using the co-
occurrence of categories is also deemed important. There-
fore, in this study, we also use a subtraction operator to rep-
resent co-occurrence such that the probability of the target-
object class is revised by information having other proper-
ties.

3. Co-occurrence Probability Feature(CPF)

In this section, we describe CPF for representing the co-
occurrence of features and an efficient training for generat-
ing CPF.

3.1. Histograms of Oriented Gradients

The proposed CPF is a feature that combines multiple
local features. In this study, we use Histograms of Ori-
ented Gradients (HOG) [4] as local features. HOG have



been reported to be effective in object detection, and many
pedestrian detection methods using HOG [20][6] have been
proposed because of the high performance that HOG of-
fers. Since HOG features convert gradients with adjacent
pixels into histograms at each local area, they are not eas-
ily affected by lighting and are robust to local geometric
changes.

In the process for computing HOG features, 9-direction
histograms of oriented gradients are created for each cell
area (8 x 8 pixels) in a detection window (64 x 128
pixels). The features in each block area (2 x 2 cells)
are then normalized by the norm-L2 technique. This
block-by-block normalization process shifts one cell at
a time so that blocks overlay each other. The HOG
after normalization VFOC is expressed as VHOG =
{vHOG(1),0H0G(2),... wHOG(B x N blocks)}. Here,
¢ denotes cell, B the number of blocks, and N the number
of gradient directions. In the end, 3,780 features can be
obtained from one detection window in this way.

3.2. Probability of Detection-target Class

To generate CPF, the probability of the detection-target
class is computed when inputting local features. In this
study, we use the weak classifiers of Real AdaBoost
[15][19] to compute the probability of the detection-target
class. The output of weak classifiers can be used to ob-
tain a statistical label confidence by using a large training
set. First, the probability density functions W), is created
using local features obtained from training samples. Prob-
ability density functions W are represented by histograms
and created by Eq. (1) and (2).
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Here, D, (i) is a weight of a sample, y € {+1, —1} is the
class label, j is bin number of histogram.

Next, to obtain the probability of the detection-target
class, weak classifier f(v) is computed by
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where v is a local feature for input and € is a coefficient to
prevent a zero from occurring in the denominator. Weak
classifier f(v) expresses a statistical reliability.

3.3. Generation of CPF(+ and x)

To represent the co-occurrence of features, CPFs are
generated using two types of operators having different
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Figure 1. Representation of co-occurrence of HOG features. CPF
is computed by combining weak classifiers f(z) that input local
features using an addition or multiplication operator.

properties. Specifically, they are generated by Eq. (4) and
(5) using weak classifiers f(z).
CPFy = fi(v;7%(n)) + f2(v2;9% (n2)) @)

CPF, = f1(vl19%(n1)) x fa(vll9%(ny)) (5)

Cc1 C2

The addition (+) operator expresses co-occurrence repre-
senting a weak relationship between features and the multi-
plication (X ) operator expresses co-occurrence representing
a strong relationship between features. A CPF that com-
bines weak classifiers by an addition operator is a feature
that captures two features in a comprehensive way. Thus,
if one feature should be occluded or affected by external
disturbances such as noise but the other feature happens to
represent the target class in a big way, the CPF will end up
reflecting the target class. On the other hand, a CPF that
combines weak classifiers by a multiplication operator is a
feature that captures the simultaneity of two features. It is
a feature that captures that target only when those two fea-
tures f1(v), f2(v) are both high. An example of feature co-
occurrence is shown in Fig. 1. In this example, in which the
detection target is pedestrian, the co-occurrence of a shoul-
der gradient and a torso gradient is represented. In methods
that do not represent co-occurrence, erroneous detections
would easily occur by reacting only to gradients that deal
with the human torso. The proposed technique, however,
by simultaneously observing the torso and shoulder gradi-
ents and representing their co-occurrence by an operator,
can supress the erroneous detection of such samples.

3.4. Training by Nested Real AdaBoost

The CPFs described in section 3.3 are generated by com-
bining local features. Weak classifiers can now be selected
from a weak-classifier pool by evaluating generated CPFs
by Real AdaBoost. It is difficult, however, to evaluate all
CPFs by Real AdaBoost due to the huge number of com-
binations. Thus, to perform efficient combination of local
features in this study, training is performed by the nested
Real AdaBoost scheme shown in Fig. 2. The our training
method by nested Real AdaBoost is given in Algorithm 1.
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Algorithm1 Training algorithm by nested Real AdaBoost.

Input: Labeled training samples {x;, y; }i=1...n,¥: € {0, 1}.
Initialization: Initialize weights D1 (i) = 1/N.
Training:
Fort=1,---,T.
-Select C PF' by Real AdaBoost in 3.4.1.
-Train a weak classifier h,(z) based on CPF.

-Update the sample weights:

. Dy (i)[—y;h
Diia(i) = 2t
where Z; is a normalization factor.

Output:Final strong classifier H(x) = sign [Z he(z }

3.4.1 Efficient Feature Selection by Real AdaBoost

Evaluating all local-feature-combining CPFs is difficult due
to the large computational cost involved. To get around this
problem, a feature pool can be prepared consisting of lo-
cal features deemed effective in classification and CPFs can
then be generated using only the local features in that pool.
This approach can reduce computational cost while main-
taining classification performance.

A weak classifier that inputs a local feature is given by
Eq. (3). The classification performance of a weak classi-
fier can be evaluated by the Bhattacharyya distance between
the probability density functions (Eq. (1) and (2)) of the
detection-target and non-detection-target classes. Specifi-
cally, error e of a weak classifier is computed by Eq. (6).

e=> JWiw’ 6)
J

Table 1. Databases.

Class Training Testing
Pos. Neg. Pos. | Neg.
Pedestrian | 1,215 | 10,416 | 1,836 | 2,108
Vehicle 710 | 8,800 | 1,230 | 3,880

This error is calculated for all local features. Those with
small error are selected for feature candidates to compute
CPF. Then, CPF is generated using the feature candidates,
and the sample weights are updated by the second Real Ad-
aBoost. A strong classifier is trained through frequent repe-
tition of above processes.

4. Evaluation Experiment

This section describes experiments to confirm the effec-
tiveness of the addition and multiplication operators in CPF.

4.1. Database

A number of databases have become publically available
in recent years for evaluating the performance of object-
detection methods. In the field of pedestrian detection, for
example, use of the INRIA database [4] has become com-
mon. However, as we will be describing object detection
using a geometric context in section 5, we cannot perform
an evaluation experiment using the INRIA database here.
To perform a unified evaluation experiment, we decided to
create a new database in which detection targets are taken
to be pedestrians and vehicles.

This image database was created using HD video taken
by an on-vehicle camera during the day and in the evening
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Figure 4. ROC curves of experimental results.

hours. Image samples were obtained by extracting people
and vehicles from the video. The extracted images included
various types of background and lighting, various poses of
the detection target, partial occlusion due to overlapping of
detection targets in the image, etc. Fig. 3 shows some of
the samples used for training and Table 1 lists the number of
pedestrian and vehicle samples used for training and testing.

4.2. Experiment

To compare the effectiveness of feature co-occurrence
representation as proposed here, we compared results ob-
tained by CPF with those obtained by HOG feature[4] and
Joint HOG feature[9], the latter of which is a feature co-
occurrence representation of state-of-the-art approaches.

Experiment results are compared using receiver operat-
ing characteristic (ROC) curves in which the false positive
rate is shown on the horizontal axis and the detection rate
on the vertical axis. A ROC curve indicates better detec-
tion performance as it approaches the upper-left area of the
graph.

4.3. Experimental Results

The ROC curves of experimental results are shown in
Fig. 4. These results show that the detection performance
of the proposed method is the highest. First, we compare
the proposed method with HOG feature. In the pedestrian
test, we see that the proposed method shows an improve-
ment of 3.7% over HOG and Joint HOG features at a false
positive rate of 1.0%, and in the vehicle test, an improve-

Average gradient t

t
(b) Vehicle

Figure 5. Visualization of CPF selected by training. On the left
are average gradient images computed from training samples in
the detection-target class. On the right are visualization results of
CPF selected by the Real AdaBoost training.
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Figure 6. Ratios of selected operator by boosting.

ment of 2.4% at a false positive rate of 0.1%. These results
demonstrate the effectiveness of feature co-occurrence rep-
resentation by the proposed method in object detection.

Fig. 5 shows average gradient images computed from
training samples of the detection target class and visualiza-
tion images of CPF selected by training. The visualization
images on the right show that the CPF selected by the train-
ing reflect the shape of the target object in both the pedes-
trian and vehicle cases. For example, at the first round weak
classifier (tf = 1) in the pedestrian case, the selected CPF si-
multaneously capture the right part of the head and the left
shoulder of a pedestrian can be seen. In pedestrian detec-
tion, erroneous detection frequently occurs by reacting to
side edges that represent a torso. We consider that this kind
of erroneous detection can be controlled by representing the
co-occurrence of features.

Fig. 6 shows how the ratio of operators selected during
training changes. In the initial training period, more CPFs
using the addition operator are selected than CPFs using the
multiplication operator, but from about 100 training rounds
on, the two ratios become about the same. This is thought
to occur for the following reason. In the initial training
period, many addition operators are selected so that many
training samples can be correctly classified. In the middle
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Figure 7. Example of geometric confidence map. Intensity in (b),
(c), and (d) indicates confidence level.

of training, however, the multiplication operator is increas-
ingly selected so that training samples with high weights
can be correctly classified. From these results, we can say
that these two types of co-occurrence representation have
different properties and that operators optimal for classifi-
cation are selected by boosting.

5. CPF using a Subtraction Operator

The CPFs described so far represent the co-occurrence
of features by combining multiple local features by an addi-
tion or multiplication operator. In this section, with the aim
of representing an even greater variety of co-occurrence, we
describe a CPF that applies the subtraction operator. With
this new type of CPF, co-occurrence in which the probabil-
ity of the detection-target class is revised from information
having other properties can be expected. In this paper, we
use geometric context proposed by Hoiem et al. as local
features giving us information having different properties.

5.1. Geometric Context

Geometric context (GC) [3] proposed by Hoiem et al.
is a method for estimating and labeling three-dimensional
scene structures from a single image. This method inputs
color, texture, location, shape and geometry feature, and
learns a model using a logistic regression form of AdaBoost
[2]. At the time of classification, the model obtained by
learning is used to classify the test image into “ground”,
“vertical”, and “sky” classes. The results of estimating ge-
ometric labels by GC from the input image of Fig. 7(a) are
shown in Figs. 7(b), 7(c), and (d) for “ground”, “vertical”,
and “sky”, respectively.

In this study, we use the confidences of “ground”, “verti-
cal”, and “sky” obtained by GC as local features in each of
the cells used for computing HOG features. That is, we de-
termine average confidences for the pixels included in cell
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Figure 8. Representation of co-occurrence between HOG features
and geometry context by addition and multiplication operators.
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Figure 9. Representation of co-occurrence between HOG features
and geometry context by subtraction operator.
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vsRY obtained by GC.

5.2. Co-occurrence with Geometry Context

5.2.1 Co-occurrence with GC by addition and multi-
plication operators

We represent the co-occurrence of HOG features and geom-
etry context as shown in Fig. 8 based on the co-occurrence
representation technique using addition and multiplication
operators described in section 3.3. This achieves co-
occurrence in which the probability of the target-detection
class is revised by information having different properties
obtained from different regions.

5.2.2 Co-occurrence with GC by subtraction operator

We also represent co-occurrence with geometry context us-
ing the subtraction operator. CPF using the subtraction op-
erator is generated combining obtained local features from
the same local region. CPF using the subtraction operator
are given by Eq. 7.

ground
Ucl

CPF_ = fl (ngG(nl)) _ Uglertical 7
vgky

An example of generating a CPF using the subtraction op-
erator is shown in Fig. 9. In this negative sample, vehicle-
like characteristics would be high on the basis of only HOG
features. However, by representing co-occurrence with
“ground” confidence using the subtraction operator, the ex-
cessive probability of a vehicle computed when focusing on
HOG features can be controlled.
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Figure 10. ROC curves of experimental results.

5.3. Evaluation Experiment

We performed an experiment to evaluate a CPF that ap-
plies the subtraction operator. The experiment compared (1)
CPF 4nax using HOG features, (2) CPF_ ;4% using HOG
and geometry context, and (3) CPF_ 4, — using HOG and
geometry context.

The ROC curves of experimental results are shown in
Fig. 10. To begin with, it can be seen from these results
that the detection performance of CPF applying geometric
context by addition and multiplication operators is higher
than CPF using only HOG features. It can therefore be said
that geometry information obtained from GC is effective in
detecting people and vehicles. Fig. 11 shows evaluation
samples that are judged to be a non-detection target by CPF
using only HOG features but judged to be a detection tar-
get by CPF that also applies geometry context. Since these
evaluation samples consist of images taken in the evening
hours, the human contour, for example, cannot be clearly
captured by only HOG features, i.e. appearance. When
applying geometry information, however, a correct classi-
fication is obtained for these samples that are difficult to
classify on the basis of appearance only.

Next, we evaluate CPF applying the subtraction opera-
tor. It can be seen from the ROC curves of Fig. 10 that
applying the subtraction operator improves detection per-
formance for both pedestrian and vehicle cases. This indi-
cates that the use of geometry context was able to revise the
output of the detection-target class obtained from HOG fea-
tures. Fig. 12 shows examples of evaluation samples that
were judged to be detection targets when not applying the

ll

CPF by HOG ~ -13.27 -11.23 -11.13
CPF by HOG 11.44 1.7
and GC : o 6.57

CPF by HOG

CPF by HOG
and GC

(b) Vehicle detection
Figure 11. Examples of evaluation samples for which detection
became possible by CPF using HOG and GC applying the addi-
tion and multiplication operators. The values in the figure indicate
output of the final strong classifier.

CPF +and x

CPF +and x, -

CPF + and x

CPF +and x,- -80.17 -83.09 -134.82
(b) Vehicle detection

Figure 12. Examples of evaluation samples in which erroneous de-
tection was controlled by CPF applying the subtraction operator.

subtraction operator but judged to be non-detection-targets
when applying the subtraction operator. Here, introducing
the subtraction operator in CPF reduces the values of output
from the final strong classifier compared to the method not
applying this operator. This is because the use of the sub-
traction operator during training can avoid the selection of
HOG features ineffective for classification thereby helping
to suppress erroneous detection.

5.4. Discussion

Here we discuss the CPFs selected by training in the ex-
periments. Fig. 13 shows selected local features by boost-
ing. The regions corresponding to those features are shown
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Figure 13. Local features selected by boosting. Ratios in paren-
theses indicate number of local features selected per total number
of local features. The regions corresponding to those features are
shown by red squares. A higher intensity level in these images in-
dicates higher gradients in the case of HOG and higher confidence
(in the “vertical”, “ground”, and “sky”) in the case of GC.

by red squares. As for HOG features, there is a tendency to
capture the entire silhouette of the detection target whether
that be a pedestrian or vehicle. At about 80%, HOG features
make up most of the selected features. As for GC, the fea-
ture that expresses ground-like characteristics was selected
in greater number for the vehicle than for the pedestrian.
In the case of pedestrian, feet are often occluded by guard
rails or other objects, but in the case of vehicles, the occlu-
sion of the lower portion of a vehicle occurs infrequently in
comparison to pedestrians. Thus, when the detection target
is a pedestrian, conditions conducive to selection of ground-
like features occur less often compared to a vehicle. On the
other hand, sky and vertical features, while few, are selected
in greater number for the pedestrian than for the vehicle.

Next, we turn our attention to “ground” and see that low-
confidence regions were also selected. In the case of pedes-
trian detection, which is taken from vehicle-mounted cam-
era, this expresses that fact that not only is the area around
a person’s feet “ground” but also that the area around the
person’s torso is not “ground”. Likewise for vehicle detec-
tion, the selection of low-confidence regions indicates that
not only is the area below the vehicle “ground” but also that
area around the upper part of the vehicle is not “ground” but
“vehicle”.

6. Conclusion

We proposed a co-occurrence probability feature that
combines weak classifiers from Real AdaBoost by addition
and multiplication operators. The co-occurrence probability
feature becomes a discriminative feature by virtue of com-

bining multiple local features through boosting achieved by
operators. This combination of weak classifiers using mul-
tiple operators of different types enables the representation
of various types of co-occurrence. In addition, to represent
co-occurrence of even greater diversity, we proposed co-
occurrence representation that applies the subtraction op-
erator. The extended co-occurrence probability feature us-
ing the subtraction operator represents co-occurrence such
that the probability of the target-object class is revised by
information having different properties. We confirmed by
evaluation experiments that detection accuracy could be im-
proved by this extended approach. In future research, we
plan to study a feature co-occurrence representation method
applicable to multi-class category classification.
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